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Abstract. Viral infections constitute a fundamental and 
continuous challenge for the global scientific and medical 
community, as highlighted by the ongoing COVID‑19 
pandemic. In combination with prophylactic vaccines, the 
development of safe and effective antiviral drugs remains 
a pressing need for the effective management of rare and 
common pathogenic viruses. The design of potent antivi‑
rals can be informed by the study of the three‑dimensional 
structure of viral protein targets. Structure‑based design 
of antivirals in silico provides a solution to the arduous 
and costly process of conventional drug development 
pipelines. Furthermore, rapid advances in high‑throughput 
computing, along with the growth of available biomolecular 
and biochemical data, enable the development of novel 
computational pipelines in the hunt of antivirals. The 
incorporation of modern methods, such as deep‑learning 
and artificial intelligence, has the potential to revolutionize 
the structure‑based design and repurposing of antiviral 
compounds, with minimal side effects and high efficacy. 
The present review aims to provide an outline of both tradi‑
tional computational drug design and emerging, high‑level 
computing strategies.
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1. Introduction

In the last 60 years or so, the world has faced several viral 
pandemics, from the influenza pandemic in the late sixties, 
to the human immunodeficiency virus (HIV) epidemic in the 
eighties and lastly, to the COVID‑19 pandemic that continues 
to challenge communities on a global scale today (1,2). 
By November 2021, >5 million people have lost their lives 
following infection by severe acute respiratory syndrome coro‑
navirus 2 (SARS CoV‑2) and many more face complications 
after surviving COVID‑19 (3). As the pandemic unfolded, the 
scientific community was rapidly met with two pressing needs, 
that of a prophylactic vaccine, to induce immunity within the 
populations, and that of an effective drug against the deadly 
virus. The COVID‑19 example effectively reaffirmed an 
existing challenge; the development or the repurposing of safe 
and effective antivirals is not an easy task.

In contrast to the development of antiviral drugs, the 
advancement of antibiotics was fairly quick, with the discovery 
of penicillin by Fleming in 1929 (4) and the effective isolation 
of current staples such as tetracycline and streptomycin in the 
1950's (5,6). In 1963, the development of the first antiviral drug 
for human use, idoxuridine, marked the beginning of a revolu‑
tion against infectious diseases of viral etiology (7). Within 
the following 50 years, however, less than a hundred antiviral 
drugs were approved for use against a number of viruses, such 
as HIV, hepatitis C virus, human influenza virus, hepatitis C 
virus (HBV), respiratory syncytial virus, herpes simplex virus 
(HSV), varicella‑zoster virus and human papilloma virus (7). 
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This limited number, when compared to the thousands of 
investigational antiviral compounds, is a testament to the strict 
standards that are applied to the process of antiviral drug 
development (8).

An inherent challenge regarding antiviral drugs stems 
from the very nature of the viral life cycle. Viruses, as obligate 
intracellular parasites, hijack the biochemical processes of the 
host cells in order to traverse fundamental stages of their life 
cycle, from the replication of their genome to the assembly of 
new virions within the infected cells (9). Therefore, antiviral 
drugs may have adverse, parallel effects on the host organism, 
in our case the human system, and lead to phenomenon of 
toxicity (10,11). As a result, during the development of anti‑
viral drugs, the target of choice is required to be as specific 
and as unrelated to the host system as possible, to ensure 
both increased selectivity and minimization of potential side 
effects (12).

The viral life cycle can be generally broken down to the 
following main steps: The first step involves the attachment of 
the viral particle to a host cell and the subsequent penetration. 
The second step involves the process of uncoating and replica‑
tion of the viral DNA or RNA genome, which, in conjunction 
with the production of necessary viral proteins, leads to the 
assembly of new virions, which are eventually released from 
the infected cell in various potential manners (13). The search 
for candidate targets of antivirals can thus be guided by the 
sphere of knowledge of the multi‑faceted viral life cycle and 
its particularities, such as in the case of HIV, an RNA virus 
that replicates through a cDNA intermediate (14,15). By exten‑
sion, the viral enzyme that carries out the process of reverse 
transcription, named reverse transcriptase, constitutes an 
attractive and currently used target for the successful design 
of anti‑HIV drugs, such as the nucleoside analogues didano‑
sine, zidovudine and lamivudine (16). Generally, nucleoside 
analogues are an important group of antiviral agents against 
common viruses, such as HBV or HSV, and are believed to 
hinder viral replication in a variety of ways, by competitive 
enzyme inhibition or premature termination of the synthesis 
of the new DNA chain (17).

2. Structure‑based drug design

Structure‑based drug design has grown into a staple method 
in the discovery and development of drugs (18). This is largely 
owing to the fact that conventional drug discovery pipelines 
are challenged by a significant demand for labor and time, as 
well as by rising costs (19). Computational drug design can 
effectively lower these costs and accelerate the process of the 
development or repurposing of drugs; time is a crucial factor 
in the case of viral outbreaks, as evidenced by the current 
COVID‑19 pandemic and the frantic search for therapeutic 
targets and effective drugs against SARS‑CoV‑2 (20,21).

In broad strokes, structure‑based design of antivirals can be 
divided into three major sections: i) Identifying biomolecules of 
interest, such as viral enzymes or viral structural components; 
ii) determining the three‑dimensional structure and thereby 
the function of the targets; and iii) designing the drug molecule 
that would offer a therapeutic result, through accurate estima‑
tion and evaluation of the affinity of the ligand to the target 
protein (20,22). Usually, the three‑dimensional structure of 

the biomolecular target is elucidated through nuclear magnetic 
resonance, cryogenic electron microscopy and X‑ray crystal‑
lography experiments (23). Modern high‑throughput methods 
have enabled the generation of ample structural data related 
to viral structural and non‑structural proteins, which can be 
obtained through public databases such as the Protein Data 
Bank (PDB) (24). Homology modeling techniques, which 
exploit the fact that structure is more associated with the 
function of a protein in comparison to its sequence, can be 
employed in the case of an unsolved target‑structure to carry 
out a structure prediction based on one or more experimentally 
determined template structures (25‑28).

Ideally, the macromolecular target for structure‑based 
drug design is a principal component of the viral life cycle and 
binds another molecule, usually a smaller substrate, to carry 
out a specific process (29). Viral non‑structural proteins are 
thus an appropriate candidate since they are crucial for the 
replication of the viral genome and bind specific molecules in 
their active sites (29,30). Furthermore, certain enzymes exhibit 
conserved domains and motifs across viruses that belong to the 
same family or genus, such as in the case of RNA‑dependent 
RNA polymerase in the Flaviviridae viral family (31,32). This 
high level of conservation enables the design of ‘umbrella’ 
antivirals, which could be effective against multiple viruses. 
In the case of antivirals that target viral enzymes, a standard 
mode of action is the inhibition of the enzymatic process (33). 
For example, azidothymidine, a drug used against HIV, which 
inhibits the process of reverse transcription, was designed to 
target the process of reverse transcription in avian retroviruses 
and was eventually repurposed towards the treatment of 
HIV (9).

Structure‑based methods for antiviral design encompass 
processes like de novo drug design, in which the candidate 
antiviral molecule is designed from the start through a 
growing or linking method, virtual screening, which refers to 
the identification of active molecules out of a virtual library 
of candidate compounds, and ligand optimization (34). In the 
case of structure‑based virtual screening, the computational 
approach of molecular docking constitutes a fundamental 
technique (35). In order to identify the optimal binding modes 
of candidate molecules in the binding cavities of the target, 
an assortment of available docking software programs can be 
employed, such as Autodock and RosettaLigand (36,37). These 
programs allow the ranking of binding positions on the basis 
of noncovalent interactions, while also enabling the visualiza‑
tion of the interaction between ligand and target on a structural 
level (36). The candidate molecules that exhibit optimal scores 
can then be synthesized in order to measure in vitro elements, 
such as half maximal in inhibitory concentrations, and move 
onto subsequent optimization steps, minimizing the cost until 
the lead selection step with the use of in silico methods (18). 
Molecular dynamics simulations, when incorporated into a 
structure‑based drug design methodology, allow an accurate 
study of the drug‑target model systems, accounting for the 
flexibility of both the ligand and the receptor (38). During 
molecular dynamics, the configurations of the system can 
be freely explored and macroscopic properties can be 
evaluated (39). Overall, the in silico structure‑based design of 
antiviral compounds is a dynamic and evolving process, the 
components of which can be modified to fit the requirements 
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of the viral‑host system under investigation (40,41). This 
inherent flexibility can thus accelerate and elevate the process 
of antiviral drug discovery before the in vitro setting has been 
reached.

As with any approach, in silico structure‑based drug 
design exhibits limitations. The quality of the data on which 
the computational methods are applied constitutes a decisive 
factor in the success of molecule design (42). Efficient use 
of a target biomolecule requires high‑resolution data of its 
structure, which may not always be available. Furthermore, 
knowledge databases, which serve as a source of both target 
molecules and candidate molecules, may contain errors (42). 
Lastly, in structure‑based virtual screening, scoring functions 
and other metrics employed to calculate biomolecule‑ligand 
complexes suffer from variance in performance across 
different biomolecule systems (43).

3. Novel computational pipelines

In addition to the aforementioned successfully implemented 
methods, the rapid developments in genomics, big data and 
computational systems within the last decade pave the way for 
new opportunities in the structure‑based design of antivirals. 
Automation has revolutionized the processes of standard 
experimental procedures such as whole genome and whole 
exome sequencing, accelerating the generation of scientific 
data (44). Modern databases house invaluable information 
related to fundamental components of the viral life cycle, 
such as biomolecular structures, viral genome and protein 
sequences, and host‑pathogen interaction networks, providing 
the fundamental basis for the identification of novel targets of 
antivirals, as well as for the effective design of the antiviral 
compounds themselves (45,46).

The big data era in science is marked by the continuous 
generation of massive amounts of data, which in turn require 
novel computational methods for their successful utilization. 
High‑performance computing has set the foundation for the 
emergence of machine learning (ML) methods, which employ 
algorithms for the efficient analysis of multidimensional 
data, such as viral genomics and proteomics, the subsequent 
extraction of important features, and finally, the construc‑
tion of useful predictive and analytical models (47). Neural 
networks, which are essentially mathematical models aimed at 
data analysis, can provide the underlying architecture for the 
development of cutting‑edge, deep‑learning models (48).

Antiviral peptides are a promising class of molecules 
that may serve as a basis for the development of novel anti‑
viral drugs (49). Thus, modern computational frameworks 
are required for the accurate prediction of antiviral activity 
exhibited by candidate therapeutic peptides. Towards that 
end, Timmons and Hewage (50) developed ENNAVIA, 
a classifier based on neural networks, which enables the 
screening of available peptides for their potential activity, 
as well as the informed design of novel antiviral peptides. 
Furthermore, natural compounds, such as phytochemicals, 
have been the subject of similar screening studies, with the 
aim of identifying compounds with significant antiviral 
action (51). In such a study, SARS‑CoV‑2 main protease and 
angiotensin‑converting enzyme 2 were elected as molecular 
targets, against which a library of natural compounds was 

screened through the structure‑based method of molecular 
docking (52).

Deep learning, a subset of ML, stems from conven‑
tional neural network systems, and its high rates of success 
have cemented its status among the emerging research 
trends (53). Deep learning employs artificial neural networks 
in a multi‑layered architecture, where each layer can contain 
different methods of extracting feature representations (54). 
Alphafold2 is an innovative neural network‑based model that 
revolutionized the field of computational structure predictions, 
exhibiting marked accuracy and efficacy during CASP14, the 
14th Critical Assessment of Structural Prediction competi‑
tion (55). The Alphafold2‑modeled human proteome, as well 
proteins from 20 other organisms, have been made available in 
the AlphaFold Protein Structure Database (56). The next step 
came as ColabFold, which is described in a recent preprint as 
a novel framework for the prediction of protein and complex 
structures (57). ColabFold implements the cutting‑edge neural 
network basis of AlphaFold2, while allowing the input of user 
protein sequences for the execution of the structural predic‑
tion (57). It could therefore be theorized that deep neural 
networks may steadily replace standard homology modeling 
approaches for the accurate prediction of unknown protein 
structures.

Moreover, during the early stages of the COVID‑19 
pandemic, AlphaFold2 generated models of then‑unsolved 
SARS‑CoV‑2 proteins, such as its main protease, which were 
later found to be in close agreement with the experimen‑
tally determined structures (58). Therefore, in the context 
of future potential viral pandemics, deep learning models 
have the potential to act as a first ‘barricade’. Artificial intel‑
ligence models such as Alphafold2 could readily generate 
structures of viral‑encoded protein sequences to be used as 
targets for virtual screening experiments and de novo drug 
design, potentially saving lives. Aside from the construc‑
tion of novel predictive models, deep‑learning methods can 
be implemented in stages of conventional structure‑based 
antiviral drug design. DeepScore, a deep learning‑based 
model, constructs target‑specific scoring functions, which can 
generate better results in structure‑based virtual screening 
experiments in comparison to conventional, universal scoring 
functions (59). Lastly, deep learning and ML approaches have 
been implemented in the hunt for novel antiviral drugs, acting 
as a driving force in the drug discovery process against notable 
viral pathogens such as SARS‑CoV‑2, Yellow Fever Virus 
and Ebola virus (60‑62). A notable issue when implementing 
ML models that carry out binding affinity predictions for 
the discovery of antivirals is the sturdy evaluation of model 
performance. Francoeur et al (63) provided a potential solu‑
tion to this problem with CrossDocked2020, a dataset of 
>22 million poses of ligands docked into binding pockets as 
they are defined in the PDB. To demonstrate the potential of the 
dataset as a standard tool to benchmark predictive models of 
target‑ligand binding affinity, the study additionally described 
the evaluation of its own convolutional neural network models.

4. Conclusions

Traditional wet‑lab studies require significant time and 
resources for the successful development of novel antiviral 
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compounds. Viral outbreaks and pandemics, on the other 
hand, are fast to unfold and can claim millions of lives before 
mechanisms of response are activated. In the face of this chal‑
lenge, in silico methods of structure‑based drug design could 
inform the rapid development of novel antivirals and the effi‑
cient screening of approved drugs for repurposing. The core 
process of structure‑based antiviral design can be elevated 
through the use of ‘intelligent’ computational approaches, 
such as multi‑layered neural networks. Taken together, these 
approaches can aid the development of highly specific, 
non‑cytotoxic lead antivirals, and fortify public health and 
safety.
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