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ABSTRACT Wearable sensor-based devices are increasingly applied in free-living and clinical settings to
collect fine-grained, objective data about activity and sleep behavior. The manufacturers of these devices
provide proprietary software that labels the sensor data at specified time intervals with activity and sleep
information. If the device wearer has a health condition affecting their movement, such as a stroke, these labels
and their values can vary greatly from manufacturer to manufacturer. Consequently, generating outcome
predictions based on data collected from patients attending inpatient rehabilitation wearing different sensor
devices can be challenging, which hampers usefulness of these data for patient care decisions. In this article,
we present a data-driven approach to combining datasets collected from different device manufacturers. With
the ability to combine datasets, we merge data from three different device manufacturers to form a larger
dataset of time series data collected from 44 patients receiving inpatient therapy services. To gain insights
into the recovery process, we use this dataset to build models that predict a patient’s next day physical
activity duration and next night sleep duration. Using our data-driven approach and the combined dataset,
we obtained a normalized root mean square error prediction of 9.11% for daytime physical activity and
11.18% for nighttime sleep duration. Our sleep result is comparable to the accuracy we achieved using the
manufacturer’s sleep labels (12.26%). Our device-independent predictions are suitable for both point-of-care
and remote monitoring applications to provide information to clinicians for customizing therapy services and
potentially decreasing recovery time.

INDEX TERMS Actigraphy, activity and sleep prediction, inpatient rehabilitation, machine learning,
wearable sensors.

I. INTRODUCTION
When an individual experiences an injury or illness that
requires inpatient rehabilitation, the individual’s physical
activity and sleeping patterns are often affected. Common
reasons for undergoing inpatient rehabilitation include recov-
ering from a traumatic brain injury (TBI), a stroke, cardiac
disorders, lower extremity fractures, and various orthopedic
surgeries. Specifically for patients with TBI, research has
found that more than 66% of patients experience sleep disor-
ders [1], while that number is as high as 78% for individuals
recovering from a stroke [2]. Individuals recovering from

TBI or stroke are often admitted to an inpatient rehabilitation
facility to receive therapy services. Unfortunately, prescribed
therapy may not be equally effective for each patient due
to low levels of physical activity during the day and sleep
disorders at night. Together, inactivity and sleep disorders can
negatively impact the rest-activity circadian rhythm cycle that
may slow the recovery from an injury or illness, even affect-
ing quality of life [3]. Therefore, in inpatient rehabilitation,
objective physical activity and sleep data can offer insights
for clinicians to help customize therapy sessions with the goal
of shortening the recovery process.
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Objective data can be collected using wearable sensor-
based devices that collect fine-grained physical activity and
sleep data. Sensor-based physical activity and sleep mea-
surements offer several benefits over human observation by
therapists and by the patients themselves. Data collected
from sensors remove the inaccuracy that is common amongst
measurements that are self-reported by patients. For individ-
uals with and without a health condition, it is difficult to
objectively self-characterize activity and sleep. People tend to
either overestimate or underestimate their activity, with corre-
lations to direct measurement varying from−0.71 to 0.96 [4].
Secondly, data collected from sensors is not subject to vari-
ability due to inter-rater reliability. Sensor-based devices
continuously track 24-hour physical activity and sleep in
the same format and under the same conditions, allowing
consistent data collection. Also, the technology has advanced
enough to require minimal effort on the part of the clinician.
This is primarily due to shorter device setup times and longer
battery lives, permitting 24-hour recordings without the sub-
jectivity that is frequently introduced by human observation.

Despite these advantages of sensor-based devices, their
efficacy, accuracy, and applicability in inpatient rehabilitation
settings remain areas of significant research. The majority of
studies have focused on evaluating sensor-devices as well as
their associated activity and sleep algorithms for healthy indi-
viduals. It is difficult to generalize such results to individuals
with a health condition, such as those undergoing inpatient
rehabilitation. Typically when these devices and their algo-
rithms are applied to individuals with mobility impairments
or sleep disorders, the results are highly variable [5] and
can produce inexplicable results [6]. Additional challenges
that arise from analyzing data collected from clinical set-
tings include how to combine datasets from different sensor
devices and how to use the combined data to help clinicians
provide therapy services. There are several wearable sensor
device manufacturers, and each one produces slightly dif-
ferent measurements of physical activity and sleep. While
research has studied the validity of various manufacturers and
their devices, the discrepancies across devices make it diffi-
cult for sleep researchers and clinicians to combine datasets
and interpret the results [7].

To help alleviate this challenge and advance clinical activ-
ity and sleep research, we utilized research-grade Acti-
graph devices and consumer-grade pedometer devices in an
inpatient rehabilitation facility to collect data from patients
during their recovery process. Specifically, we utilized
Ambulatory Monitoring Inc (AMI) MotionLogger devices,
Philips Actiwatch Spectrum Plus devices, and Fitbit Charge
devices with heart rate measurement capability. Using a data-
driven approach, we combined data from these devices to
implement a machine learning-based approach to measure
and predict a patient’s future physical activity and sleep
duration. Our results provide accurate predictions of activ-
ity levels for the forthcoming day and sleep duration
for the forthcoming night. Our approach to manufacturer-
independent physical activity and sleep prediction support

point-of-care and remote patient monitoring that can help
meet the needs of precision medicine by individualizing
healthcare services [8].

II. RELATED WORK
Wearable sensor-based devices, like Actigraphs and Fitbits,
are wrist-worn devices that are less obtrusive and less expen-
sive alternatives to gold-standardmethods. For sleep analysis,
the commonly-used gold-standard technique for wearable
sensor evaluation is polysomnography [9]. For physical activ-
ity, the gold-standard techniques include direct observation
and motion capture systems [10]. At a minimum, wrist-worn
devices typically contain tri-axial accelerometers that mea-
sure the acceleration of the wearer’s wrist for a short time
interval, such as a second. Manufacturers of these devices
process the acceleration time series data to determine a more
clinically-relevant measure of physical activity than the orig-
inal raw acceleration values, namely activity counts in the
case of Actigraphs and step counts in the case of pedometers.
When raw acceleration signals are combined with other sen-
sor signals, such as heart rate or ambient light, algorithms can
accurately label time intervals as ‘‘sleep’’ or ‘‘wake.’’ These
labels are used by researchers and clinicians to determine if
the wearer is sleeping or awake.

Manufacturers and researchers have investigated the error
between gold-standard measurements and the output of man-
ufacturer processing algorithms; however, this research has
primarily used healthy subjects for evaluation [11]–[14].
While these algorithms perform well on healthy individuals,
the algorithms can have higher error for individuals with a
health condition, such as those recovering from an injury or
illness like stroke or TBI, who exhibit highly irregular sleep
and activity patterns [15]. To address this, recent research
studying both healthy and unhealthy populations has focused
on evaluating wearable sensor-based devices specifically for
counting steps [10], detecting sleep periods [5], [16], and
measuring sleep characteristics [17]–[20], such as total sleep
time, sleep efficiency, number of awakenings, sleep onset
latency, and wake after sleep onset.

We deployed three devices from different manufacturers
for continuous data collection, so here we summarize the
research investigating the accuracy of these specific devices.
The three devices include MotionLogger, Actiwatch, and
Fitbit. Beginning with physical activity measurements, for
healthy adults in free-living conditions, a wrist-worn Fitbit
has been shown to not differ significantly from a waist-worn
ActiGraph GT3X for counting steps taken per minute over a
24-hour period [14]. For patients in a cardiac rehabilitation
population, a wrist-worn Fitbit has been shown to correlate
well with step count estimates from an Actigraph (r = 0.95);
however, the Fitbit tended to over-count steps [21]. When
compared to direct observation, a wrist-worn Fitbit was
reported to underestimate step count by 16% during a self-
paced walking test performed by older adults with impaired
ambulation [22]. In another study of subjects with multiple
sclerosis performing a 2-min walk test, the Fitbit step count
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correlation (r = 0.69) was lower than the Actigraph correla-
tion (r = 0.76) [23]. For the MotionLogger device, no clear
difference between the accelerometer counts measured by the
device and indirect calorimetry were detected during level
walking [24].

For sleep measurements, strong correlations have been
reported in healthy adults between estimates of total sleep
time using a Philips Actiwatch and based on polysomnog-
raphy (r = 0.94), as well as betwee a wrist-worn Fitbit and
polysomnography (r = 0.97) [25]. In the same study, sleep
efficiency measures from the Actiwatch and Fitbit did not
differ from sleep efficiency measured by polysomnography.
Therefore, total sleep time and sleep efficiency appear to be
monitored by Actiwatch and Fitbit with reasonable accuracy.
On the other hand, the MotionLogger device was found to
underestimate total sleep time by almost 24 minutes and
overestimate wake time by 25 minutes in healthy children
and adolescents [26]. The same study found that the Philips
Actiwatch did not demonstrate significant differences for
total sleep timewhen controlling for age and sleep-disordered
breathing.

These studies have found that though wearable devices
do not demonstrate perfect measurements of activity and
sleep for populations with health conditions, they do produce
reasonable estimates. The next research step is to utilize
these activity and sleep estimates to determine if they can
help customize therapy for individual patients. One way
to provide additional insights for customization is for an
automated machine learning system to produce predictions
about an individual’s future physical activity and sleep per-
formance. Machine learning models generally benefit from
being trained with large datasets. To acquire as much data
as possible for human activity learning, several studies have
investigated device-orientation independent methods for data
collection [27], [28], fusing data from multiple sensors [29],
and transfer learning approaches [30], [31].

Research using machine learning models for activity and
sleep applications has primarily focused on classifying dif-
ferent types of physical activity [32], [33] and various sleep
characteristics for healthy populations [11], [34], [35]. The
work that is most similar to this article is that of Sathya-
narayana and colleagues [11]. Sathyanarayana and colleagues
collectedActigraph data from 92 healthy adolescents wearing
ActiGraph GT3X+ devices for one week. Machine learning
models trained with the collected daytime physical activity
data were used to classify good and poor sleep efficiency with
an area under the receiver operating curve of 0.9449. In our
recent work, we expanded this research to investigate the
applicability of sleep prediction for individuals with sleep dis-
orders [36]. For this study, we deployed AMI MotionLogger
devices in an inpatient rehabilitation setting.We continuously
collected activity and sleep data from 17 inpatient rehabilita-
tion subjects with identified sleep problems due to recovering
from a stroke or TBI. Using this data, we constructedmachine
learning regression models to predict a patient’s future night
sleep duration. Our regression approach achieved a 14.40%

normalized root mean square error predicting next night sleep
minutes.

III. METHODS AND PROCEDURES
In this article, we design approaches to data fusion and activ-
ity/sleep prediction. We then evaluate these approaches based
on a sample of 44 subjects. Data were collected from subjects
receiving inpatient therapy services for a variety of ailments,
including stroke, TBI, cardiac disorders, pulmonary disor-
ders, and lower extremity fractures. These subjects wore one
of three different wearable-sensor devices: a MotionLogger,
an Actiwatch, or a Fitbit. Because of these different devices,
we apply a data-driven approach to support normalizing and
combining the data from different manufacturers. We employ
this combination of minute-by-minute activity and sleep data
tomake predictions about future nighttime sleep total inactive
minutes (TIM) and total sleep time (TST) as measured by
the device manufacturers. In addition to predicting a patient’s
next night sleep duration, we also predict a patient’s next
day total active minutes (TAM) to gain insight about daytime
behavior.

A. DATA COLLECTION
For data collection and analysis purposes, we define a
24-hour day as a period beginning at 06:00:00 and ending at
05:59:00 the following calendar day. Using known controlled
lighting times at the inpatient facility, we determined the
daytime (DT) period to coincide with when the lights were
typically on in patients’ rooms, which was from 06:00:00 to
20:59:00. The nighttime (NT) period corresponded to the
time period when lights were off in patients’ rooms, which
was from 21:00:00 to 05:59:00. For ease of explanation,
we denote successive NT and DT periods using the� sym-
bol. For example, the notation NT � DT � NT describes
a nighttime, then daytime, then the following nighttime
sequencewhich represents 9+ 15+ 9= 33 continuous hours.
We identify a period in a sequence of successive DT and NT
periods using a subscript, such as DT1 �NT1 �DT2, where
DT1 and NT1 are sampled from the same 24-hour period, and
DT2 is from the next period.
We deployed and collected data from three different wear-

able sensor-based devices. These three devices represent
three datasets we collectively analyze in this article to eval-
uate our prediction approach. The three datasets and their
devices, with sample sizes, are as follows:
1. The ‘‘AMI’’ dataset: Ambulatory Monitoring Inc Basic

MotionLogger Actigraph devices (N = 17)
2. The ‘‘Philips’’ dataset: Philips Actiwatch Spectrum Plus

Actigraph devices (N = 19)
3. The ‘‘Fitbit’’ dataset: Fitbit Charge with Heart Rate

pedometer devices (N = 8)
For reference, Figure 1 includes images of these devices.

In total, we collected continuous data from 44 patients under-
going inpatient rehabilitation. Patients admitted to the hospi-
tal following an injury or illness, such as stroke or TBI, were
recruited to participate in these studies if their therapist stated
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FIGURE 1. The three devices used for data collection.

they were experiencing irregular sleeping patterns. The data
collection protocols for all three datasets were approved by
our local institutional review board and all patients provided
written informed consent to participate. Each subject continu-
ously wore one of these three devices during both the daytime
and nighttime periods until they were discharged from the
rehabilitation facility.

For the AMI dataset, we analyzed data from 17 subjects
(age 64.11± 17.05 years; 11 females and 6 males), for which
the data collection periods ranged from 9 days to 30 days [36].
For the Philips dataset, we analyzed data from 22 subjects
(age 63.96± 17.93 years; 5 females and 17 males), for which
the data collection periods ranged from 4 days to 30 days.
For the AMI and Philips datasets, the device manufacturers
provided Actigraph-style activity counts and binary ‘‘sleep’’
or ‘‘wake’’ labels for each minute of data collection. We used
these activity counts to represent physical activity.

For the Fitbit dataset, we originally collected data from
15 subjects who participated in the study during the duration
of their inpatient rehabilitation stay [6], [37]. For several of
these 15 subjects, there were entire nights with missing sleep
data, likely due to patients taking the device off and/or the
Fitbit sleep algorithms not properly detecting the wearer’s
abnormal sleeping patterns. Therefore, in this study we only
used the data collected from eight participants for whom
high-integrity sleep data were available every night of data
collection (age 66.25 ± 12.89 years; 6 females and 2 males),
for which the data collection periods ranged from 5 days to
17 days. Instead of recording activity counts, Fitbit labels
each minute with a number of ‘‘steps’’ taken. We used steps
as a similar measure to the aforementioned activity counts
to estimate a subject’s physical activity. For labeling sleep,
Fitbit provides four levels of sleep: 0 (no sleep) or 1, 2, 3,
(increasing levels of deeper sleep). To align this data with
that of the AMI and Philips datasets, we reclassified these
four sleep levels into binary sleep/wake labels where a value
of 0 was re-labeled as ‘‘wake’’ and a value of 1, 2, or 3 was
re-labeled as ‘‘sleep.’’. In summary, across all three datasets
there was a total of 596 days of data collected in this study.

B. DATA PREPROCESSING
The three datasets consisted of minute-by-minute physical
activity and sleep/wake time series data. We preprocessed
these time series to prepare the data for consistent analyses

FIGURE 2. Example extracting daytime (DT) and nighttime (NT) periods
into baseline and post-baseline for a subject with five 24-hour (24H) days
of data.

across the different wearable device manufacturers.
We framed each subject’s time series data to start on the first
day with at least 400 consecutive minutes of recorded activity
and to end on the day with at least 800 consecutive minutes
of no recorded activity. We then normalized each subject’s
activity counts (AMI and Philips datasets) or steps (Fitbit
dataset) to be between 0 and 1.

Because the three datasets were each sampled from dif-
ferent devices, we computed our own normalized labels for
each individual subject. For each subject, we provided an
‘‘active’’ or ‘‘inactive’’ label for eachminute in the time series
data. These labels represent platform-independent labels that
offer an alternative to individual device manufacturer’s activ-
ity and sleep labels. To assign our individualized minute
labels, we held out the first three days of data collection for
each subject to serve as a baseline period. Using a subject’s
own data as a multiple-day baseline allowed us to account
for extreme variability across subjects’ data. We divided
the baseline data into DT and NT periods, for a total of
three baseline DT periods and three baseline NT periods.
Figure 2 provides an example of how the baseline period
was extracted from an example subject with five days of data
collection. From these baseline periods, we extracted baseline
activity means (BAM), namely, the DT baseline activitymean
DTBAM and the NT activity mean NTBAM. We decided to use
the mean of baseline activity because it was highly correlated
with manufacturer sleep and wake labels (see Section IV for
results). Using the DTBAM for each subject, we labeled the
remaining post-baseline DT minutes for the subject as active
if its activity value was greater than DTBAM, or inactive if
it was less or equal to DTBAM. We repeated this process for
the NT periods, using NTBAM. Our BAM labeling algorithm
provided subject-specific and device-independent labels for
daytime activity and nighttime activity. For nighttime activity,
we hypothesized that the inactive labels were indicative of
sleep andwe evaluated this hypothesis by comparing the inac-
tive labels to the manufacturer-provided sleep/wake labels.

C. FEATURE EXTRACTION
From the time series data for each subject, we extracted
relevant physical activity and sleep quality features from
the DT and NT periods separately. To determine physical
activity during DT periods, we used both the manufacturer
activity counts and our aforementioned BAM labels. For each
24-hour day, we counted the number of BAM-labeled DT
active minutes, as well as the number of transitions from
active to inactive. We also computed a daytime activity ratio,
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FIGURE 3. Example of daytime (DT) and nighttime (NT) periods used for
DT total active minutes prediction (a) and used for sleep duration
prediction (b) with example P values.

TABLE 1. Predicted values and their labels used for feature extraction.

which is the daytime sum of the manufacturer-measured
activity divided by the corresponding 24-hour total.

We computed NT features using both the minute-by-
minute manufacturer’s sleep/wake time series and our
BAM-labeled inactive minutes. We extracted nighttime TST,
number of sleep transitions, sleep onset latency (number of
minutes from the start of nighttime before sleep), longest
sleep bout length, and wake after sleep onset [17]. In addition
to daytime and nighttime features, we included the number of
days since each subject’s injury or illness as a feature. To sum-
marize, Table 1 lists the labels and features that were used for
predicting DT TAM, NT TIM, and NT TST, respectively.

We extracted the aforementioned features from a sequence
of P number of DT and NT periods to predict TAM for the
following DT period, TIM for the following NT period, or
TST for the following NT period. For example, if P = 1
and we are predicting TST, then we use the manufacturer’s
sleep/wake features from P-sequence DT1 to predict NT1,
DT2 to predict NT2, and so forth. If P = 3, then we
use the P-sequence DT1 � NT1 � DT2 to predict NT2,
DT2 � NT2 � DT3 to predict NT3, and so forth (see
Figure 3 for a diagram showing both DT and NT predictions
with differentP values). Because we did not include the three-
day baseline for prediction and therewas a subject in the Fitbit
dataset with only five days of data collection, the maximum
P value was P = 2 for DT TAM predictions and P = 3 for
NT TST predictions. Additionally, excluding the three-day
baseline reduced the total combined dataset size to 464 days.

D. PREDICTION MODELS
To predict TAM, TIM, and TST based on the extracted fea-
tures, we utilized a 100-tree random forest, employing amean
squared error feature-selection criterion, enhanced with bag-
ging, and without a maximum depth value [38]. We chose a
random forest regression algorithm because it is an ensemble
approach that exhibited low variance and yielded high pre-
diction accuracy in our previous work predicting nighttime

TABLE 2. Correlations between nighttime manufacturer sleep/wake
values and BAM inactive values.

sleep duration [36]. Furthermore, the random forest regressor
outperformed other regressionmodels we explored, including
K -nearest neighbors regressors, support vector regressors,
and neural networks. We trained the random forest regressor
using a fixed random seed of zero for reproducible results
and evaluated the performance using leave-one-out cross-
validation. For leave-one-out-cross-validation, each of the
participant periods was held out as a test sample while the
remaining P-sequences were used for training. Our initial
nighttime predictions started on the first night following the
three-day baseline. We excluded P-sequences if they repre-
sented future data from the same participant as the test data.
For example, when P = 1, there were 464 total NT periods,
from which we held out one nighttime period, NTx for leave-
one-out cross-validation. We then excluded all periods > x
from training that were collected from the same participant
as NTx .
To improve our random forest prediction accuracy, we uti-

lized a K -nearest neighbors (KNN) algorithm to select
K ‘‘similar’’ P-sequences from the training set. The K
smallest distances between a test P-sequence and all other
P-sequences in a subgroup were selected to form a smaller,
more specialized training set. Two P-sequences were con-
sidered similar if they were in the same subgroup and
yielded a small Euclidean distance between their feature
vectors. We investigated alternatives to distance calcula-
tion, including using dynamic time warping to compare two
P-sequences. Experiments revealed the best results were
achievable using feature vector-based Euclidean distance.
The subgroup parameter restrictedwhich feature vectors were
considered similar to the held-out feature vector. Subgroups
we explored included dataset, gender, and no subgroupings
(using all P-sequences). With the K parameter we aimed to
train on a minimal set of P-sequences that historically were
similar to the current P-sequence for which we were making
a prediction.

IV. RESULTS
To evaluate our BAM data-driven approach to normaliz-
ing data collected from different devices, we correlated the
original manufacturer-provided sleep/wake time series with
our BAM-labeled time series. We experimented with vari-
ous threshold values for determining active/inactive states,
including the baseline mean and percentiles in increments
of ten. Table 2 shows the top three correlations for the AMI
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TABLE 3. Best daytime total active minutes (TAM) prediction results.

and Philips datasets. For the Fitbit dataset, the correlations
for mean and all percentiles tested were the same, r = 0.53.
This is because Fitbit typically measures zero steps when the
wearer is laying down and does not exhibit wrist motion sim-
ilar to an arm swing during a step. This means that during NT
periods, there were almost exclusively zero values, causing
any minute with more than zero steps to be labeled as active.

To standardize features for input to machine learning mod-
els, we subtracted the mean and scaled to unit variance. Next,
we trained and tested the prediction models using leave-one-
out-cross-validation. We evaluated the random forest regres-
sion results using mean absolute error (MAE), root mean
squared error (RMSE), normalized RMSE (NRMSE), and
Pearson correlation coefficients (r). We computed MAE as
the sum of the absolute values of the difference between the
predicted values and the actual ground truth values divided
by the number of predictions, as show in Equation 1:

MAE =

∑n
i=1

∣∣predictioni − actuali
∣∣

n
(1)

We computed RMSE as the square root of the sum of the
squares of the difference between the predicted values and
the actual ground truth values divided by the number of
predictions, as show in Equation 2:

RMSE =

√∑n
i=1

(
predictioni − actuali

)2
n

(2)

We computed NRMSE as RMSE divided by the difference
between the maximum and minimum actual ground truth
values, as shown in Equation 3:

NRMSE =
RMSE

actualmax−actualmin
(3)

Lastly, we computed the correlation coefficients as the Pear-
son correlation and its associated p-value calculated between
the predicted values and the actual ground truth values.

Tables 3-5 summarize five random forest results and their
parameter configurations, in ascending NRMSE order, for
DT TAM, NT TIM, and NT TST, respectively. To pro-
vide context for interpreting the prediction results, DT
TAM, demonstrated a mean and standard deviation of
431.20 ± 162.45 minutes (coefficient of variation equal to
37.67%) across the participant group, while the NT TIM
and TST had a mean and standard deviation of 414.22 ±
108.61 minutes (coefficient of variation equal to 26.22%)
and 370.27 ± 124.20 minutes (coefficient of variation equal

TABLE 4. Best nighttime total inactive minutes (TIM) prediction results.

TABLE 5. Best nighttime total sleep time (TST) prediction results.

to 33.54%), respectively. To more thoroughly investigate the
prediction results, we provide scatter plots of predicted total
minutes versus actual total minutes for the best TAM (Fig-
ure 4a), TIM (Figure 4b), and TST (Figure 4c) results from
Tables 3-5. For each of the figures, the data correlation is
indicated as an annotation in the bottom right corner of the
plot.

We ran several experiments to explore the effects of param-
eter choices, including P (the number of periods preceding
the NT period) and K (the number of similar P-sequences
used by KNN to determine the training set). Figure 5 shows
NRMSE values for alternative values of P as a function of
alternative values of K . P = 1 exhibited relatively large error
compared to the other P values so we exclude it from the plots
of Figure 5 to clearly illustrate the patterns of the lower P-
value NRMSE results.

V. DISCUSSION
In this article, we propose the BAM data-driven approach
for predicting daytime total active minutes and night-
time total inactive minutes for patients undergoing inpa-
tient rehabilitation. Our approach allows data collected
from different wearable device manufacturers to be com-
bined, compared, and used for prediction. Of the dif-
ferent mean and percentiles from the three-day baseline
period we explored as active minute thresholds, the base-
line means exhibited the highest correlation to the manu-
facturer’s sleep and wake labels (see Table 2; AMI dataset
r = 0.78; Philips dataset r = 0.59). Since the correla-
tions were < 1.0, we anticipated the TIM prediction results
using the BAM labels would be less accurate than the TST
prediction results that used the manufacturer’s sleep/wake
labels. The random forest results indicate that the top TAM
and TST results are comparable (see Tables 4 and 5; TIM
NRMSE 11.18%; TAMNRMSE 12.26%). This suggests that
our BAM approach could be used not only for prediction, but
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FIGURE 4. Correlation plots showing top regression results for total
active minutes (TAM), total inactive minutes (TIM), and total sleep
time (TST) actual versus predicted values.

also for building larger training sets with normalized sleep
labels and for comparisons between subject’s data collected
from different devices.

FIGURE 5. Normalized root mean square error (NRMSE) as a function of
K (number of similar P sequences used for training) for different values
of P . Plots for total active minutes (TAM), total inactive minutes (TIM),
and total sleep time (TST) are shown.

When training the random forest regressors on each dataset
individually, the results are not as strong as the combined
dataset. For the AMI dataset, the best NRMSE result for TIM
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is 14.11% and for TST is 14.98%. For the Philips dataset,
these numbers are 11.45% for TIM and 13.12% for TST.
For the Fitbit dataset, these numbers are 18.05% for TIM
and 21.23% for TST. A likely reason that the Fitbit-based
prediction is weaker than the other datasets is the small
sample size of the Fitbit dataset (N = 8) and low detec-
tion of nighttime active minutes. The low nighttime active
minutes is due to Fitbit measuring sedentary behavior using
step counts instead of activity counts like Actigraphy-based
devices. Since steps are less granular and capture a narrower
range of physical activity, Actigraphy-based devices are more
appropriate for tracking activity in inpatient rehabilitation
patients who exhibit a wide range of physical activity. This
observation further supports the idea of pooling data together
to form larger datasets, which would provide more similar
P-sequences detected with KNN and used for training.
For the TAM results, there are no manufacturer ‘‘active’’ or

‘‘inactive’’ labels with which to compare our BAM approach;
however, we do see lower prediction error for TAM (see
Table 3; 9.11% NRMSE and r = 0.89). Breaking this result
down by dataset reveals that, like the NT period predictions,
the prediction results vary by device and are strongest when
pooled together. The AMI dataset’s best TAM NRMSE is
13.96%, while that number is 10.48% for the Philips dataset,
and 11.48% for the Fitbit dataset. These NT and DT pre-
diction results further suggest the importance of combining
datasets to increase training set size and consequently pre-
diction accuracy. To deploy models in a clinical setting, such
steps are needed to achieve the lowest possible error.

To more thoroughly explore the 9-12% error rates,
we include correlation plots in Figure 4. The prediction
results align with our intuition. The random forest regressors
are more accurate when the actual minutes being predicted
are closer to the mean, which is the case for the NT peri-
ods. In Figures 4b and 4c, there is a cluster of high actual
total inactive minutes and sleep minutes. With a larger, more
diverse dataset, we anticipate custom models could be built
for the outlier subjects with lower active and inactive minutes
to improve accuracy.

Next we explore the effects of the P and K parameters on
the TAM, TIM, and TST prediction accuracies. Investigating
the plots in Figure 5, we observe large benefits to increasingP
from 1 to 2, from 2 to 3, and from 3 to 4. The NRMSE curves
for P = 4 and P = 5 are fairly similar, suggesting that accu-
rate predictions can be made with as few as four post-baseline
training periods. This constitutes a 48-hour period for a TAM
prediction and a 63-hour period for a TIM prediction.We plan
to investigate techniques to shorten this overall time from
when a device is first worn by a patient to when an accurate
next period prediction can bemade. A few approaches include
trimming periods from the baseline and constructing more
individualized models for specific injuries or illnesses, such
as stroke or TBI. The tradeoffs for the K parameter are not as
clear as for the P parameter.K appears to be more sensitive to
which value is being predicted. For TAM, K = 150 seems to
capture the majority of the prediction improvement. For TIM,

K = 50 and for TST, K = 150 are reasonable minimum
values for achieving accurate results. Since larger values of
K do not greatly improve prediction accuracy, as datasets
get larger, computational overhead from exploring optimal
K values is not expected to increase. However, the search
space for determining the K nearest neighbors will grow.
Individualized models for different patient subgroups could
also help limit the number of required KNN comparisons.

VI. CONCLUSION
We investigated applying device-independent physical activ-
ity and sleep labels determined from a baseline period to
allow data collected from multiple wearable devices to be
combined into larger datasets. Larger datasets can be used to
train machine learning models to predict a patient’s next day
physical activity and next night sleep duration with greater
accuracy. We demonstrated such prediction models trained
with data collected from 44 inpatient rehabilitation subjects
can achieve NRMSE values near 9% for daytime physical
activity prediction and near 11% for nighttime sleep duration
prediction. These results were an expansion over own prior
work with data from a single sensor device [36]. For future
work, we plan to continue growing our sample size to provide
additional historical data sequences for KNN to select from.
We anticipate this will help prediction accuracy for outlier
P-sequences sampled from subjects with highly irregular
activity and sleep behavior. We also plan to apply deep learn-
ing models [11] in an effort to further reduce the nighttime
prediction error. Our eventual goal is to deploy models that
are accurate enough for clinicians to use to help customize
individual patient therapy programs. If such a system can
make accurate predictions in near real time, clinicians could
use this additional information about a patient’s next day
physical activity and next night sleep requirements to adapt
forthcoming therapeutic activities and potentially shorten the
recovery process.
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