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THE BIGGER PICTURE This article provides a holistic overview of interdependent cyber-physical-societal
networks.We envision the subsequent research directions that require contribution of the data science com-
munity as well as interdisciplinary collaboration with network scientists, social scientists, computer scien-
tists, and engineers to tackle the emerging problems raised by the notion of interdependent networks: (1)
developing novel algorithms for data analytics and enabling interdependent decision making, (2) proposing
holisticmodels that are capable of capturing the interdependence among human-centeredmulti-layer critical
infrastructures, and (3) developing efficient solutions that are capable of finding globally optimum solutions
using information from each network as well as modeling the interdependent information exchange. In addi-
tion to these directions, we outline policy and access-control issues, including conflict of interest among
stakeholders and operators of each network. Successful implementation and development of an interdepen-
dent data analytics framework and its required algorithms will improve the quality of life of citizens by
enabling globally optimum decision making, increasing efficiency, preserving privacy of intelligent agents,
and reducing operational cost of interdependent networks. Further reading: Sustainable Interdependent Net-
works book series (interdependentnetworks.com) and Optimization, Learning, and Control for Interdepen-

dent Complex Networks (edited by M.H. Amini).

Concept: Basic principles of a newdata science
output observed and reported
Traditionally, networks have been studied in an independent fashion. With the emergence of novel smart city
technologies, coupling among networks has been strengthened. To capture the ever-increasing coupling, we
explain the notion of interdependent networks, i.e., multi-layered networks with shared decision-making en-
tities, and shared sensing infrastructures with interdisciplinary applications. The main challenge is how to
develop data analytics solutions that are capable of enabling interdependent decision making. One of the
emerging solutions is agent-based distributed decision making among heterogeneous agents and entities
when their decisions are affected by multiple networks. We first provide a big picture of real-world interde-
pendent networks in the context of smart city infrastructures. We then provide an outline of potential chal-
lenges and solutions from a data science perspective. We discuss potential hindrances to ensure reliable
communication among intelligent agents from different networks. We explore future research directions at
the intersection of network science and data science.
Introduction
Due to emerging coupling and interdependence among critical

smart cities infrastructures,1,2 it is imperative to develop holistic

data analytics and efficient decision-making techniques,1,3–7

such as agent-based distributed optimization algorithms8,9

and learning from distributed datasets.10 While interdependent

networks and their underlying structure have been studied from

the network science perspective,11–14 which is crucial to enable

an intuitive understanding of networks, there is a need to
This is an open access article und
develop efficient data-driven algorithms to deal with decision-

making problems in interdependent complex networks.

Machine learning and data analytics lend themselves as prom-

ising solutions to deal with the complex nature of interdepen-

dent networks.15 Human-centered coupling is the pivot to the

interaction among heterogeneous agents in interdependent

networks. Critical infrastructures ultimately aim at serving soci-

ety. Motivated by this ever-increasing human-centered interde-

pendence, this Perspective article outlines the need for
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revisiting current data analytics approaches to capture this

interdependence. Specifically, this paper investigates potential

research directions at the intersection of network science and

data science.

Baggio et al.16 have introduced three strategies based on

economic and ecological changes of three communities in

Arctic Alaska. Multiplex, undirected, and weighted network

analysis were deployed to show that community robustness

is affected by social changes more than resource depletion.16

A multi-slice framework is proposed by Much et al.17 to enable

algorithmic detection of cohesive groups based on the general-

ized Laplacian dynamic method. This framework is efficiently

applicable to time-dependent multiplex networks.17 Renoust

et al.18 performed group cohesion analysis by developing a

visual analytics system, referred to as Detangular. While the

proposed method is based on the underlying structure of the

network through dual linked views, the interdependence

among the data of multiplex networks has not been consid-

ered.18 Kanawati19 conducted a brief survey of advances in

multi-layer network mining. The role of multiplexity in networks

has been investigated by Fu and Chen.20 Integrative analysis of

heterogeneous omics data have been used by Wang et al.21 to

develop an approach for identification of cancer subtypes. This

approach analyzes each data category independently and inte-

grates correlated patient data from different sources.21 Hence,

interdependent decision making can extract meaningful rela-

tions and patterns by using interdependent networks data. Xu

and Tian22 conducted a comprehensive survey of clustering al-

gorithms. While the advantages and disadvantages, and the

differences among clustering algorithms, are been discussed

by these authors,22 interdependent decision making among

the clusters is not considered.

The rest of this paper is organized as follows. We provide an

overview of human-centered interdependent networks, followed

by a comprehensive introduction to interdependent societal-wa-

ter-energy-economical-transportation (SWEET) networks. We

then provide more details of the networks within smart cities,

explore interdependence among various networks under the

umbrella of interdependent SWEET networks, and outline the

future direction in data analytics for interdependent networks,

followed by our conclusions.

Interdependent Decision Making in Coupled Multi-layer
Networks
Considering the interdependent information exchange among

multi-layer networks, there is a crucial need to investigate

these networks elaborately and obtain a holistic understanding

of how they interact. Assuming that there are multiple layers of

networks, e.g., water, transportation, energy, financial, health-

care, and societal networks, nodes within each layer can

communicate with each other. Furthermore, all nodes within

each network are dynamically interacting together as a cluster.

Holtz et al.23 have explored the benefits of modeling societal

networks to enhance clarifications and understanding of soci-

etal transitions. Particularly, they explained the advantage of

modeling for large-scale societal systems and provided a di-

rection to use modeling for variant transition studies. Fiksel24

discusses dynamic properties of societal network nodes,

which fluctuate due to the influence of the adjacent nodes.
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He investigated societal networks for long-term evaluation for

both deterministic and probabilistic transition rules. Further-

more, a dynamic modeling of disease outbreak is proposed

by Eubank et al.,25 whereby they model the physical pattern

generated from the movement of the individuals using a

dynamic bipartite graph. The analyzed graph was generated

using mobility data, land-use data, and census data. In this

Perspective, our goal is to identify the probable issues that

may arise while coupling several layers, making communica-

tion among them, and considering human-centered nodes for

revealing informative knowledge. Specifically, we try to identify

potential issues while enabling interdependent decision mak-

ing in a network-of-networks environment, its underlying

communication and information exchange requirements to

make globally optimum decisions. To this end, we consider

three major means of communication: (1) independent inter-

network communication; (2) intra-network communication;

and (3) human-centered communication. Some of the chal-

lenges to leverage these communication strategies are out-

lined below.

The first problem we may face for an interdependent network

is that any node can be out of the current network range or the

node becomes dead during communication. This can happen

because of mobile/dynamic behavior of the nodes, topology of

underlying network, scalability constraint, environmental factors,

different attacks (e.g., sinkhole attack, jamming attack, DDoS

attack, man-in-the-middle attack, or cyber-physical attacks),

heterogeneous transmission range, power doom, or device

bug. These factors result in dropping requests and violencewhile

performing a transaction, and encounters both connection

establishment delay and transmission delay of request and

response during communication. Consequently, corresponding

nodes that are trying to initiate communication and broadcast in-

formation require additional time to reestablish or reset the high-

level state of the conversation.

Besides, during intra-communication of the networks, the

conventional node by node-searching approach can lead to a

high latency among origin and source agents. To mitigate this,

an efficient node-traversing approach should be adapted to

achieve a minimal delay.

Avoiding the refusal of communication by malicious nodes is

another challenge in interdependent network communication.

A node that is responsible for maintaining communication with

a couple of other nodes (i.e., human-centered data-analytic)

can act suspiciously by rejecting a request or dropping a trans-

action at the middle. The identification of such idiosyncratic

behavior of the nodes is one of the major concerns in the

communication network.

Interdependent Societal-Water-Energy-Economical-
Transportation Networks: A Comprehensive Holistic
View of Critical Infrastructures
The concept of interdependent SWEET networks refers to the

underlying smart cities infrastructures. Interdependence

among these networks may cause cascading failure, i.e., a

single node failure leads to cascading failure of other depen-

dent nodes located in different networks. In such scenario, a

small fraction of node failure causes huge fragmentation within

the system. To tackle this issue, holistic modeling of network
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interdependency is crucial in data analytics for intelligent deci-

sion making and to design a more robust network of networks.

Specifically, considering the exogenous data from interdepen-

dent networks while using data analytics for each layer im-

proves the accuracy of the decisions for intelligent agents. It

also facilitates data-driven identification of critical nodes that

can contribute to mitigating loss due to sudden disruption

within the connected partitions of the network. For instance,

electrical power outage due to some catastrophe can be a rele-

vant example, whereby a single failure of a microgrid can affect

all the dependent nodes located in different networks. Buldyrev

et al.26 suggested a framework for interdependent networks

that helps us understand the interaction and robustness of no-

des of different networks, presented a solution for preventing

fragmentation due to sudden cascade, and analyzed how

such interdependent network vulnerability is different from a

single network failure. They mentioned that, when we fragment

the networks, the nodes that belong to a giant fraction and con-

nected to the finite portion of the overall network are functional,

but the remaining nodes, which are separated and part of the

small clusters, are nonfunctional. Thus, they considered only

the giant clusters that are interconnected and excluded the

small nonfunctional clusters. They presented an analytical solu-

tion by considering those functional nodes and analyzed how

the removal of a critical fraction of nodes can lead to the failure

of cascade nodes and create fragmentation of interdependent

networks. They also discussed how the higher distribution of

multi-networks can cause more random failure than a single

network and highlighted how interdependent networks can be

effective in building a robust network structure.26

An Overview of Underlying Cyber/Physical/Societal
Layers of Interdependent Networks
In this section, we first discuss core network entities that are

available within the system, e.g., societal networks, healthcare

networks, water networks, energy networks, and financial/eco-

nomic networks. We highlight the coherence among these net-

works and explain how a network can benefit from interconnect-

ing with other networks.

Societal Networks

Societal networks represent the concept of having access to

multiple-layer networks while moving and sharing that informa-

tion with other nodes within the community. For instance, a

node residing in the water network can get access to water re-

sources, and when it moves and wants to communicate with a

node in the same network residing in the opposite edge, it can

use the societal network node as intermediate node to reach

the target node and hence establish communication. A similar

concept can also be applied for the nodes located in two

different networks, which is discussed in a later part of this sub-

section. Mucha et al.17 designed a framework regarding

network quality functions that facilitate us to build a structure

of random multi-slice layers, and their framework adapts the

structure change with network variations considering time,

multiplexity, and scalability. They mentioned that inter-slice

network coupling has a different nature than those inter-slice

networks that connect only with their neighboring slices. They

also discussed the detection process of the community for

multi-scale, time-dependent, and multiplex networks through
varying coupling strength and community group members. Hu-

man-centered computing from a multimedia perspective is dis-

cussed James et al.27 and Aragon et al.,28 where themain prop-

erties of human-centered multimedia, their interactions,

research agendas, and potential applications are analyzed. Be-

sides, different issues regarding human-centered computing

using a machine-learning approach is examined by Fiebrink

andGillies29 and Riedl.30 The theory of rumor spreading in com-

plex social networks has been comprehensively explored by

Nekovee et al.31

In this Perspective, we consider societal networks as a com-

mon coupling network among all underlying interdependent

networks. Societal network agents act as coupling nodes that

facilitate communication from one network with another, which

is potentially not connected and difficult to reach due to

communication infrastructure constraints. In such a case, hu-

man-centered societal nodes can be effective, which will act

as a bridge between two network agents and can contribute

to successful interaction by taking some incentives. A societal

network agent can also be considered as an entity that can

carry information, make an intelligent route, establish commu-

nication, and disseminate knowledge among other interdepen-

dent networks. This kind of network is also useful when we have

two different types of networks and each has its data policy, as

well as permission access about information. In such a situa-

tion, a human-centered agent that may have common coupling

with both of the networks can be beneficial for sharing informa-

tion and carry out the transaction (Figure 1).15 An analysis of

weighted and directed multiplex networks is presented by Bag-

gio et al.,16 who considered ecological and economic changes

of food flow in three small communities and explained how so-

cial relations have more impact on ensuring the robustness of

community compared to available assets. They found that the

interconnection of the community has more influence through

the removal of significant social networks rather than vulnera-

bilities of resources. However, they did not consider the inter-

dependence of societal networks and how social relations

can captivate transportation or financial networks. For

instance, two nodes that are socially connected and have

random interaction are more likely to commit a transaction in

financial networks. Besides, those two social network nodes

can more often look for similar routes or transport to reach their

target destination, or they can choose to purchase electricity

from the same power network by being influenced through so-

cial interaction.

Healthcare Networks

Healthcare networks can be considered as the interconnection

among the healthcare components to facilitate the patients

with proper monitoring and services. This network can be oper-

ated more prudently if it can obtain better synchronization with

other related networks that can contribute to the service contin-

uation in a better way. For instance, a healthcare network can

use the resource of energy networks when there is a lack of po-

wer supply to execute an operation. In such an emergency case,

coupling with other networks can be crucial in terms of patient

health and reputation of the service management. A high-level

representation of human-centered decision making using

healthcare and financial network agents is given in Figure 2.

Transportation networks can play a vital role by providing
PATTER 1, April 10, 2020 3
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necessary information about the shortest route, nearby gas sta-

tion, or the current location of an ambulance. Integrating such a

network with healthcare systems can help us to accelerate the

throughput, cope with variant situations within an environment,

and ensure consistency of service. Moreover, it can also interact

with the financial network tomake a transaction between the ser-

vicemanagement and patient that can help a patient to complete

a transaction more securely and smoothly. Studies on cancer

detection for interdependent tumor interaction,32 interdepen-

dent signals,33 and how different physical parameters (e.g., psy-

chological and physical distress, pain and stress) are interde-

pendent in cancer patients34–36 have been conducted. Such

studies show that interdependency can tailor significant knowl-

edge, which can help us to understand the detection of cancer

more rigorously. We can apply a similar concept in terms of

different networks, whereby a single independent network can

only lead us to define some specific knowledge, whereas while

coupling with some other interdependent networks they cumula-

tively can reveal more information and provide better service and

facilities.

Water Networks

In the water network, the operation of supplying water among

the nodes is dependent on the availability of electricity; thus,

the distribution can be dependent on the power network and

it is more variable. In such a distribution, the pumps used to

supply water can also be used as energy reservoirs and hence

can contribute to supplying electricity from the power network.

Such types of coupling strategy of multi-networks can be bene-

ficial to reveal hidden interconnections and ensure the robust-
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ness of system performance. We can

formulate a more optimized function by

considering those dependencies and can

understand how multi-layer communica-

tion can lead us to achieve maximal

benefit from the system. An optimal water

flow (OWF) approach is presented by

Singh and Kekatos,37 which incorporates

the water pressure and flow constraints

for a fixed speed of the water pump, pipes,

reservoirs, and tanks. They relaxed the hy-

draulic constraint for the second-order

cone and appended a penalty term for

restoring the feasibility. By setting the

proper weight to the penalty factor, a

small originality gap is attained that gives

OWF solutions. If we consider the water

network without any other network depen-

dency, the nodes can only fulfill their de-

mand by using the same network nodes.

However, if we introduce the concept of

multiplex communication, the nodes

within this network can derive benefit

from another network by using their re-
sources. The nodes that have enough power in the energy

network can contribute to supply power in the water network

by taking incentives. This will eliminate the waiting cost of the

network when there is an outage of the main power station or

node failure within the network.

Energy Networks

Energy networks are essential to enable continuous operation

of critical infrastructures. There is an increasing number of sen-

sors and measurement devices at various energy networks to

collect and process network data and ensure reliable energy

delivery. There is a wide range of studies concerning optimal

operation of gas networks38 and power networks.39 While the

collected data directly correspond to energy networks, they

will affect the underlying electrified networks, e.g., water

pumps in the water network, traffic lights in transportation net-

works, health monitoring equipment in healthcare, and compu-

tation centers in financial networks. Furthermore, as electricity

customers are intelligent decision makers in societal networks,

there is a strong coupling between power and societal net-

works. For instance, demand side management, including

response programs40–42 and load management strategies,43,44

increase engagement of electricity consumers in the power

market by allowing for customer participation in ensuring

load-generation balance. Hence, a holistic understanding of

energy networks and developing efficient data analytics to

identify anomalies in these networks paves the way for the reli-

able and secure operation of electrified networks. While there is

a rich literature on power network resilience,45 developing data

analytics solutions that capture interdependence among power
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networks and societal networks is crucial in achieving a holistic

understanding of these networks.

Economic/Financial Networks

In multi-layer peer-to-peer networks, customer privacy violence

is a major concern as there is always a high chance of security

breakdown and data leakage. To ensure security and maintain

privacy of data, blockchain-based peer-to-peer networks46

can be a good solution. However, adopting blockchain to

achieve economic/financial coupling for multi-layer networks

may face some issues while performing transactions among

different layers. In case of intra-communication blockchain net-

works, a transaction can be inserted within a block by attaining

consensus from the mining nodes. However, a problem arises

when the number of mining nodes within the network becomes

very few and most of them are malicious. In such a case, there

is a possibility of inserting improper transactions within the block

due to consensus manipulation. Furthermore, if we consider

communication among multi-layer networks and take into ac-

count that each layer has its blockchain network, we need to

deal with various consensus mechanisms, variant data format,

dissimilar blockchain size, or heterogeneous blockchain network

nodes with different transmission capabilities.47–49 Furthermore,

when a node tries to search for particular data, discovering prob-

able blockchain and selection of the best suitable blockchain

networks to communicate is another research problem. In

such a case, we may have a performance-accuracy trade-off,

i.e., a blockchain may have high throughput but low performance

while another blockchain may have low throughput but high per-

formance. In addition, when an interruption occurs during asset

exchange among multiple nodes, switching time between

different blockchains is a challenge. Also, directly switching to

other chain may encounter an accessibility issue. Due to privacy,

a blockchain network may fail to retrieve data directly from a

chain, but may be accessible by routing through a neighboring

blockchain. Additionally, due to mobility, a blockchain network
may have very few nodes at a particular

time, and if another blockchain network

tries to make communication with a

small-sized blockchain network, there is a

high chance of obtaining wrong data due

to 51% attack,50 selfish mining,51 or block

withholding attack.52

Interdependent Information
Exchange in Critical Infrastructure
Currently, the data for each network is

stored in silos, e.g., healthcare nodes may

not have interaction with the entity that

has access to financial data or the transport

data do not have access to energydata. For

this reason, resources cannot be utilized in

an optimized manner and different inter-

esting knowledge remains unrevealed. To

ensure optimal utilization of resources and
discover informative knowledge, the coupling of multiple net-

works can be considered, whereby independent inter-network

and intra-network communication can be made. Through inter-

network communication, the same network entities can share re-

sources and talk among themselves and in intra-network

communication, and different network node entities can speak

with each other about node and resource information, exchange

data, and can provide support to attain resilience within the sys-

tem.Hamich et al.53 andKahrl andRoland-Holst54 combinedwa-

ter and energy data to examine the linkages between these two

types of data to achieve sustainable resource management.

Figure 3A shows the coupling and interactions of energy andwa-

ter networks. For instance, if a node within the water network re-

quires energy at any time instantly to continue its normal water

supply operation, alternative power supply requests can be

made to the energy network. The requested energy network

can check out its resources and upon the availability of the re-

quested resource and respond to a water network for further

execution. Besides, if due to natural calamity, a power outageoc-

curs in a region andwater for power supply is interrupted, in such

a case, energy fromother networks canbeprovided formaintain-

ing the continuation of water distribution. In Figure 3B, coupling

among energy and transportation networks is illustrated,

whereby these networks are interdependently operating to reach

optimal decisions. The entity of the transportation network (e.g.,

vehicles, gas stations, and surveillance components) directly re-

lies on the energy systems, and the discontinuation of such en-

ergy leads to malfunction of transportation networks. Various

research groups9,55–58 have explored the interdependent nature

of power system and electrified transportation networks and

have proposed frameworks and algorithms to make optimal de-

cisions in both optimal power flow problems in power systems

and optimal routing problems of electric vehicles. To address

the interdependent planning of these two networks, Amini

et al.58 proposed a simultaneous strategy for planning of
PATTER 1, April 10, 2020 5
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distributed renewable generation and electric vehicle charging

stations. Financial and energy networks are correlated in many

aspects. For instance, to purchase energy from a power source,

it may be necessary to communicate with the financial network

for obtaining a reliable exchange of transaction, e.g., blockchain.

A node that has permission to commit the transaction and push it

to the block of the financial blockchain networkmay have access

to utilizing energy from the energy network. In such a situation, a

coupling of two such networks can be beneficial for the node en-

tities to gain more resources at a certain time interval (Figure 3C).

Siano et al.59 and Aitzhan and Svetinovic60 explained how block-

chain-based transaction can be applied in the energy stock mar-

ket for exchanging or sharing energy among the peer-to-peer

communication nodes. They discussed how blockchain-based

transactions can be adapted in the energy market for securing

asset transfer and proper resource utilization. A group of leader

nodes within the blockchain network can handle all the transac-

tion requests from other networks and can propagate the

requester information within the network channel. Thereafter,

all the interested nodes can give a response to the leader request

and, upon giving consent to the contract, can commit transac-

tions to insert within the chain. The mining nodes can verify the

transaction and reach a consensus to insert that transaction

into the blockchain. In this way, the financial network nodes

canbe used in the completion of a secure transactionwith the en-

ergy network, and this approach can be valuable when a node or

a region faces power disturbance. Similarly, financial and trans-

port networks can be sliced together to leverage transport and

financial network functionalities to utilize each other’s facilities

(Figure 3D).
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We can track information exchange

among nodes during a given period to

monitor their interactions and regularity of

successful communication. Using such

interactive structures (Figure 4), we can

quantify the node’s availability or trust

value, or predict interest in communicating

with similar nodes later.
FutureDirections inDataAnalytics for
Interdependent Networks: Enabling
Interdependent Decision Making
Based on the thorough investigation of

cyber-physical-societal networks in this

Perspective, we envision the following

research directions that require the

contribution of the data science commu-

nity, as well as interdisciplinary collabo-

ration with social scientists, computer

scientists, and engineers, to tackle the
emerging problems raised by the notion of interdependent

networks:

d Developing novel algorithms for data analytics and

enabling interdependent decision making

d Proposing holistic models that are capable of capturing the

interdependence among human-centered multi-layer crit-

ical infrastructures

d Developing efficient solutions that are capable of finding

globally optimum solutions using information from each

network as well as modeling the interdependent informa-

tion exchange

In addition to the aforementioned directions, we outline policy

and access control issues, including conflict of interest among

stakeholders and operators of each network. For instance, for

an electric vehicle driver who receives information from the

transportation network, energy system, and also financial

network, how can we develop a holistic data analytics algorithm

that takes into account these cross-layer data to enable action-

able intelligence? Besides, if we consider coupling of the health-

care network with other networks (e.g., energy and transporta-

tion), then how can we discover a relationship between a

patient who is using the healthcare network and the other related

networks being used by the patient to obtain better service, or

discover meaningful patterns while respecting the privacy of

agents?

Conclusions
In this Perspective, we explored potential directions for inter-

dependent data analytics in human-centered multi-layer



$1

$8

$2

$3

E1
H6

H7

T7

E5
T3

E1

T9
S6 S1

H6

$6

E1
T2

S4

T3H1

$6

T7

E3

E4
E7

H3

T8

H3

$9

T7

H2

E2

S9

$5

T

H

E Node interaction

Transportation network agent

Energy network agent

$i

S

Financial network agent

Societal network agent

Healthcare network agent

Figure 4. Interaction Map of Heterogeneous
Agents from Societal, Healthcare,
Transportation, Energy, and Financial
Networks

ll
OPEN ACCESSPerspective
networks. We described how an entity can be beneficial in ob-

taining service through interdependent inter-communication

and intra-communication asset sharing. Furthermore, using

the concepts of human-centered network communication

and coupling among different networks, we provided a

pathway toward optimal resource utilization and explained

how it can be applied in the presence of human agents.

Such interactions can be performed when there is either

more resource availability than demand, or resource shortage

within a network. Taking into account different communication

environment scenarios, we investigated potential challenges

that an agent may face while dealing with different communi-

cation infrastructures, leveraging multi-modality data from

various networks, or making efficient use of the shared re-

sources. While the current data science solution provides effi-

cient network-centered data analysis, we continue to explore

an ever-increasing need to revisit these solutions, take into

account human-centered factors, and model the interdepen-

dent decision-making infrastructure. Different kinds of

emerging computing and information science problems (e.g.,

large-scale machine learning, big data analytics) and engi-

neering problems (e.g., home automation, smart city, smart

agriculture, large-scale product manufacturing) require

tailored data-analytic algorithms to model and integrate our

discussed interdependent networks notion. By adapting our

multi-layer communication strategy through available commu-

nication means, network resources can be exploited and

interdependent data sharing can ultimately benefit optimal de-

cision making of all networks.
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