
REVIEW
published: 03 July 2020

doi: 10.3389/fncel.2020.00177

Edited by:

Andrea Tedeschi,
The Ohio State University,

United States

Reviewed by:
Sebastian Enrique Dupraz,

German Center for
Neurodegenerative Diseases (DZNE),

Germany
Bernd Knöll,

University of Ulm, Germany

*Correspondence:
Michael E. Selzer

mselzer@temple.edu

Specialty section:
This article was submitted to Cellular

Neuropathology, a section of the
journal Frontiers in Cellular

Neuroscience

Received: 31 March 2020
Accepted: 22 May 2020
Published: 03 July 2020

Citation:
Rodemer W, Gallo G and Selzer ME

(2020) Mechanisms of Axon
Elongation Following CNS Injury:

What Is Happening at the Axon Tip?
Front. Cell. Neurosci. 14:177.

doi: 10.3389/fncel.2020.00177

Mechanisms of Axon Elongation
Following CNS Injury: What Is
Happening at the Axon Tip?
William Rodemer1, Gianluca Gallo1,2 and Michael E. Selzer1,3*

1Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA,
United States, 2Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA,
United States, 3Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States

After an injury to the central nervous system (CNS), functional recovery is limited by the
inability of severed axons to regenerate and form functional connections with appropriate
target neurons beyond the injury. Despite tremendous advances in our understanding
of the mechanisms of axon growth, and of the inhibitory factors in the injured CNS
that prevent it, disappointingly little progress has been made in restoring function to
human patients with CNS injuries, such as spinal cord injury (SCI), through regenerative
therapies. Clearly, the large number of overlapping neuron-intrinsic and -extrinsic growth-
inhibitory factors attenuates the benefit of neutralizing any one target. More daunting is
the distances human axons would have to regenerate to reach some threshold number
of target neurons, e.g., those that occupy one complete spinal segment, compared to
the distances required in most experimental models, such as mice and rats. However,
the difficulties inherent in studying mechanisms of axon regeneration in the mature CNS
in vivo have caused researchers to rely heavily on extrapolation from studies of axon
regeneration in peripheral nerve, or of growth cone-mediated axon development in vitro
and in vivo. Unfortunately, evidence from several animal models, including the transected
lamprey spinal cord, has suggested important differences between regeneration of
mature CNS axons and growth of axons in peripheral nerve, or during embryonic
development. Specifically, long-distance regeneration of severed axons may not involve
the actin-myosin molecular motors that guide embryonic growth cones in developing
axons. Rather, non-growth cone-mediated axon elongation may be required to propel
injured axons in the mature CNS. If so, it may be necessary to use other experimental
models to promote regeneration that is sufficient to contact a critical number of target
neurons distal to a CNS lesion. This review examines the cytoskeletal underpinnings of
axon growth, focusing on the elongating axon tip, to gain insights into how CNS axons
respond to injury, and how this might affect the development of regenerative therapies
for SCI and other CNS injuries.
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INTRODUCTION

Traumatic spinal cord injury (SCI) leads to devastating and
persistent functional loss because damaged mammalian central
nervous system (CNS) axons typically fail to regenerate. To
restore lost function, injured axons must extend processes
across various distances to reconnect with distal targets or
form synaptic relays with interneuron populations. The growth
cone, a specialized sensory-motility structure characterized by its
distinctive distribution of actin, microtubule, and neurofilament
cytoskeletal proteins, is the site of tip-mediated axon extension
during development (Dent and Gertler, 2003; Figure 1). While
the role of the growth cone in developmental axon extension has
been studied extensively, its role in axon growth in response to
CNS injury remains an active area of investigation. This review
will focus on the cytoskeletal dynamics at the axon tip underlying
regenerative axon extension.

Immediately following traumatic injury, the first task
of the severed axon is to repair the axolemmal membrane
to restore homeostasis and limit the influx of toxic factors
from the extracellular environment. Membrane repair is
an active, calcium-driven, proteolytic process that exploits
the machinery of synaptic fusion to form a vesicle plug
(Strautman et al., 1990; Spira et al., 1993; Steinhardt et al.,
1994; Ziv and Spira, 1995; Howard et al., 1999; Spaeth et al.,
2012; Zuzek et al., 2013). Importantly, axon resealing is
not an all or nothing process but proceeds progressively
as the vesicle plug stabilizes, and increasingly smaller
molecules are excluded from the injured tip (Eddleman
et al., 2000; Lichstein et al., 2000). Evidence from in vitro
studies suggests the initial plug typically forms within
10–30 min after injury (Shi et al., 2000; McGill et al.,
2016). However, the specific kinetics of resealing ultimately
depends on multiple factors including species, neuron-type,
axon caliber, and distance to the axon injury from the
soma (McGill et al., 2016; Zhang et al., 2018). The calcium-
dependent proteolytic environment that drives membrane
resealing, in turn, is responsible for facilitating the dramatic
cytoskeletal depolymerization and subsequent repolymerization
needed to form a growth cone (Ziv and Spira, 1998;
Bradke et al., 2012).

ACTIN

Growth cones are characterized by the elaboration of filopodia
and lamellipodia; protrusive structures strictly dependent
on actin filament nucleation, polymerization, and turnover
(Figure 2). Although growth cones are required for axon
guidance, they are not necessarily required for axon extension
(Letourneau et al., 1987; Dent and Gertler, 2003). The inhibition
of the extension of axons from cultured cerebellar neurons in
response to actin filament depolymerizing drugs that collapse
growth cones is dependent on the culturing substratum (Abosch
and Lagenaur, 1993). Actin filament depolymerization does not
impact axon extension on substrata coated with cell adhesion
molecules such as L1 or P84, but strongly decreases extension on

FIGURE 1 | An example of the growth cone of a chicken embryonic sensory
axon in vitro (phase-contrast imaging). The peripheral domain of growth
cones consists of filopodia and flat lamellipodia. The central domain of growth
cones is the region where the axon shaft dilates giving rise to the main body
of the growth cone (approximated by the white dots). The central domain
contains most of the organelles found in growth cones and the plus tips of
axonal microtubules. The peripheral domain is supported by an underlying
actin filament cytoskeleton.

laminin and N-CAM. Embryonic sensory axons in vitro exhibit
a developmental stage dependence for actin filaments, and thus
growth cones, inmaintaining some level of axon extension (Jones
et al., 2006). Depolymerization of actin filaments in cultured
hippocampal neurons does not impair the formation of minor
processes, and axons are longer and extend at elevated rates in
the presence of actin filament inhibitors (Ruthel and Hollenbeck,
2000). However, these findings have been challenged by reports
suggesting that those inhibitors, namely cytochalasin E, reduced
but did not completely abolish F-actin assembly (Chia et al.,
2016). Ultimately, these studies indicate that the requirement for
growth cones and the actin filament cytoskeleton in regulating
the rate of axon extension is a complex issue and dependent
on both neuron-intrinsic and extrinsic factors. Whether the
growing tip of an axon should be called a ‘‘growth cone’’
despite the absence of filopodia, lamellipodia or an actin filament
cytoskeleton is a semantic point, but because axon growth
under different conditions may employ different mechanisms,
we refer to simple-looking ends of axons that are growing
without a prominent actin filament cytoskeleton as ‘‘growing
axon tips.’’

The vertebrate central nervous system undergoes a
developmental transition from being able to regenerate axons
to failing to regenerate. Extrinsic and intrinsic factors are
thought to contribute to this transition (Tedeschi and Bradke,
2017). Herein we focus on neuron-intrinsic factors related
to the cytoskeleton. The shapes of the growth cones of a
variety of neurons undergo developmental simplification
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FIGURE 2 | An example of the cytoskeleton of the chicken embryonic
sensory axon growth cone. Actin filaments and microtubules were labeled
using rhodamine-conjugated phalloidin and fluorescein-conjugated anti-alpha
tubulin antibodies, respectively. Bundles of aligned actin filaments form the
core of filopodia and meshworks of filaments support lamellipodia. The plus
tips of axonal microtubules splay apart as they enter the central domain of the
growth cone.

in vivo (Mason, 1985; Nordlander, 1987; Gorgels, 1991). This
phenomenon also has been established in vitro by comparing
the growth cones of the same population of neurons cultured
from different developmental ages (Argiro et al., 1984; Kleitman
and Johnson, 1989; Jones et al., 2006). The rates of filopodia
elongation at growth cones, which are considered to reflect net
polymerization of actin filaments at the tips of filopodia, also
decrease with the age of neurons (Argiro et al., 1985). Dorsal
root ganglion sensory neurons can be cultured from any age
animal. in vitro studies have determined that as the sensory
neuron ages, it undergoes a transition from forming one or two
axons, which then grow rapidly, to generating multiple shorter
axons, further emphasizing the intrinsic changes in axons and
growth cones as neurons follow a developmental program
(Smith and Skene, 1997). This program can be reversed by
subjecting the axons of the sensory neurons to a ‘‘conditioning
lesion’’ before culturing, indicating that the sensory neuron
can revert to an earlier developmental stage of axon growth
(Neumann and Woolf, 1999).

Growth Associated Protein 43 (GAP-43) is an important
regulator of growth cone elaboration, acting through the
regulation of the actin filament cytoskeleton (Denny, 2006).
The levels of neuronal GAP-43 decline with developmental age
(Jacobson et al., 1986). A conditioning injury to a peripheral
nerve before a subsequent injury results in increased expression
of GAP-43 and promotes sensory axon regeneration (Van der
Zee et al., 1989; Cafferty et al., 2004). Overexpression of GAP-43
and the related CAP-23 in adult sensory neurons promotes
sensory axon regeneration in the spinal cord (Bomze et al.,
2001). GAP-43 thus provides an example of how a regulator
of the actin filament cytoskeleton of growth cones undergoes

developmental downregulation that correlates with decreased
regenerative potential.

Cofilin and the related Actin Depolymerizing Factor (ADF)
regulate actin filament turnover by accelerating the rate of
filament severing, thus promoting the depolymerization of actin
monomers from the pointed ends of filaments (Fass et al.,
2004; Tanaka et al., 2018). A conditioning lesion increases the
activation of cofilin and cofilin is required for the promotion
of axon regeneration by the conditioning lesion (Tedeschi
et al., 2019). Overexpression of cofilin in non-injury-conditioned
neurons also promotes dorsal column axon regeneration after
an SCI (Tedeschi et al., 2019). As determined by point mutants
of cofilin, the actin severing activity of cofilin mediates the
regeneration-promoting effects. Studies using knockout neurons
showed that cofilin and ADF, which can have redundant
functions, both contribute to the reversal of the developmental
axon extension program established in adult sensory neurons by
a conditioning lesion. Overexpression of cofilin also promotes
the extension of axons on chondroitin sulfate proteoglycans
(CSPG) and Nogo-A, extracellular inhibitors of axon growth.
Thus, cofilin is emerging as an important regulator of both the
developmental switch in sensory axon growth pattern and the
regenerative competency of axons.

Regeneration of axons is impaired by the presence of multiple
extracellular inhibitory signals. While a full discussion of the
mechanisms mediating the inhibition of axon regeneration
by these signals is beyond the scope of this review, the
reader is directed toward reviews on these issues (Schwab and
Strittmatter, 2014; McKerracher and Rosen, 2015; Tran et al.,
2018). However, in congruence with the main themes addressed
herein, these inhibitors of axon regeneration decrease growth
cone complexity ranging from full collapse (loss of all filopodia
and lamellipodia) to causing the growth cone to act in a
‘‘dystrophic’ manner, characterized by attenuated formation and
elaboration of lamellipodia and filopodia (Li et al., 1996; Tom
et al., 2004; Kurihara et al., 2012; Manns et al., 2014; Sainath
et al., 2017). As noted in the first paragraph of this section,
axons can extend in the absence of growth cones, albeit in a
context-dependent manner. Thus, the mere attenuation of actin
filament dynamics by inhibitory signals is not likely to fully
explain their inhibitory effects. A major aspect of actin filament
biology in growth cones is to interact with the mechanoenzyme
myosin II to generate both pulling forces through substratum
attachment, promoting the advancement of the growth cone
at a normal rate, and to attenuate the forward advance of
microtubules required for axon extension (Bridgman et al.,
2001; Burnette et al., 2008; Schaefer et al., 2008). Inhibition of
myosin II activity decreases the rate of sensory axon extension
on laminin-coated substrata, which require myosin II-dependent
substratum attachment, but promotes axon extension on a
polylysine-coated substratum, which does not require myosin
II-dependent attachment, by promoting the advancement of
microtubules in growth cones (Turney and Bridgman, 2005;
Ketschek et al., 2007). Inhibition of myosin II also promotes the
ability of axons to extend on CSPG, inhibitors of axon extension
and regeneration, and to cross from a permissive substratum
onto a CSPG-coated substratum (Hur et al., 2011; Yu et al.,
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2012). In vitro, semaphorin 3A induces sensory growth cone
collapse, followed by axon retraction (Gallo, 2006; Brown et al.,
2009). The induction of growth cone collapse is independent
of myosin II, but the ensuing retraction requires myosin II
activity. Although growth cones collapse after treatment with
semaphorin 3A, the axon shaft responds by developing a novel
cytoskeletal organization consisting of actin filament bundles,
which likely serve as the substratum for the myosin II-based
force generation that drives subsequent retraction (Gallo, 2006;
Brown and Bridgman, 2009). These studies indicate that to
understand how axon extension-inhibiting signals impact the
function of the actin filament cytoskeleton, it is necessary to
consider not just the levels of actin filaments, but also the
organization of actin filaments and their distribution since form
and function are linked. Consistent with this notion, RhoA is
a GTPase that regulates the dynamics and organization of the
actin cytoskeleton and concurrently promotes myosin II activity
(Ridley, 1997; Somlyo and Somlyo, 2000; Dupraz et al., 2019).
RhoA is activated by and mediates, at least in part, the effects of a
variety of axon extension/regeneration inhibitory signals (Fujita
and Yamashita, 2014). Inhibition of RhoA signaling has axon
growth-promoting effects in vivo, and in vitro, promotes axon
extension on axon growth-inhibitory substrata. In the context
of semaphorin 3A, RhoA drives the formation of the axonal
actin filament bundles that are required for the subsequent
retraction of the axon (Gallo, 2006; Brown and Bridgman,
2009). Furthermore, activation of the RhoA pathway inhibits
cofilin, which results in the suppression of both the actin
filament-based structures that generate contractile forces for
axon extension and those that mediate the formation of filopodia
and lamellipodia (Bamburg et al., 1999). The coordinated
reorganization of the actin cytoskeleton, and the activation of
myosin II, set the tip of the axon in a contractile state, which
is functionally opposite to that required to promote extension
and guidance. It will be of interest to further understand
how regeneration-inhibiting signals impact the organization of
actin filaments in the growth cone and axon, and how these
organizational changes translate into inhibition of axon growth,
beyond the mere decrease in actin filament content of the
growth cone.

MICROTUBULES

The polymerization and transport of axonal microtubules
are necessary mechanistic aspects of axon extension (Dent
and Gertler, 2003). Within growth cones, the plus tips
of microtubules undergo dynamic instability and the tips
advance into the peripheral domain through polymerization.
Short microtubule ‘‘seeds’’ undergo long-distance transport
throughout the axon, and likely serve as the initial building blocks
for the formation of longer microtubules through subsequent
plus tip polymerization. Following polymerization of tubulin
dimers into the microtubule lattice, alpha-tubulin undergoes
multiple time-dependent post-translational modifications that
reflect the length of time that the dimer has been incorporated
into the microtubule lattice (e.g., acetylation and detyrosination),
and can have functional consequences on microtubules and

proteins that associate with microtubules (e.g., motor proteins;
for a comprehensive review see Song and Brady, 2015).

Given the fundamental role of microtubules in axon
elongation, they have been considered potential targets for
promoting axon regeneration. Although polymerization
of microtubules is the primary way that they promote
axon extension, initial studies sought to determine the
effects of pharmacological stabilization of microtubules on
axon regeneration. Taxol is a drug that has concentration-
dependent effects on microtubules (Singh et al., 2008). At
low concentrations it attenuates plus tips dynamic instability,
while at higher concentrations it can promote microtubule
plus tip polymerization. At high concentrations taxol also
stabilizes microtubules against a variety of depolymerization-
inducing insults. Treatment of spinal cord-injured rats
with taxol resulted in the promotion of axon regeneration
(Hellal et al., 2011). Taxol treatment also promoted the
regeneration of injured optic nerves (Sengottuvel et al.,
2011). However, the enhanced axon regeneration cannot be
ascribed exclusively to the direct effects of taxol on axonal
microtubules. The treatment also alters aspects of scar
formation and inflammation at the injury site (Hellal et al.,
2011; Sengottuvel et al., 2011). Regardless of the multiple
cellular sites of action, these studies determined that drugs
that impact microtubule stability and dynamics may have
therapeutic value in promoting axon regeneration. However,
these drugs can lead to peripheral neuropathy, a potential
major therapeutic caveat (Landowski et al., 2016; Tamburin
et al., 2019). Furthermore, in contrast to the beneficial effects
of taxol on CNS regeneration, treatment with taxol adversely
affected regeneration in peripheral nerves (Hsu et al., 2017).
Finally, microtubule dynamics are required for axon guidance.
Therefore, taxol treatments may well impair the guidance of
axons to appropriate targets, even if regeneration is promoted
(Liu and Dwyer, 2014).

Microtubules in axons are subject to the action of
microtubule-severing proteins (spastin, katanin, fidgetin;
Matamoros and Baas, 2016). These proteins bind to and
depolymerize microtubules, resulting in the formation of
microtubule fragments. Gene dosage analysis in Drosophila
indicates that normal axon regeneration requires normal levels
of spastin expression, and spastin may promote regeneration
through the regulation of endoplasmic reticulum (ER)
repositioning to the tip of regenerating axons (Stone et al.,
2012; Rao et al., 2016). The positioning of the ER at the axon
tip was reduced in sensory axons growing on CSPG in vitro,
emphasizing that ER is likely of significance to axon regeneration
(Sainath et al., 2017). Whether CSPG affects ER positioning
through spastin remains to be determined. Fidgetin is another
microtubule-severing protein that upon downregulation, can
promote axon extension in vitro on both permissive and
inhibitory substrata (Austin et al., 2017). Depletion of fidgetin
in adult sensory neurons in vivo promoted the entry of sensory
axons into the spinal cord after a dorsal root crush injury
(Austin et al., 2017). Collectively, these studies suggest that
microtubule-severing proteins play a role in axon regeneration,
likely through the regulation of the microtubule cytoskeleton
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and organelle positioning within axons, or through currently
unclear additional functions of these proteins.

Kinesin 5 is a microtubule motor protein that attenuates the
rate of axon extension (Myers and Baas, 2007). Pharmacological
inhibition of kinesin 5 also promotes axon extension on
CSPG in vitro and allows adult sensory axons to cross from
a permissive substratum onto one containing CSPG (Lin
et al., 2011). After a complete transection injury to the adult
spinal cord in vivo, administration of the kinesin-5 inhibitor
Monastrol, along with digestion of CSPG, promoted axon
regeneration into a graft but did not result in functional
improvement (Xu et al., 2015). Similarly, kinesin 12 has been
reported to reduce both developmental and regenerative axon
extension rates in zebrafish (Dong et al., 2019). In contrast,
kinesin 1 mutant zebrafish exhibit impaired regeneration of
peripheral axons (Ducommun Priest et al., 2019). Kinesin
1 mediates the anterograde transport of a variety of cargos,
including mitochondria. The targeting of mitochondria to
the tips of regenerating axons has emerged recently as a
fundamental aspect of axon extension and regeneration (Smith
and Gallo, 2018; Chamberlain and Sheng, 2019). The effects
of manipulating kinesin 1 activity on regeneration may thus
be attributable to dysregulation of axonal transport of required
organelles. Dynein is the motor protein that mediates retrograde
transport along axons (Olenick and Holzbaur, 2019). Zebrafish
loss-of-function dynein mutants exhibit impaired peripheral
axon regeneration that may be attributed to an impairment
of microtubule stabilization during regeneration (Ducommun
Priest et al., 2019). In addition to a role for dynein in
regulating microtubule stability during regeneration, dynein-
mediated retrograde transport also is involved in the regenerative
response of axons following injury through retrograde nuclear
signaling mechanisms (Hanz et al., 2003; Perlson et al., 2005;
Ben-Yaakov et al., 2012). The above studies highlight that
molecular motor proteins are emerging as potential targets for
the promotion of axon regeneration.

Cytoplasmic alpha-tubulin that is available for polymerization
into the microtubule lattice has a C-terminus tyrosine residue
that is subsequently enzymatically removed after the tubulin is
incorporation into the microtubule lattice (Fukushima et al.,
2009). This results in the dynamic plus ends of microtubules
exhibiting an enrichment in tyrosinated tubulin, while the
tubulin that has been incorporated previously into the lattice
of the microtubule has undergone detyrosination. Axon injury
increases the levels of tyrosinated tubulin at the injury site (Hall
et al., 1991; Mullins et al., 1994; Cho and Cavalli, 2012). Tubulin
tyrosine ligase (TTL) is the enzyme that adds the C-terminal
tyrosine to tubulin. In cultured adult sensory neurons, TTL is
required for the injury-induced increase in tyrosinated tubulin
levels, which in turn supports retrograde signaling that promotes
axon regeneration (Song et al., 2015). Pharmacological inhibition
of detyrosination in vivo also results in increased regeneration
after sciatic nerve crush injury (Gobrecht et al., 2016).

Alpha-tubulin also undergoes time-dependent acetylation
after it is polymerized into the microtubule lattice. The
result is that the dynamic plus ends of microtubules have
low levels of acetylated tubulin, while the main lattice of

previously polymerized microtubules exhibits high levels of
tubulin acetylation (Fukushima et al., 2009). The acetylation of
tubulin correlates with but does not appear to causally contribute
to, the stability (e.g., longevity) of microtubules (Perdiz et al.,
2011; Song and Brady, 2015; Baas et al., 2016). Nevertheless,
tubulin acetylation regulates a variety of microtubule-dependent
processes in cells, including the promotion of axonal transport
(Perdiz et al., 2011). Axon injury decreases tubulin acetylation
levels in regeneration-competent peripheral axons but not
central axons (Cho and Cavalli, 2012). Histone deacetylase 5
(HDAC5) acts as a tubulin deacetylase and mediates the injury-
induced deacetylation. One report indicated that inhibition
of HDACs impaired regeneration of peripheral sensory axons
following nerve crush in vitro and in vivo (Cho and Cavalli,
2012). However, this finding was challenged by a subsequent
study in which promoting acetylation by inhibiting HDAC5 or
overexpressing the alpha-tubulin acetyltransferase (αTAT1)
failed to promote sensory axon regeneration following sciatic
nerve crush in vivo (Lin et al., 2017). Interestingly, in that study,
axon extension was promoted by αTAT1 in vitro, but this was
independent of its transferase activity. Thus, the issue of whether
tubulin acetylation is involved in regulating axon regeneration
would benefit from the continued investigation.

NEUROFILAMENTS

The third and most abundant components of the neuronal
cytoskeleton are the neurofilaments (NFs), which provide
structural support and determine axon caliber (Hoffman et al.,
1987). While abundant in axons, NFs are sparse in dendrites and
neuronal cell bodies (Burton and Wentz, 1992). Within axons,
these 10 nm intermediate filaments are arranged in parallel
arrays spaced by side chains that extend perpendicular to the
filament core. In immature CNS neurons, NFs self-assemble
into heteropolymers of the light and medium molecular
mass NF proteins (NF-L and NF-M, respectively), and α-
internexin (Kaplan et al., 1990; Yuan et al., 2006). With
maturation, the heavy molecular mass NF protein (NF-H)
gradually becomes incorporated into the NFs (Carden et al.,
1987). NF subunits share a similar structure including a
variable N-terminal head domain, a C-terminal tail of varying
length, and a conserved central α-helical rod region, which
mediates self-assembly via coil-coil interactions (Yuan et al.,
2017). Both the head domain and C-terminal are subject to
post-translational modifications, including glycosylation and
phosphorylation. Extensive phosphorylation of lysine-serine-
proline repeats within the C-terminal tail is particularly
important in conveying stability to the filament. NF-H contains
over 40 of these repeat motifs, and this is associated with
enhanced NF stability and loss of dynamism as the neuron
matures. Remarkably, heavily phosphorylated NFs have an
in vivo half-life estimated at approximately 55 days (Nixon and
Logvinenko, 1986). Although, NFs are often considered obligate
heteropolymers, NF-L, α-Internexin, and a 5th NF subunit found
exclusively in the PNS, type III peripherin, are capable of forming
homopolymeric filaments under some conditions (Carter et al.,
1998; Beaulieu et al., 1999; Yuan et al., 2006).
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The role of NFs in axon regeneration remains unclear.
Immediately after injury, NF expression is suppressed but
recovers among neurons undergoing successful regeneration
(Hoffman and Cleveland, 1988; Muma et al., 1990; McKerracher
et al., 1993; Jacobs et al., 1997; Gervasi et al., 2003). Indeed,
during active regeneration, NF subunit mRNA levels often
exceed levels observed in uninjured neurons and maybe
more translationally active (Tesser et al., 1986; Gervasi et al.,
2003; Ananthakrishnan and Szaro, 2009). The purpose of this
transient reduction in NF expression is unknown but may
serve to enhance cytoskeleton dynamics in the injured axon,
particularly the infiltration of tubulin into the growth cone
(Oblinger et al., 1989; Tetzlaff et al., 1996). Alternatively,
it has been suggested that changes in NF expression after
injury may represent an attempt at the recapitulation, albeit
unsuccessful among CNS neurons, of the embryonic axon
growth program, where triplet NF proteins are suppressed
in favor of other intermediate filaments (Szaro and Strong,
2010). Interestingly, NF-L knockout mice, which co-experience
precipitous declines in NF-M and NF-H levels, develop normally
but experience impaired PNS axon regeneration after sciatic
or facial nerve crush (Zhu et al., 1997). Similarly, inhibiting
NF expression in other models reduces regeneration efficiency
but does not fully abolish outgrowth. Notably, in dissociated
embryonic frog (Xenopus laevis) spinal cord culture, inhibition
of NF-M reduced the time neurites spent actively growing
but did not alter outgrowth velocity (Walker et al., 2001).
In lampreys, which undergo robust axon regeneration after
a complete SCI, in vivo inhibition of the lamprey NF-M-like
homolog, NF180, reduced the number of axons regenerating
5 mm beyond the SCI at 4 and 9 weeks post-injury (Zhang
et al., 2015). However, regeneration was not grossly inhibited
and the initial axon retraction after injury was unaltered.
Notably, NF-H overexpression attenuated neurite outgrowth
in differentiated Nb2a/d1 neuroblastoma cells (Boumil et al.,
2015). This was likely the result of increased NF stability
since outgrowth was unaffected in mutants lacking the NF-H
C-terminal. Interestingly, inducing expression of vimentin,
another intermediate filament expressed predominately by
neural precursors, promoted neurite outgrowth in these same
cells (Dubey et al., 2004). Ultimately, the role of the NF subunits
in promoting or inhibiting regeneration may be due, in part, to
their net effects on cytoskeletal dynamics, with excess stability
unfavorable to outgrowth.

Although in vitro, growth cones may form within hundreds
of micrometers from the neuronal cell body, in vivo growth
cones often form centimeters, or even meters away. Thus, the
question arises, how do the NFs arrive in the distal axon? NFs are
actively transported, bidirectionally, along with the microtubule
network (Helfand et al., 2003; Uchida and Brown, 2004), and it
was originally believed that NFs were synthesized in the soma,
then anterogradely transported, whether as individual subunits
or partially assembled, to where they were needed, with excess
NF subunits being bulk degraded in the axon terminal. However,
increasingly convincing evidence suggests that NF subunits also
are synthesized locally within the axon. Early studies noted that
the NF assembly in the distal axon appeared independent of

NF subunit synthesis in the soma (Tetzlaff and Bisby, 1989).
More recently, studies have profiled NF mRNAs in the axon
and demonstrated that they are preferentially enriched in the
growing tips (including growth cones) of axons (Zheng et al.,
2001; Lee and Hollenbeck, 2003; Baraban et al., 2013; Wang
et al., 2014; Jin et al., 2016). Local NF protein synthesis has
been demonstrated in vitro and EM analysis suggests synthetic
capability is also present in axons in vivo (Zheng et al.,
2001; Lee and Hollenbeck, 2003; Jin et al., 2016). Interestingly,
in vivo evidence from lampreys suggests that NF mRNAs are
enriched selectively in actively elongating axon tips, suggesting
that local NF synthesis may contribute directly to regeneration
(Jin et al., 2016).

GROWTH CONES VS.
NEUROFILAMENT-PACKED AXON TIPS

Due to their association with cytoskeletal stability, NFs were
initially not believed to contribute significantly to growth
cone dynamics. Indeed, early studies suggested that bulk
accumulation of NFs in axon terminals was prevented by
calcium-mediated proteolysis (Roots, 1983). Nevertheless, it has
been shown that a dynamic population of NFs resides within
the central region of growth cones (Tennyson, 1970; Chan
et al., 2003). Moreover, in vitro experiments have demonstrated
that compared to the trailing axon shaft, growth cones were
more highly enriched in newly synthesized NF subunits (Chan
et al., 2003). These newly synthesized subunits were believed
to participate in regional NF formation, to provide structural
support to the elongating axon. However, evidence from lower
vertebrates, especially lampreys, raises the possibility that NFs
play a more direct role in axon outgrowth. Lamprey CNS
axons, despite their impressive ability to regenerate, do not
form canonical growth cones after injury (Lurie et al., 1994;
Figure 3). Their relatively simple axon tips lack filopodia
and lamellipodia and contain little F-actin (Hall et al., 1997;
Jacobs et al., 1997). Instead, they are densely packed with
NFs, whose expression patterns are correlated with regeneration
(Lurie et al., 1994; Jacobs et al., 1997). Thus, an alternate
mechanism for axon elongation has been hypothesized in this
model. Rather than canonical actin-microtubule treadmilling,
protrusive forces from NF assembly have been postulated to
drive axon outgrowth (Zhang et al., 2005). Although intriguing,
evidence supporting this hypothesis as a general mechanism
of axon elongation has been slow to accumulate. In part, this
may be due to the difficulty of imaging regenerating axons
in vivo, forcing many studies of mammalian growth cones
to use in vitro models. The resulting short-distance neurite
outgrowth observed in these systems may be mechanistically
distinct from sustained long-distance regeneration in vivo.
Support for this hypothesis can be found in embryonic
DRG cultures, in which inhibiting F-actin polymerization
with cytochalasin B, collapsed the filopodia and lamellipodia
but did not abolish neurite outgrowth—although subsequent
reports have questioned whether F-actin assembly was truly
abolished or merely severely reduced (Marsh and Letourneau,
1984; Letourneau et al., 1987; Chia et al., 2016). Of interest,
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FIGURE 3 | An example of lamprey neurofilament-packed axon tips.
(A) Representative dye-labeled lamprey axon tips (∗) in cleared wholemount
spinal cord, 10 days post-spinal cord injury (SCI). Note the absence of
filopodia and lamellipodia. (B) Schematic of a typical regenerating lamprey
axon tip. These tips contain little F-actin but are packed with neurofilaments
(Lurie et al., 1994; Jin et al., 2009). Emerging from the distal axon shaft, the
tip consists of an enlarged body and a finger-like protrusion, which in some
tips contains structures resembling rough endoplasmic reticulum (RER; Jin
et al., 2016). In actively growing tips, the distal region of the tip is often filled
with numerous vesicle like-inclusions decorated by F-actin (Jin et al., 2009).
Note, the shapes of the tips vary in vivo, likely relating to whether the tip is
elongating or retracting, but consistently lack filopodia and lamellipodia.

even in the regenerating lamprey axons that lack filopodia
and lamellipodia, and have little F-actin, the growing tips
contain numerous vesicle-like inclusions, and these appear to
be surrounded by a layer of F-actin (Jin et al., 2009). These
inclusions may provide materials to extend the axolemma during
regeneration, in a membrane recycling process that involves
sub-axolemmal F-actin (Prager-Khoutorsky and Spira, 2009;
Bloom and Morgan, 2011).

The question arises whether the absence of typical growth
cones in severed lamprey spinal cord axons represents a general
difference between embryonic axons and axons in cell cultures
on the one hand, and regenerating CNS axons in vivo on the
other, or merely a peculiarity of lamprey neurons. Unfortunately,
this is difficult to test, because lamprey neurons have proven
challenging to culture reliably for more than a few hours.

Nevertheless, in those in vitro studies that had some success,
neurite tips assumed varying morphologies (Ryan et al., 2007;
Pale et al., 2013). While some neurites had bulb-like endings
resembling lamprey axon tips in vivo, others developed typical-
looking growth cones, with structures that look like filopodia
and lamellipodia. The molecular/cytoskeletal contents of these
growth cones have not been studied, and it also is unlikely that
the cultured neurons include the large reticulospinal neurons
typically imaged in vivo. Nevertheless, those results support the
hypothesis that the morphological differences between growth
cones and growing CNS axon tips in the intact animal reflect in
part the differences between in vitro and in vivo environmental
conditions, associated with a developmental loss of the ability to
form growth cones in most post-natal neurons. If standardized,
an in vitro lamprey neuronmodel would be very useful to unravel
the conditions determining the formation of canonical growth
cones or neurofilament-packed tips and, critically, more fully
elucidate the molecular mechanisms underlying neurofilament-
associated axon outgrowth. The distinction could be important
if the growth cone represents the anatomical substrate for axon
guidance over short distances, perhaps more akin to collateral
sprouting in the CNS, often referred to as ‘‘axonal plasticity,’’
whereas the kind of long-distance regeneration that would
be needed to restore connections in many instances of CNS
injury might require a different, more sustained mechanism of
axon elongation.

DISCUSSION

To recover lost function, injured axons must regenerate.
However, in the mammalian CNS, unlike the PNS or the CNS
of lower vertebrates, regrowth stalls. In part, this failure is due
to inefficient cytoskeletal dynamics at the axon tip. Elucidating
the mechanisms by which cytoskeletal rearrangements mediate
axon outgrowth is essential to identifying therapeutic targets to
promote sustained regeneration after injury. Despite substantial
advances in our understanding of these mechanisms, many
questions have yet to be fully answered. These questions include
the roles of protein transport and local synthesis in providing
cytoskeletal components to distal axon regions, how the balance
between filament stability and dynamism shapes outgrowth,
whether alternate mechanisms to actin treadmilling may mediate
axon extension during regeneration, and how the mechanisms
underlying regeneration of axons in the injured CNS differ
from those that mediate collateral sprouting by neighboring
spared axons.

It is clear that the growth cone and its actin filament
cytoskeleton are critically important to axon growth in early
development, and are implicated in axon growth in the CNS
after injury. However, as noted above, the growth cone is
not essential to axon elongation in all circumstances, and it
is not clear that growth cones could underlie longer-distance
regeneration of axons after injury in the mature CNS, as
seen after spinal cord transection in the lamprey (Lurie et al.,
1994; Jacobs et al., 1997; Jin et al., 2009). Thus, environmental
factors that inhibit axon growth in mammals (e.g., Nogo),
and trigger growth cone collapse in vitro, maybe suppressing
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collateral sprouting rather than true axon regeneration in vivo
(Lee et al., 2009). This is particularly relevant to mammalian
studies since it often is difficult to distinguish regeneration
of injured axons from collateral sprouting by uninjured
neighboring axons. Thus, cautious investigators often use the
more general term ‘‘axonal plasticity’’ (Blesch and Tuszynski,
2009). While canonical growth cones and neurofilament-
packed, vesicle-containing growing tips may represent entirely
distinct mechanisms of axon regeneration, it also may be
possible that they represent opposite ends of a spectrum
of regenerating axon morphologies, depending on neuron-
intrinsic and environmental cues, and the stage of outgrowth
(e.g., pathfinding vs. elongation).
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