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Rheumatoid arthritis (RA) is a disabling autoimmune disease with invasive arthritis as the
main manifestation and synovitis as the basic pathological change, which can cause
progressive destruction of articular cartilage and bone, ultimately leading to joint deformity
and loss of function. Since its introduction in the 1980s and its widespread use in the
treatment of RA, low-dose methotrexate (MTX) therapy has dramatically changed the
course and outcome of RA treatment. The clinical use of this drug will be more rational with
a better understanding of the pharmacology, anti-inflammatory mechanisms of action and
adverse reaction about it. At present, the current clinical status of newly diagnosed RA is
that MTX is initiated first regardless of the patients’ suitability. But up to 50% of patients
could not reach adequate clinical efficacy or have severe adverse events. Prior to drug
initiation, a prognostic tool for treatment response is lacking, which is thought to be the
most important cause of the situation. A growing body of studies have shown that
differences in microbial metagenomes (including bacterial strains, genes, enzymes,
proteins and/or metabolites) in the gastrointestinal tract of RA patients may at least
partially determine their bioavailability and/or subsequent response to MTX. Based on this,
some researchers established a random forest model to predict whether different RA
patients (with different gut microbiome) would respond to MTX. Of course, MTX, in turn,
alters the gut microbiome in a dose-dependent manner. The interaction between drugs
and microorganisms is called pharmacomicrobiology. Then, the concept of precision
medicine has been raised. In this view, we summarize the characteristics and anti-
inflammatory mechanisms of MTX and highlight the interaction between gut microbiome
and MTX aiming to find the optimal treatment for patients according to individual
differences and discuss the application and prospect of precision medicine.
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1 INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disease
characterized by persistent synovitis, chronic and aggressive
arthritis. Although the treatment of RA has made great progress
in recent years, the overall remission rate of RA is still not
optimistic, and it is almost impossible to reverse once bone or
joint destruction occurs (1, 2). The pathogenesis of RA is still not
fully understood, which may be caused by the complex interaction
between genetic environment and immune factors, resulting in
immune system dysregulation and lack of autoimmune tolerance.
Although several effective treatments have been developed
recently, low-dose methotrexate (MTX) remains the anchor
agent for RA treatment, which is generally considered to
enhance the efficacy of most biologics in RA (3, 4). However, a
large proportion of RA patients do not respond to oral MTX or
have severe adverse reactions, especially gastrointestinal toxicity is
common, which can be troublesome (3–6). Therefore, it is urgent
to find out the possible reasons for individual differences and the
biological indicators that can predict the clinical efficacy of MTX
to guide clinical medication.

An adult human has about 2*10 ^14 host cells, but this is only a
tenth of the bacteria that live in the mucosae of the body (the
intestine, reproductive and respiratory tract) and outside the body
(hair and skin).Thus, the number of microbes living in the human
body is extremely huge (7). These microbial communities are
intimately involved in our body’s metabolism, and some emerging
research is trying to deciphering the complex cross-border
communication network between our immune system and the
microbial community that exists in our bodies (8). The
gastrointestinal tract is home to about 1,500 species of more than
100 trillion microbes, with the highest diversity and density of
microbes ever seen (8). The microbiome is involved in many
physiological processes, including digestion and metabolism, and
the development and regulation of the immune system. In turn, the
host provides living space and nutrients for the microbes. Host-
microbial interaction, especially in the gut, promotes the
development and regulation of the host immune system and is
essential for the stability of the entire complex microbial community
(9, 10). In other word, gut microbiome is an important immune
organ and plays an indispensable role in immune response and
tolerance (11, 12). The gut microbiome is increasingly considered to
be involved in the processing of various exogenous substances and
can also influence host responses to various compounds, including
all kinds of drugs. And in this process, gut microbes are evolving
under the influence of exogenous compounds. Metagenomics of
intestinal microorganisms plays an important role in the efficacy
and toxicity of many drugs, and its changes may affect the
performance of drugs (13–16).

Now the most recent view on MTX and the gut microbiota is
that gut microbiome can affect the bioavailability of MTX and
some characteristics of gut microbiome can be considered as a
predictor of clinical response of this drug (17). In addition, gut
microbiome is associated with adverse reactions toMTX, especially
gastrointestinal reactions (18). Of course, MTX also affects the
amount, diversity, and major components of the gastrointestinal
microbiota (18, 19). Pharmacomicrobiology, based on drug-
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microbe potentially complex interactions has been used in
various fields (20, 21). Precision medicine based on
pharmacomicrobiology, while strictly integrating clinical factors
and host genomics will be the development direction of
rheumatoid diseases including RA in the near future (17, 21). In
this review, we focus on the pharmacology, anti-inflammatory
mechanism, adverse reactions of MTX and diagnostic and
predictive effect of gut microbiome on clinical efficacy of oral
MTX to recognize the role of pretreatment of gut microbiome in
improving clinical efficacy of MTX, in order to provide a new
therapy for the targeted treatment of RA patients who fail to
respond within the early therapeutic window of opportunity.
2 MTX AND ITS MECHANISMS OF
ACTION IN RA

MTX (4-amino-4-deoxy-N-10-methylpteroylglutamic acid) is an
anti-folate cellular immunosuppressant. Low doses (< 15mg/per
week) of MTX are widely used to treat autoimmune diseases such
as RA or psoriasis (19, 22). However, higher doses of MTX
(typically between 15 to 500 mg/kg) are effective in the treatment
of cancer diseases, mainly for acute lymphoblastic leukemia, and
osteosarcoma and lymphoma (19, 23–25). Ever since Sidney
Faber discovered MTX in the 1980s, low-dose MTX is generally
the first-line drug for the treatment of RA (26, 27). It is possible
that MTX has been enduring because it is well tolerated, safe, and
significantly less costly (28–30). It was a long and difficult
journey from the initial discovery of MTX to widespread use
around the world (26) (see Figure 1). Currently, once RA is
diagnosed, rheumatologists recommend taking MTX orally. If
the patient has a poor respond or strong adverse reaction to
MTX, the patient is advised to continue taking it along with the
biologic, since MTX appears to have an additive effect on biologic
drugs (4). At low doses, MTX exhibits anti-inflammatory
properties, but at high doses or for long periods of time, it may
cause the pathological multi-organ toxicity, including
gastrointestinal, myelotoxicity, cardiotoxicity, nephrotoxicity,
and hepatotoxicity, which limits its therapeutic potential (18,
31–33). Why do different individuals respond differently to
MTX? As we learn more about the pharmacological effects,
anti-inflammatory mechanisms and interactions with gut
microbes of MTX, the answer to this question may become
more and more clear. In fact, emerging data suggest that it is
possible to identify appropriate biomarkers of the gut
microbiome to determine who responds best to MTX and has
the fewest side effects – that is, who will benefit the most from
MTX treatment.

2.1 Pharmacokinetics of MTX and
Gut Microbiome
MTX therapy for RA is usually effective in the range of 15 to 25
mg and is usually initiated as monotherapy (22, 27). The
intestinal tract has a limited ability to absorb MTX, so oral it
has limited bioavailability in vivo (34, 35), which may be related
to gut microbiota. The maximal absorption of a single oral dose
December 2021 | Volume 12 | Article 789334
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is <25mg (3). Therefore, rheumatologists recommend that
patients take the required dose of medication orally for one
day to obtain better clinical response from MTX, rather than
taking a daily dose. Due to the complex gastrointestinal toxicity
of MTX, attention has shifted from oral to subcutaneous. A
recent study (36) retrospectively analyzed for rheumatology
clinic attendances at a large North-East England hospital and
concluded when the dose of MTX in RA patients > 15 mg/week,
subcutaneous method is safer than oral medicine. Specifically,
the subcutaneous approach reduced the incidence of neutropenia
and gastrointestinal symptoms. One problem, however, is that
patients who experience adverse events with oral MTX are less
likely to switch to subcutaneous treatment and are likely to
experience the side effects of oral MTX again. Therefore, the
search for predictors of MTX before treatment is irreplaceable.

After taking MTX orally, it is first actively absorbed by the
proximal jejunum. The degree and dose of absorption are
attributable to saturation of reduced folate carrier 1(RFC1) (37).
The absorptivity of MTX is so high that the plasma concentration
reached its maximum value within 0.75 ~ 2 h after oral
Administration (26). But this drug has a relatively short half-life
of about 1 hour (26)and after 18 hours its concentration in the
serum is almost zero and undetectable (3). MTX enters the
circulation from the gut, where 35 to 50% of the drug binds to
albumin (26). Most MTX is transferred by RFC1 into cells, mainly
red blood cells, white blood cells, synovial cells and liver cells. In
red blood cells, MTX is polyglutamated by adding glutamate
groups to the adjacent glutamate leaf terminal carboxyl group in
the g linkage (3, 26, 27). And the whole reaction is catalyzed by the
enzyme folylpolyglutamyl synthetase. Red blood cells are a
repository for MTX. Thus, the toxicity of MTX can also be
affected by the low dose of weekly administration, which should
be considered in clinical use of this drug. In the liver, MTX is
oxidized to 7-hydroxyl MTX (7-OH-MTX) by aldehyde oxidase
Frontiers in Immunology | www.frontiersin.org 3
(AO), and then both parent compounds and metabolites mixed
into the bile which then passes though the common bile duct and
into the intestine, to duodenum, to be precise (26, 38, 39). Here,
they can undergo further metabolism and biotransformation
through the gut microbiome (19, 40, 41). Drugs and
metabolites that enter the intestinal tract can return to the liver
via the portal vein, which is known as the enterohepatic
circulation. Cholates (unbound bile salts) can inhibit this
circulation, which is very important to mitigate potential
adverse events and has been showed to reduce the potential
toxicity of MTX (42, 43). MTX and its metabolites are mainly
excreted in urine (26, 27, 44), up to 30% are metabolized in bile
(26, 45) however, only 1-2% are excreted in feces (26, 35).

Gut microbiome can directly affect the bioavailability of MTX
(19). Glutamate carboxypeptidase 2(CPDG2) is an enzyme found
in many gut bacteria. The terminal glutamate residues of MTX
and 7-OH-MTX can be cleavaged to generate 2, 4-diamino-N-
10-methylpteroic acid (DAMPA) and 7-hydroxy-DAMPA
metabolites with the assistance of CPDG2, respectively (41, 46,
47). In addition, other bacterial enzymes such as p-aminobenzoyl-
glutamate hydrolase, found in E. coli, have also been shown to
catalyze this reaction (48) (see Figure 2). The hydrolysis of
glutamate by CPDG2 is considered to be a detoxification
process. Furthermore, CPDG2 has been approved as a palliative
for cancer patients with delayed MTX clearance and acute renal
toxicity (24). Several clinical studies have also reported the
usefulness of CPDG2 as a rescue drug (49, 50). This is just one
example of how the gut microbiome influences MTX metabolism,
and there are certainly other, deeper connections between MTX
and gut microbes that we need to explore.

2.2 Anti-Inflammatory Mechanisms of MTX
There is growing evidence that many of the mechanisms by
which MTX inhibits the inflammatory response have been
FIGURE 1 | The discovery, synthesis and widespread use of MTX was a difficult process that took many decades. An American biochemist of Indian origin, called
Yella Pragada Subbarow, worked with his team on isolating folic acid from liver and synthetized it from microbial source in 1945. In 1947, Yellapragada Subbarow, a
biochemist at Harvard University, and his colleagues synthesized competitive inhibitors of folic (aminopterin and methylopterin) based on their structural similarity to
folate and their ability to inhibit folate-dependent enzymes. Because of instability of the aminopterin, its analogue amethopterin became a popular drug. And these
drugs were first used, in high doses, to treat childhood leukaemia in 1948. Amethopterin became known as MTX. And aminopterin, in chemotherapeutic doses,
was first used for the treatment of RA in 1951. Due to production difficulties, MTX was eventually withdrawn from the market, leaving only MTX. In 1983, the first
randomized, placebo-controlled study of MTX in patients with rheumatoid arthritis showed positive results, and MTX was approved for RA by the FDA in 1988. Since
its initial approval, MTX use has increased significantly, and more RA patients have received MTX therapy. More importantly, recognizing the limitations of oral
bioavailability, two different parenteral (subcutaneous) preparations were developed in 2013 and 2014.
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hypothesized. In this section, we focused on exploring the anti-
inflammatory mechanism of MTX to guide rational clinical
drug use.

MTX and folates. MTX reaction products inhibit dihydrofolate
reductase (DHFR) and affect folic acid metabolism, thus
restraining purine and pyrimidine synthesis and downstream
DNA synthesis (3, 26, 27, 51). The reduction of purine and
pyrimidine synthesis suppresses the T lymphocytes, a key cell in
the immune response, so MTX has anti-inflammatory effect (26,
52). However, this drug as a folate analogue can cause a decrease in
peripheral blood white blood cell count which is still considered to
be a toxic reaction in treating inflammatory diseases (3),although
the dose of MTX used to treat RA is 100 to 1000 times lower than
that used to treat malignancies. It is now common sense that
taking folic acid (except onMTX days) can reduce or even prevent
the toxic effects of this immunosuppressant in patients (53–55).
Given that even supplementation with folic acid during
medication can prevent a decrease in peripheral white blood cell
count and that MTX can still inhibit progression in patients with
rheumatic disease, the anti-inflammatory effect of MTX may not
be as necessary to inhibit cell proliferation (3).

MTX and adenosine. There is growing evidence that MTX
causes the release of adenosine, a powerful stimulator of
adenosine receptors (including A1a, A2a, A2b and A3) that
inhibits nearly all types of inflammatory cells (56). Studies in
mice demonstrated that MTX increased the release of adenosine
in inflammatory tissues (57, 58). According to a randomized
investigational study (59), ingestion of non-selective adenosine
receptor antagonist such as caffeine can reduce the body’s
response to MTX therapy, which confirmed MTX treatment
can increase the body’s really adenosine release. Recently,
emerging evidence suggests that the mechanism by which
regulatory T cells (Treg, a type of negatively regulated immune
Frontiers in Immunology | www.frontiersin.org 4
cells) reduce the degree of immune response and thus inhibit
inflammation may be related to the production and release of
adenosine (56, 60). Treg cells produce adenosine through
dephosphorylation of ATP, a process mediated by CD39 and
CD73 (61–63). If CD39 or CD73 is relatively low on Treg cell
level, such as in RA, this process is impeded, resulting in a poor
clinical MTX response (64).

MTX and reactive oxygen species(ROS).Nitric oxide synthase
(NOS) is an isoenzyme found in endothelial cells, macrophages,
and nerve cells, which normally promotes the production of NO.
Tetrahydrobiopterin(BH4) is a cofactor and ligand of endothelial
nitric oxide synthease (eNOS).In the absence of BH4, NOS does
not catalyze the produce of NO, but instead produces ROS, such
as hydrogen peroxide(a damage factor for human tissues and
organs), a process known as nitric oxide synthase uncoupling
(65–67). It has been proved that MTX can inhibits nitric oxide
synthase uncoupling (3). MTX suppresses the reduction of
dihydrofolate and dihydrobiopterin(BH2), that is, increases
their concentration, which in turn increases the concentration
of BH4 [BH2 is restored to BH4 by dihydrofolate reductase
(DHFR)], thereby reducing the production of ROS.

MTX and cytokines. MTX alters the cytokine profile,
specifically inhibiting the production of pro-inflammatory
cytokines (27, 68, 69). It has been shown that T cells isolated
and activated from RA patients treated with MTX have a reduced
ability to produce inflammatory cytokines such as IFN-g, IL-4,
IL-3, and TNF (70). MTX treatment also reduced the number of
TNF-positive CD4 T cells and increased the number of IL-10
CD4 T cells (71). Which is beneficial for RA patients to manage
their disease.

Other anti-inflammatory mechanisms have also been reported,
including inhibition of transmethylation (3), regulation of the
expression of some long non-coding RNAs (3), and reduction of
FIGURE 2 | MTX metabolism in the body. MTX enters the circulation from the intestinal tract and accumulates in red and white blood cells, liver cells, and synovial
cells, potentially causing toxic reactions. Drugs from the liver can re-enter the intestine through the enterohepatic circulation. It is metabolized into non-toxic DAMPA
with the participation of a number of gut microbial enzymes. So gut microbes can reduce the potential toxicity of MTX.
December 2021 | Volume 12 | Article 789334

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yan et al. Pharmacomicrobiology in Gut Microbiome and Methotrexate
chemotaxis and adhesion of inflammatory cells (27) (see
Figure 3). Considering the important efficacy, wide application
and numerous adverse reactions of MTX, further research on the
mechanism of action of MTX is to optimize treatment.

2.3 Toxic Effects of MTX
In the nearly 40 years of MTX use, an increasing number of toxic
effects have been observed, including gastrointestinal,
myelotoxicity, cardiotoxicity, nephrotoxicity, and hepatotoxicity.
Currently, enterotoxicity is the most common side effect and the
main factor limiting its administration, mainly manifested as
MTX-induced intestinal mucosal inflammation, which is now
increasingly evidenced to be related to gut microbiome (18). It
has been suggested in the past that the toxic effects of long-term
oral low doses of MTX are inextricably related to the antifolate
properties of the drug (3). So it has become common knowledge to
take folic acid along withMTX to prevent its toxic effects. Now, the
latest international view suggests that the mechanism of folic acid
supplementation to reduce the toxic effect may be related to
intestinal flora, especially the probiotics such as Bacteroides and
Bifidobacterium. And some researchers think that some of the
toxic effects of MTX may be caused by MTX-mediated adenosine
release. MTX promotes the release of adenosine in the
inflammatory sites, which binds to receptors in the brain to
suppress the inflammatory response and causes drowsiness (72–
74). So many patients feel tired on the day they take MTX and
other patients developed rheumatoid nodules (75) and liver
fibrosis (76, 77).

Another serious and unpredictable side effect is pulmonary
toxicity, which occurred in 1% of the 500,000 RA patients treated
with MTX (78, 79), mainly including interstitial pneumonia and
pulmonary fibrosis (80). The mechanisms include genotype
mutation and transport inhibition, and are related to the p38
Mitogen-activated protein kinase (MAPK) pathway and
interleukin-8 (IL-8) (81). These mechanisms can be used to
optimize drug therapy, such as serratiopeptidase (PSTD)
combined with fisetin (FST) against MTX-induced pulmonary
Frontiers in Immunology | www.frontiersin.org 5
toxicity (82). One thing to be aware of is hypersensitive pneumonia
(HP), a diffuse interstitial lung disease caused by sensitization of
susceptible individuals to repeated and prolonged exposure to
large amounts of antigen (83). It is often associated with exposure
to external allergens (such as poultry dust, mould and tobacco) and
medications including cytotoxins (such as MTX) and antiepileptic
drugs (such as carbamazepine) (84). Some HP patients may
recover, while others develop pulmonary fibrosis, which may be
related to the microbiota of the lower respiratory tract (85). For
example, Proteobacteria are the predominant in HP, while
Firmicutes dominate in pulmonary fibrosis.

However, a recent randomized, double-blind, placebo-
controlled trial (86)showed that low doses of MTX reduced the
incidence of complications from cardiovascular events in patients
with RA and severe cardiovascular risk. Another new and
particularly worrisome event is skin cancer (86). Various
European biologics registers found a higher incidence of skin
cancer in RA patients taking MTX than in the general
population (87–89). This has been attributed to long-term
immunosuppression, and these new data support this. Long-term
oral low-dose MTX, on the one hand, slows disease progression
and reduces the risk of subsequent complications such as
lymphoma and cardiovascular events, and also increases the
incidence of skin cancer.

2.4 Therapeutic Implications of MTX
Since the discovery of rheumatoid arthritis in the middle of the
last century, MTX is still the gold standard for RA, despite the
recent emergence of various drugs. Factors that can predict clinic
response and prognosis to the drug are especially important to
reduce disease activity and unnecessary potential toxic effects.
Lately, a machine learning analysis of whole blood transcriptome
data from RA patients (90) holds that gene expression of
multiple inflammatory pathways may have predictive value for
clinical response to MTX, and that gene expression of anti-I
interferon response is the most valuable predictor. However, the
results were not satisfactory, and the whole genes containing all
FIGURE 3 | Anti-inflammatory mechanisms of MTX. MTX has many anti-inflammatory mechanisms. Some of these pathways are known, and there are certainly
many more that need to be explored.
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the gene expression had higher predictive value than the
individual interferon gene alone (3, 90). Meanwhile, several
other studies have sought to identify clinical and/or laboratory
markers that might predict clinical responses to MTX, but all
ended in failure (91–93). Despite high hopes for genetic markers
that identify MTX responses, to date, no factor or biomarker has
been definitively proven to be predictive. Instead, there is a
growing interest in the gut microbiota to influence MTX
bioavailability and as a predictor of subsequent clinical
responses to MTX in the RA patients. The next section, we
will detail the potential interaction between MTX and the
gut microbiota.
3 PHARMACOMICROBIOLOGY OF MTX
IN RA

Current treatment guidelines for RA [such as ACR (29) and
EULAR (94)] recommend MTX for all patients with early RA,
because early and aggressive MTX intervention can slow the
onset and progression of RA, reduce disease activity, alleviate
clinical symptoms, and even radiographic progression in some
RA patients. Therefore, there is an urgent need for in-depth
understanding to identify factors and predictors that influence
MTX in order to maximize clinical efficacy and mitigate toxic
effects, thereby eliminating frustration and reducing the waste of
medical expenditures. Currently, a variety of candidate
biomarkers have been considered to have potential predictive
value for clinical efficacy of MTX, including clinical phenotypes,
inflammatory pathway gene expression, host genetics,
autoantibodies, and cytokines, etc, involving proteomics,
metabolomics, transcriptomics and other omics. Unfortunately,
none of them has been able to accurately predict clinical response
to MTX (95).

A growing body of evidence suggests that non-human genetic
factors, particularly from the trillions of microorganisms that is
the microbiome, may contribute to the development of
inflammatory arthritis in genetically susceptible individuals
(96–98). Intriguingly, variability in interindividual microbiome
composition and metabolic capacity play a unique role in
determining the clinical efficacy (and the development
associated with adverse events) of certain drugs (99–101).
In turn, drugs may also exert their anti-inflammatory effects by
altering a patient’s gut microbiome. The study of the interactions
between drugs and microorganisms, known as pharmacobiology,
has led us to the concept of precision medicine, which is not
foreign to most rheumatologists. The long-term and ultimate
goal of this discipline is to manipulate the complex host-
associated microbiome (both in vivo and on the surface of the
body), in order to predict clinical responses, improve clinical
efficacy, and minimize adverse events (17).

3.1 Effect of Gut Microbiome on Clinical
Efficacy of MTX in RA
What accounts for variation in clinical outcomes between
individuals? The answer is not entirely clear. Moreover, to
Frontiers in Immunology | www.frontiersin.org 6
date, known factors such as host genetics, laboratory or host
biomarkers cannot be used to accurately predict clinical response
to a drug (95). Furthermore, differences in the metagenomes of
microorganisms in the gut of RA patients such as bacterial
strains, genes, enzymes, proteins and/or metabolites may at
least partially determine their bioavailability and/or subsequent
response to MTX. So, there is reason to believe that there is some
connection between MTX and the gut microbiota.

3.1.1 Gut Microbiome Partly Determines How RA
Patients Respond to MTX
A preliminary study using red blood cell MTX polyglutamate
concentration explained 20% of the variation in MTX response,
but unfortunately this finding was not consistently reproduced in
other cohorts (102–105). Other possible factors including serum
or plasma MTX concentration (106, 107), clinical factors such as
sex and disease activity (92, 108–110) and circulating CD39+
regulatory T cells (92, 111), and genetic factors such as gene
polymorphism (112) as predictors of MTX efficacy all failed.
More than a decade ago, the first clinical pharmacological model
(113) was proposed to predict the clinical response or not of
MTX monotherapy to newly diagnosed RA. This model does not
accurately predict the clinical efficacy of RA and cannot be widely
used in the population, although it improves on the original
genetic-based model by incorporating multiple variables
(114–116).

The fact that so many other factors do not account for
individual differences in MTX response raises the possibility
that the differences are caused at least in part by individual
differences in the metagenome of the gut microbiome. More
recently, some research groups have suggested that intestinal
microbiota is closely related to immunoregulatory therapy,
and that it may have great predictive value in the clinical
response of drugs (117–122). Microbial differences found in
the gastrointestinal tract of RA patients may partially
determine the bioavailability and/or subsequent clinical
outcome of MTX. This theory was first demonstrated in
rodents. Valerino, D. M., Johns, D. G. et al. (41) found that
the intestinal absorption and metabolism of MTX in germ-free
and antibiotic-treated mice were reduced compared to wild-
type mice, suggesting that the biotransformation of MTX was
hindered if the microbiome was not tasted, that is, gut
microorganisms is an essential link in the absorption and
metabolism of MTX. Moreover, according to a 2013 study
(97) found that untreated new RA patients with gut
microbiome differences between purine metabolic pathways,
including four hydrogen folic acid (and other purines)
biosynthesis, adjustable oral absorption and bioavailability of
MTX and downstream treatment effect. Another study (123),
which differentiated RA patients from healthy controls based
on differences in oral microbiota, found that clinical measures
such as disease activity and symptoms such as joint pain were
strongly associated with changes in the microbiome. This
suggests the potential diagnostic and prognostic value of the
gut microbiota in RA. However, this study focused on the oral
microbiome (which have a lesser similarity to gut microbiota)
December 2021 | Volume 12 | Article 789334
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as a predictor, focusing primarily on confirmed patients with a
long-term RA, who had a significantly different microbiome
from the new-onset (NORA) subjects.

A 2020 study (124) delved into the relationship between gut
microbes and oral MTX response in NORA. They found that the
gut microbial community structure before MTX administration,
made the difference between clinical response or not, which is
that MTX-responders (MTX-R) has significantly lower microbial
diversity compared with non-responder (MTX-NR). At the
phylum level, the ratio of Firmicutes/Bacteroidetes in MTX-NR
is high. At the same time, MTX-rich bacteria in NR samples
are: the Euryarchaeota phylum,unclassified Clostridiales/
Clostridiales Incertae Sedis XIII (family) and Escherichia/
Shigella. By contrast, in MTX-R, Prevotella and Bacteroides
genera are significantly more abundant. The team then used
shotgun sequencing to define differences in metagenome and
gene abundance of gut bacteria between the two groups and
found 6,356 KEGG Orthologs (KOs). 7 microbial modules
(mainly involves metabolic and biosynthetic potential) and 462
KOs were identified for the separation of MTX-NR and MTX-R.
For instance, many pathways including MAPK signaling
pathway, fatty acid degradation and DNA replication were
significantly increased in MTX-NR. The 2013 study (97)also
distinguished MTX responders from non-responders in terms of
microbial metabolic pathways. To sum up, we conclude gut
bacteria metagenome including microbial or bacterial function
may be more likely to be related to clinical responses than
microbial community structure.

Taken together, NORA patients who responded well to MTX
had a different gut microbiome than MTX-NR, which allows us to
predict the clinical absence of MTX by using pretreated microbiota.

3.1.2 Pharmacobiological Methods Can Be Used to
Predict the Clinical Efficacy of MTX in RA Patients
Research groups studying human autoimmune diseases use
pharmacobiological methods to analyze the gut microbiome
and/or its gene coding function as predictors of biotherapy
response (17). The use of gut microbiome to predict the
clinical respond of MTX in newly diagnosed RA patients was
included. These research groups came to two conclusions:”gut
metagenome at baseline could differentiate MTX responders
from non- responders” and another is that “ex vivo incubation
with MTX of samples from patients with treatment-naive, new-
onset RA correlated with the magnitude of future clinical
response”.And accordingly, a small idea that a new and
potentially valuable tool (metagenome-based classifiers) may be
available for the decision-making of newly emerging RA was put
forward. That’ s exactly what the 2020 study has found.

Data from this 2020 study (124) demonstrate that gut
metagenomics at baseline can predict MTX clinical response or
not and provide a predictive model for it, as well as a possible
plausible mechanism for the relationship between gut
microbiome and clinical response to MTX prior to treatment.
As described earlier, there were significant differences in gut
metagenomes between MTX-NR and MTX-R patients prior to
the start of treatment. Therefore, machine learning based on gut
Frontiers in Immunology | www.frontiersin.org 7
microbiome metagenomes can robustly predict MTX responses.
The research group built a random forest model to predict
whether MTX would respond or not. At the same time, they
proved that a model based on microbiome characteristics, rather
than clinical pharmacological characteristics, can determine
response to MTX. However, the potential clinical application
of this model is limited to drug-naive and RA patients with direct
exposure to MTX. Although this model has many deficiencies, it
has contributed greatly to the prediction of clinical response of
MTX by intestinal metagenomics at baseline compared to the
previous model (113).

Intestinal metagenomes with significant differences before
treatment initiation can predict clinical response to MTX.
And why is this? Let’s put forward a hypothesis that the
gut metagenomes are associated with known MTX metabolic
pathways. And This hypothesis has been confirmed.
As what mentioned before, a 2013 study (97) found that
untreated new RA patients with gut microbiome differences
between purine metabolic pathways. The MTX-NR microbiome
showed the increased genes abundance was mainly concentrated
in the genes encoding for purine nucleoside phosphorylase
and adenine deaminase, which increased hypoxanthine and
reduced the bioavailability and cytotoxicity of MTX (125, 126).
In contrast, the gene-coding enzymes (i.e. hisH and hisA)
associated with the accumulation of 5-aminimidazole-4-
carboxylate ribonucleoside (AICAR) were relatively reduced in
MTX-NR (127). These two enzymes can regulate many immune-
mediated effects of MTX by regulating the amount of AICAR.
These two examples further highlight the importance of
characterization of gut metagenomic, including enzymes or
proteins, for the development of drug metabolic functions.
Unfortunately, given that the gut metagenome contains a
collection of all the genomes in the microbiome, it is difficult to
determine the efficacy of MTX at the individual level and in
clinical practice, although it can distinguish MTX significantly at
the group level. If cost is taken into account, the actual situation
becomes more complicated.

Then the group (124) used two independent metabolomic
platforms to confirme that the differences in MTX clinical
responses were directly mediated by NORA gut microbiome
via affecting its metabolism. This provides for the first time a
possible mechanism for the association between gut microbiome
and drug response, that is to say, “gut bacteria derived fromMTX
non-responders differentially deplete MTX ex vivo and
remaining drug levels correlate with decreased clinical
response”. First, the ability of the fecal microbiota to
metabolize MTX in vivo is highly variable between individuals.
Then, fecal microbiome in the MTX-NR group could rapidly
reduce the concentration of MTX, while the concentration of
MTX in the fecal supernatant of the MTX-R group remained
unchanged. Last, the MTX elimination rate in each individual
was significantly inversely correlated with future observed
clinical responses. MTX levels measured in the supernatant
related to future clinical responses when incubated with fecal
samples. Therefore, patients’ gut microbiome may be a predictor
of clinical response to MTX.
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Taken together, we obtained the conclusion that gut
microbiome (more accurately, gut microbiome metagenome)
may serve as a predictor of clinical MTX response and the
possible mechanism by which gut microbiome acts on MTX,
where patients with more abundant gut bacteria were able to
efficiently metabolize and/or consumeMTX, and were associated
with worsening clinical outcomes (see Figure 4).

3.2 Influence of Gut Microbiome or Its
Metabolites on MTX Gastrointestinal
Toxicity
Long-term oral administration of MTX may cause many adverse
reactions, including intestinal toxicity, cardiac toxicity, bone
marrow toxicity, renal toxicity and pulmonary toxicity, which
greatly limits the clinical application of MTX (128, 129). Among
them, intestinal toxicity is the most common side effect (18). The
main symptoms include nausea, vomiting, abdominal pain,
bloating, and diarrhea, leading to malabsorption, weight loss,
and eventually discontinuation of chemotherapy (25, 128, 130).
It is possible that MTX exerts toxic effects on normal intestinal
cells by disrupting metabolic pathways such as anti-inflammatory,
anti-oxidant and apoptosis (131). Another possible mechanism is
that changes in gut microorganisms or their metabolites cause
polarization of macrophages, leading to the release of
inflammatory factors such as interleukin-12 (IL-12) and tumor
necrosis factor (TNF), and ultimately aggravate gut mucosal
injury. However, it is a complex process for MTX to cause
gastrointestinal damage, which is not entirely clear so far.
Therefore, there are no satisfactory therapeutic interventions to
prevent or treat this adverse reaction.

The homeostasis of the intestinal environment is critical to
the integrity and function of the entire gastrointestinal tract
(132). The intestinal microbiota plays an important role in the
development and progression of mucositis, which is the central
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manifestation of intestinal damage (133). Changes in the
composition, structure and metabolites of the gut microbiome
may affect the metabolism of MTX, thus affecting the status of
gut mucosa. However, these complex dynamic processes need
further investigation.

Some bacteria (18) or metabolites (134, 135) including amino
acids, polyphenols or vitamins have been reported to influence
MTX-induced intestinal mucosal injury. One possible
explanation is that chronic exposure to MTX may induce
community and functionality changes in the intestinal, and
induce disruption of downstream CPDG2 activity, which may
delay the detoxification of DAMPA by MTX, leading to
increased gastrointestinal toxicity (19). However, each strain or
metabolite administered individually has a limited range of
effects on gastrointestinal toxicity. Therefore, it is feasible to
reduce the gastrointestinal toxicity of MTX by establishing a
combination therapy with candidate bacteria and metabolites
(136). It has also been reported that changes in diet cause
changes in the microenvironment of the gut microbiota, which
ultimately aggravates MTX-induced intestinal inflammation
(136). The proteins or lipids in high-fat high-sucrose diet
(HFHSD) alter the intestinal environment and affect the
pathogenesis of MTX-induced intestinal mucosal injury.

At present, treatment with leucovorin (LV) is the most
common method to reduce the toxic effects of MTX. Previous
studies (137, 138) have confirmed that the decrease in the
severity of intestinal inflammation after the combined
administration of MTX and LV is related to the diversity,
richness and species composition of gut microbial community.
But not all species of gut bacteria are affected to the same degree.
A recent study (139) has shown that LV can improve MTX
intestinal toxicity, possibly via increasing the composition of
beneficial bacteria such as Bifidobacterium and reversing the
imbalance of intestinal microbiota caused by MTX. A 2018 study
FIGURE 4 | Gut microbiome may be a predictor of clinical response to MTX. Gut metagenome at baseline could differentiate MTX responders from non- responders
and MTX-R has significantly lower microbial diversity compared with MTX-NR. According to this, a random forest model based on microbiome characteristics had be
built. Why does the gut metagenome determine clinical response to MTX? One possible reason is that gut bacteria affect MTX metabolism. Gut bacteria derived from
MTX non-responders differentially deplete MTX ex vivo and remaining drug levels correlate with decreased clinical response. Therefore, patients’ gut microbiome may
be a predictor of clinical response to MTX.
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(140) also demonstrated the protective effect of Bacillus fragilis
on MTX-induced inflammation. Of course, there is still a need to
use metagenomic sequencing to find other beneficial species in
further study.

To sum up, both diet and LV reduce gastrointestinal toxicity
by affecting the gut microbiome. And it has previously been
reported that artificially increased probiotics intake or the use of
fecal microbiota transplantation (FMT) ameliorates drug-
induced intestinal damage (140). Therefore, we speculate that
probiotics and/or FMTmay be a safer and more effective method
to reduce MTX-induced gut inflammation. However, a recent
experiment seems to disagree. This is a double-blind, parallel-
group, placebo-controlled, superiority trial (141), showing that
FMT from selected donors can worsen psoriatic arthritis (PsA)
symptoms. The failure rate (i.e., patients requiring intensive
treatment) was significantly higher in the FMT group than in
the control group. Therefore, other mechanisms, such as the
degree and persistence of donor microbiota implantation, and
some external factors related to FMT, such as aerobic and
anaerobic environment (141), need to be further attended in
the future.

3.3 Effects of MTX on Gut Microbiome in
RA Patients
Gut microbiome can be used as a predictor of clinical response
to MTX, so, conversely, does MTX affect gut microbiome? The
answer is of course yes. According a using 16 s - seq study (142),
with the passage of time, the routine oral dose MTX will not lead
to a gut microbial ecology of persistent disturbances. But many
subsequent experiments have demonstrated that MTX can also
affect the community structure of intestinal microorganisms,
regulating their diversity and function (17). It has recently been
reported that MTX inhibits the growth of 30% of 40
representative intestinal bacterial strains and 84% of 43 bacterial
isolates (143), covering 43% of the human gut microbiota in their
combined relative abundance (17).

MTX in both in vitro and the biological experiments can affect
the humanized mice in dose dependent manner the composition
of gut microbiome (19). Low doses of MTX increased the species
richness and diversity of the microbiota (123, 144), including
increasing relative abundance of Firmicutes and decreasing
relative abundance of Bacteroidetes, which reverse the
perturbations of the microbiota normally associated with RA
(17). However, high doses of MTX significantly reduced
intestinal bacterial diversity (145). Most of the changes were
due to a relative decrease in anaerobic bacteria of Firmicutes,
accompanied by a relative increase in Bacteroidetes. High doses
of MTX may alter the function or abundance of bacterial
enzymes involved in MTX hydrolysis, such as CPDG2, which
we mentioned earlier (145). Other studies have shown that MTX
exerts an anti-inflammatory effect via interacting with off-target
bacterial enzymes such as DHFR in E. coli or Lactobacillus Casey
(146). And low-dose MTX-induced changes in the gut
microbiome reduce host immune activation (147). Specifically,
the microflora changes lead to the reduction of multiple host cell
populations, such as activated T cells, B cells, myeloid cells,
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etc. At the same time, reduced stimulation of immune system
activation and decreased tolerance to Treg cell induction
suggested that MTX-induced changes in the microbial
community reduced its possible inflammatory potential.

A recent study shows that gut microbiota is closely correlated
with P – glycoprotein (P-gp, a glycoprotein associated with MTX
efficacy) (148). For example, Lachnoclostridium is positively
correlated with P-gp, while Turicibacter is negatively correlated
with P-gp. As mentioned above, MTX has a significant impact on
the gut microbiome of RA patients according to its dose, and
combined with the relationship between gut microbiome and P-
gp, it is reasonable to speculate that oral MTX affects the
therapeutic effect of the drug itself by affecting the gut
microbiome. Unfortunately, so far, this idea has only existed in
theory and has not been confirmed experimentally.

The gut metagenome of RA patients before treatment
determines whether or not they respond to MTX, and that in
vitro incubation is correlated with the clinical response intensity.
In turn, different doses of MTX altered the species richness and
diversity of intestinal bacteria (see Figure 5). In other words,
there is a dose-dependent bidirectional interaction betweenMTX
and gut microbiota. This interaction between drugs and
microbes is known as pharmacobiology, a term not foreign
to rheumatologists.

3.4 Applications for Precision Medicine of
Pharmacobiology in RA
The study of the interaction between drugs and microbes is
known as pharmacobiology, leading to the concept of precision
medicine, which is particularly important in the field of
rheumatic diseases. The research focuses on the genes and
enzymes encoded by the entire microbial community,
including gut microbiome, as well as the relationship between
microorganisms and pharmacokinetics, which ultimately
modulates host immune response in order to treat diseases
(121). The understanding of pharmacomicrobiology has led to
a new level of understanding of the clinical efficacy and adverse
reactions of drugs (17). The integration of precision medicine
strategies based on the characteristics of gut microbes can help
guide the appropriate use of many drugs, including MTX, which
often present known and unpredictable individual differences.
Interindividual microbial metagenomes such as bacterial species,
genes, enzymes, proteins, and/or metabolites affect drug uptake,
metabolism, transport, and/or excretion, which allows clinicians
to pretreat patients’ gut microbiome and take the best treatment
to get the best treatment results (121). At the same time, this
information can guide decisions to try to achieve an ideal
microbial composition or gene to improve drug bioavailability
and improve symptoms. As mentioned above, the use of baseline
gut microbiome metagenomes has important predictive value for
clinical response to MTX administration, which has been used
for inflammatory arthritis. A related example is the FLORA
study (149). This is a randomized, placebo-controlled trial of
FMT in patients with active PsA who have no response to MTX.

Although FMT has made some progress, other less
cumbersome microbial modulators are being tested, including
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adjuvant probiotics and probiotics, which have shown positive
results (137). New technologies such as organ-on-a-chip (150,
151) and bacterial culture (152) help to understand the
mechanisms of pharmacomicrobiology via attempting to
mimic the gut environment and reproduce the physiological
interactions of host microbes. Then, the drugs to be studied are
cultivated in these systems to explore the interaction between
drugs and microorganisms, including the effects of drugs
on bacterial metabolism and reproduction, and the effects
and mechanisms of bacteria on drug biotransformation.
These pharmacobiological studies will provide a new idea
for the treatment of rheumatoid arthritis and even
inflammatory arthritis.
4 CONCLUSIONS AND PERSPECTIVES

Although several efficacious therapies have recently been
developed, MTX has always been the basic and first-line drug
for the treatment of RA. Multiple mechanisms may contribute to
the anti-inflammatory effects of MTX including inhibition of
purine and pyrimidine synthesis, promotion of adenosine and
some cytokines release, inhibition of ROS, etc., as well as
transmethylation reaction, activator (STAT) pathway and
expression of some long non-coding RNAs, which are not
described in detail in this paper (3, 27). However, there is still
a high proportion of RA patients who do not respond or have
major toxic effects to MTX. We speculate that this inter-
individual difference is at least partly related to the gut
microbes of patients, and more and more trials have proved
this speculation to be correct. In other words, gut microbes are
associated with MTX resistance or poor response. Gut
metagenome at baseline could differentiate MTX responders
from non- responders and ex vivo incubation with MTX of
samples from patients with treatment-naive, new-onset RA
correlated with the magnitude of future clinical response. In
Frontiers in Immunology | www.frontiersin.org 10
turn, MTX affected the composition of intestinal microbes in
humanized mice in a dose-dependent manner, inhibiting the
growth of certain intestinal bacteria. Although comparison of
MTX consumption rate and response probability by
metagenome-based models did not find a significant
correlation, this may indicate that most gene orthologs
included in the model do not appear to play an important role
in MTX depletion. A possible explanation is that these gene
orthologs may affect the MTX response, but independently of
drug metabolism. Future research needs to determine whether
the microbiome can directly metabolize MTX in the body, jump-
start the immune system to boost the response, or both. The
rigorous integration of clinical factors, host genomics, and
pharmacobiology will lay the foundation for major advances in
rheumatic precision medical. More research is needed on the
interactions between drugs and gut bacteria, known as
pharmacobiology, which will be a research hotspot now and
even in the future in the field of rheumatic diseases including RA.
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FIGURE 5 | MTX affects the composition of gut microbiome in dose dependent manner. MTX can affect the humanized mice in dose dependent manner the
composition of gut microbiome. Low doses of MTX increased the species richness and diversity of the microbiota, which reverse the perturbations of the microbiota
normally associated with RA. However, high doses of MTX significantly reduced intestinal bacterial diversity.
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