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ABSTRACT

Summary: We developed MolBioLib to address the need for adapt-

able next-generation sequencing analysis tools. The result is a

compact, portable and extensively tested Cþþ11 software framework

and set of applications tailored to the demands of next-generation

sequencing data and applicable to many other applications.

MolBioLib is designed to work with common file formats and data

types used both in genomic analysis and general data analysis. A

central relational-database-like Table class is a flexible and powerful

object to intuitively represent and work with a wide variety of tabular

datasets, ranging from alignment data to annotations. MolBioLib has

been used to identify causative single-nucleotide polymorphisms in

whole genome sequencing, detect balanced chromosomal rearrange-

ments and compute enrichment of messenger RNAs (mRNAs) on

microtubules, typically requiring applications of under 200 lines of

code. MolBioLib includes programs to perform a wide variety of

analysis tasks, such as computing read coverage, annotating gen-

omic intervals and novel peak calling with a wavelet algorithm.

Although MolBioLib was designed primarily for bioinformatics pur-

poses, much of its functionality is applicable to a wide range of prob-

lems. Complete documentation and an extensive automated test suite

are provided.

Availability: MolBioLib is available for download at: http://sourceforge

.net/projects/molbiolib

Contact: ohsumit@molbio.mgh.harvard.edu
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1 INTRODUCTION

Next-generation sequencing requires a data analysis approach

capable of handling large, complex and varied datasets, from
large sets of reads to complex polymorphisms to existing feature

files. In addition, the competitive nature of research demands
rapid development of methods that are flexible enough to inte-

grate new and quickly evolving algorithms. Tools have been de-

veloped to address these needs, such as GATK (McKenna et al.,
2010). However, packages written in Java (e.g. GATK) require

the maximum memory heap space to be specified at run time
(Oracle, 2011), limiting how the input data are formatted and

handled. For example, a coverage program would require more
memory to compute coverage of a query-ordered SAM file

versus a position-ordered SAM file, because a sliding window

of coverage cannot be used. Programs written in Cþþ do not

require the heap size to be specified and are only limited by the

amount of available memory. Other packages written in Cþþ

have their strengths, but they also have limitations that suggest a

niche for our software, MolBioLib. Arachne (Batzoglou et al.,

2002; Jaffe et al., 2003), the .NET Bio project by Outercurve

Foundation (Outercurve, 2012) and NCBI’s Cþþ Toolkit

(Vatakov, 2012) provide many functions, but are not compact

and do not always clearly identify the primary objects.

Furthermore, the .NET Bio project is specific to the Windows

environment (Mercer, 2012) and Arachne is specific to a particu-

lar Linux environment. IBM’s GenomicTools (Tsirigos, 2012)

has many very useful tools, but addresses common bioinfor-

matics tasks at a lower level than MolBioLib, such as providing

command-line tools rather than a unified program to generate

ChIP-seq output. Other packages, such as Bioþþ (Dutheil,

2008), libsequence (Thornton, 2003) and TIGRþþ (Majoros,

2012), are targeted toward specific applications and not designed

to provide breadth of functionality. The package that most clo-

sely resembles MolBioLib’s philosophy is SeqAn (Döring, 2008),

though it is written in an older version of Cþþ and thus does not

take advantage of the variadic templates or other modern fea-

tures of Cþþ11 (ISO/IEC, 2011).

MolBioLib fills the need for a platform-independent, exten-

sively tested, compact and efficient Cþþ11 library and an exten-

sive set of bioinformatics applications that can be used to analyze

data and rapidly develop new tools. MolBioLib’s library includes

a variety of useful objects and functions, such as a relational-

database-like object, a text file reader object that simplifies data

input, statistical functions and peak calling methods that can

operate on any array of values, such as per base sequence cover-

age. In addition, MolBioLib includes a broad range of tools,

such as to generate coverage, hits of reads to features and

ChIP-seq, all in one unified package.
The design of MolBioLib is based on four principles. The first

is to simplify bioinformatics programming in Cþþ11, achieved

by developing a library that includes many common bioinfor-

matics tasks. For example, Cþþ11 requires programmers to

write specialized data structures to sort associated data keeping

them together, such as feature information associated with a

position. Additionally, to iterate either sequentially or randomly

through a tab-separated-values (TSV) file and select values from

specific columns would require the creation of a function to split*To whom correspondence should be addressed.
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a line on tabs and constructs to index and traverse a text file.
These, and many other common tasks, are built into MolBioLib,

thus greatly simplifying the code one needs to write. It is hoped
that MolBioLib will allow bioinformaticians to consider Cþþ11

as a possible language of choice. Second, MolBioLib is efficient.
Cþþ11 is used because it is the new standard that intro-

duces constructs for making objects such as Table. Cþþ11 is
efficient since it is a compiled language with no inherent restric-

tion on memory heap size at run time. Templates are used ex-
tensively to compact code, avoid inefficient virtual table lookups

and maintain type safety. Objects and method parameters are
often templated so that they may be in-lined by the compiler.

Third, MolBioLib promotes clarity and compactness by conso-
lidating common operations into a concise set of objects. We also

provide an extensive library of functions that are not intrinsic to
one object, such as those that convert one data type to another,

e.g. splitString converts a string to a vector5string4.
Given the range of problems MolBioLib addresses, the source

code is compact: �10 000 lines of code and comments for the

core objects and functions. Among the 101 included applications,
86% are coded in fewer than 200 lines and 59% in fewer than

100 lines. In contrast, without such a framework, the user would
have to code the thousands of lines of code to reproduce

MolBioLib’s functionality. Finally, MolBioLib is extensively
tested and facilitates easy testing and debugging of its applica-

tions. Automated tests are provided for all objects and functions.
Additional validation of the code base comes from extensive

application of MolBioLib to many molecular biology projects
(Lau et al., 2009; Sharp et al., 2011; Talkowski et al., 2011;

Zhao et al., 2010; Raif S. Geha, manuscript in preparation).

To simplify use of MolBioLib, all libraries are include files fol-
lowing the Boost convention (Schaling, 2011). Debugging and

memory checking is thus facilitated with tools such as with
Valgrind (Nethercote and Seward, 2007; Seward and

Nethercote, 2005) since applications in MolBioLib consist of a
main program file with many include files. Additional input and

programming checks are incorporated into the framework
through optional compiler flags.

2 METHODS

MolBioLib is hierarchically structured for ease of use. It contains three

main components: the library consisting of a set of objects and functions,

the set of applications and the documentation.

// First, read in the ref.fasta file

// into refSequence.

Fasta refSequence(‘‘ref.fasta’’);

// The Fasta object makes it easy to apply

// a function to a subset of sequences based

// on, for instance, header text.

// Define a wrapper function that

// reverse-complements a sequence:

void f(Sequence & seq) f

seq.selfReverseComplement(); }

A script is included to compile all the external packages [such as

BAMTools (Barnett et al., 2011)], applications and optionally build

and run tests. MolBioLib can be used independently of the external pack-

ages and interfaces. The documentation for all of MolBioLib may be

generated automatically using the included Doxygen configuration file

(van Heesch, 2011). The introductory pages of the Doxygen output

show how to compile and use MolBioLib both as a set of tools as well

as a programming framework. Functions that transform one data type to

another are separated from the objects. Finally, the applications are hier-

archically organized by usage type.

Table5string, string, size_t4myTable1,

myTable2;

Table5string, string, size_t, string,

string, size_t4innerJoinedTable;

readTSVTable(myTable1, ‘‘tableData.tsv’’);

string s1, s2; size_t i1;

// Below gets the values from the 5th row.

myTable1.getRow(4, s1, s2, i1);

// Below adds data to myTable2, much like

// the vector push_back operator.

myTable2.push_back(‘‘some string 1’’,

‘‘string 2’’, 5);

// Fill myTable2 similarly...

// Bellow inner joins the two tables on the

// first column of both myTable’s and

// stores the result in innerJoinedTable

innerJoinTables50, 04(myTable1, myTable2,

innerJoinedTable);

// Below sorts the innerJoinedTable

// on the 6th column.

sortTable554(innerJoinedTable);
writeCSVTable(innerJoinedTable,

‘‘innerJoinedTable.outputFile.csv’’);

Several novel classes power rapid development with MolBioLib. The

primary object that stores data in MolBioLib is Table, which is a con-

tainer class similar to the Cþþ STL vector class except that each column

may store a different data type, through Cþþ11’s variadic templates.

Variadic templates allow the coding of objects that can accept an arbi-

trary number of template parameters. However, writing variadic tem-

plated objects and functions can become cumbersome (Gregor and

Järvi, 2008; Kalev, 2008). Therefore, MolBioLib includes the Table

object to represent tabular data, a mainstay of bioinformatics data ex-

change, in an intuitive and easily used fashion. The Table structure was

based on the relational database (Codd, 1970) model, where related data

are stored row-wise. Column data types are specified through the tem-

plate parameters. A Table may be thought of as a generalized vector.

It includes data row insertion and retrievals operations that are simple to

use. Database-like operations for Table, such as concatenation, filtering

and inner and outer joins, are provided. Example usage of a Table is:

where the readTSVTable is a function to read a TSV file into a table.

This tabular grouping of data can be used for many bioinformatics tasks.

One example is the Fasta object, derived from the Table object, which

stores sequences and their headers. The Fasta object simplifies access to

sequence data:

The primary object to read text files is ReadOnlyStringFile. The

class automatically creates an index of a file, if not already present, so the

file may be accessed as if it were a string array. The index file is created by

going through the text file once and noting the starting file position of

each line in the index file. The index file itself has a fixed length per line,

simplifying the process of finding the index position. Thus, to access a line

in the text file, the appropriate line in the index file is looked up.

Subsequently, the line starting at the file position indicated by the look

up is read in. Almost no memory is required in using the index. A

ReadOnlyStringFile object functions like an array in which each

element is one row of the file. ReadOnlyTSVFile is a particularly

useful derived class of ReadOnlyStringFile. The values of each

tab-separated field of each row can be accessed by the operator[]

method, returning a vector containing the parsed elements of one row.
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Applications written with MolBioLib capitalize on the ability of the

ReadOnlyStringFile class to hide all the housekeeping chores

involved in parsing data from delimited text files.

For example, to sample a random subset of a TSV input file, one

would code:

If a file only needs to be traversed once, sequentially a line at a time,

ReadOnlyStringFile can traverse the file without creating an index

file. This eliminates the time to build and store an index.

The ReadOnlySequencesFile, based on the

ReadOnlyStringFile, is a FASTA/FASTQ reader object. It can

work in a random access mode or sequentially traverse the file, providing

all the read-only operations of the Fasta object, thus greatly simplifying

access to sequence read files.

// Then apply function f to all sequences

// whose header does not have the string

// ‘‘chr_Un’’ in it (false means not matches):

refSequence.applyToHeaderRegex(

‘‘chr_Un’’, f, false);

Other general objects in MolBioLib include a sparse vector object, e.g.

for use in storing sparse coverage, a map facilitator between keys and

rows in a Table, and a parameterized type interval object with asso-

ciated overlap and set functions. A random number generator class that

includes a permutation vector is also provided. Other bioinformatics ob-

jects included are an alignment object, a Sequence class with operations

such as reverse-complementing, a feature object and a peak object for

storing local extrema of numeric data. All of these classes have been used

to simplify coding of novel bioinformatics analyses.

ReadOnlyTSVFile fileArray(‘‘input.tsv’’);

size_t numLines¼fileArray.size();

// RandomLib below is part of MolBioLib

// The numbers are seeds.

RandomLib randf(1802, 9373);

for (size_t i¼0; i5100; þþi) f

size_t randRowNum ¼

randf.randomSize_t(0, numLines-1);

vector5string4tokens¼

fileArray[randRowNum];

// Process tokens here...

}

fileArray.close();

Functions included in MolBioLib are diverse, intended to cover four

broad categories: algorithms, file readers and writers for various data

types, system utilities and transformation of data types to different

data types. Algorithm functions include Table functions, peak detection

and statistics. Table functions include smoothing values, sorting and

upper_bound and lower_bound of Tables analogous to their

vector class counterparts. File reader and writers include those for

various alignment formats, including SAM (Li et al., 2009), Helicos

BioSciences’ TXT format (Helicos, 2010), NCBI tabular BLAST

output (Madden, 2003), feature readers for tabular files such as for

UCSC’s refGene annotation table (refGene.txt; Kent, 2012), Ensembl’s

Biomart in TSV format (Flicek et al., 2011; Smedley et al., 2009) and the

GFF format (Wellcome, 2012), streams for intervals and vectors, tuple

streams and writers and Table reader and writers. Peak detection func-

tions for numeric arrays will be discussed in more detail in the ChIP-seq

section.

System utilities include a powerful command-line parsing system.

Various command-line argument types are provided, including numeric

and string. Input and output file name argument types provide file check-

ing to ensure all input files are present at run time and to prevent acci-

dental overwrites of output files. Furthermore, the command-line parser

automatically records the date and time the program was compiled as

well as the command line to simplify documentation of computational

steps and pipelines. System utilities also provide functions to transform

one data type to another, such as string conversions to and from various

data types as well as string splitting (on one or more delimiters).

The compiler of choice for MolBioLib is clangþþ version 3.0

and above (Clang, 2012) using the associated libcþþ library and is avail-

able on the Linux, Mac OS X and MS Windows platforms. It supports a

large subset of Cþþ11, has very good compiler error messages and

is efficient. MolBioLib also works with GNU gþþ 4.7 and above

(Gcc, 2012).

3 RESULTS

One of the primary goals of MolBioLib is to provide a set of

programs that address the most common bioinformatics ana-

lyses. Here we describe applications in MolBioLib that address

four common bioinformatics analyses: annotating a list of fea-

tures, counts of hits to features, coverage and ChIP-Seq. We also

touch upon additional useful utilities included in MolBioLib.
The MolBioLib application addFeaturesToTSVFile per-

forms the very common task of adding gene annotations or more

generically ‘features’, to an input file in which each row describes

a genomic interval. Examples of annotations include the

refGene.txt file downloadable from UCSC’s genome browser

site (Fujita et al., 2011) that contains the gene ID, name, chromo-

some, strand, and start and stop positions of the transcript.

Other annotation files include tabular data from the Ensembl/

Biomart website (Flicek et al., 2011; Smedley et al., 2009), where

one can download any set of genes with user-selected attributes

such as IDs, names, positions, expression data and protein

domain. There are numerous other annotation sources, many

of which consist of carefully curated private data, on a topical

website, or in a published supplement to a journal article.

Other common tabular formats include the BED,

PSL and GFF formats (Kent, 2012; Wellcome, 2012). Using

addFeaturesToTSVFile, the genomic footprint of any such

annotation can be intersected with another TSV file containing

genomic intervals. The application will use the genomic interval

specified on each row of the input file and find all intersecting

feature coordinates (with matching strand, if specified)

and add the appropriate annotation(s) to the row in the

output. Importantly, this application will take in any input

TSV as well as any annotations in TSV form (such as

those noted above) and thus may be used on a wide variety of

projects.

Another common bioinformatics task is to count the number

of alignments mapping to a set of features in a TSV file, such as

refGene.txt, promoter regions or classes of sequence repeats. For

example, we have used this method to quantify the number of

reads derived from genic regions, different classes of genomic

repeats and from different classes of non-coding RNAs (Sharp

et al., 2011). refFeaturesAnalysis offers a number of op-

tions, such as shifting the positions of features (e.g. probing hits

to upstream UTRs instead of the genes), filtering for a specific

set of reads, maximum error in alignments and RPKM normal-

ization (Mortazavi et al., 2008). The input features are printed

along with the count of alignments overlapping each input fea-

ture and meeting any filtering criteria.

2414

T.K.Ohsumi and M.L.Borowsky



Sequence coverage can be used for determining the number of
reads mapped to a base or region and also for finding
polymorphisms. MolBioLib has a unique coverage tool that out-

puts strand-specific statistics as well as a count of mismatched
bases observed at each position. Coverage can be run on a
user-defined set of regions and normalized to the number of

million reads in the input reads file. Additionally, coverage can
be executed using only the midpoint position to identify where
the reads align. Finally, coverage can be run using uniquely

aligning reads. Programs are provided to post-process coverage
output in various ways, such as multiplying by some constants
(either for the whole file or by contig/chromosome), windowing

the coverage and converting the coverage to a wiggle file.
Coverage output is the input for the ChIP-Seq analysis program

discussed next.
An experimental ChIP-Seq program with a novel wavelet

method is our final example of application of the MolBioLib

library. Peak detection is one major next-generation sequencing
application. Given an alignment file, this algorithm finds the
coverage on each strand at each location, computed either per

base or in bins spanning a user-defined number of bases. This is
done for both the sample as well as for a background sample or
control, and coverage is smoothed using a kernel smoother. One

challenge of peak detection is finding peaks having a wide range
of widths and heights. We address this by applying a
translation-independent wavelet smoother applied at various

scales, finding local peaks at each scale, and then ranking puta-
tive peaks by using ridge lines that identify peaks detected across
multiple scales (Du et al., 2006). Peaks with a longer ridge length

are more isolated from other peaks, because they show up as
peaks at various length scales. Optional filters remove low signals

and spikes. This peak detection method is included in
MolBioLib. Other smoothers, such as Gaussian, are also imple-
mented in MolBioLib.

We validated the wavelet peak detector on published
H3K4me3 ChIP-Seq data (Myers et al., 2011). As expected,
H3K4me3 peaks are enriched in promoter regions (Zhao et al.,

2007). The percentage of peaks in promoter regions was 57%
compared to 33% using the window tag density method
(Kharchenko et al., 2008) and 53% using MACS (Zhang et al.,

2008). Peaks were well defined, with a mean width of 232 bp
compared to 2840 bp and 654 bp for the other two methods
tested on the same data.

There are many other applications included with MolBioLib
that address much of the essential bioinformatics analyses done
in next-generation sequencing projects. Some of the more

common tasks include computing statistics on a list of numbers,
creating histogram files from data files (both numeric and string),
converting alignment formats. Additional tasks include common

operations on FASTA and FASTQ files, such as obtaining a
subset, trimming and removing duplicate reads. Moreover,

there are programs to combine, print subsets and inner join
TSV files. Intersection, subtraction and union operations of
text files are also included.

4 DISCUSSION

MolBioLib fills the need for an efficient, reliable and compact

Cþþ11 bioinformatics framework. It is portable across many

platforms and aligner formats and is fully documented.

MolBioLib is unique in offering complete analysis programs

for a variety of other very common tasks not addressed by

other toolkits, from feature hit counts to coverage to ChIP-Seq.

MolBioLib classes offer considerable power and convenience

for creating novel analysis applications. A central and very gen-

eral Table class simulating the functionality of a database eases

construction of many programs. The Table class is based on a

collection vectors, thus having a small memory overhead com-

pared to other data structures such as a map. Capacity for larger

datasets is only limited by the amount of available memory.

File readers provide efficient methods to perform ubiquitous

file I/O tasks. These classes will have general utility for applica-

tion development beyond the specific needs of computational

biology.
As MolBioLib gains adoption, we aim to incorporate many of

the applications both user-contributed and those developed for

our projects into the main distribution through the SourceForge.

net code repository mechanism.
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