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Abstract

Understanding the conditionally-dependent clinical variables that drive cardiovascular health 

outcomes is a major challenge for precision medicine. Here, we deploy a recently developed 

massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity 

discovery (PBC), to analyze Electronic Health Records (EHRs) from the University of 

Utah and Primary Children’s Hospital (over 1.6 million patients and 77 million visits) for 

comorbid diagnoses, procedures, and medications. Using explainable Artificial Intelligence 

(AI) methodologies, we then tease apart the intertwined, conditionally-dependent impacts 

of comorbid conditions and demography upon cardiovascular health, focusing on the key 

areas of heart transplant, sinoatrial node dysfunction and various forms of congenital heart 

disease. The resulting multimorbidity networks make possible wide-ranging explorations of the 

comorbid and demographic landscapes surrounding these cardiovascular outcomes, and can be 

distributed as web-based tools for further community-based outcomes research. The ability to 

transform enormous collections of EHRs into compact, portable tools devoid of Protected Health 

Information solves many of the legal, technological, and data-scientific challenges associated with 

large-scale EHR analyses.

Introduction

The application of data-science methods to electronic health record (EHR) databases 

promises a new, global perspective on human health, with widespread applications for 

outcomes research and precision medicine initiatives. However, unmet technological 

challenges still exist [1–3][. One is the need for improved means for ab initio discovery 

of comorbid clinical variables in the context of confounding demographic variables at scale. 

Moreover, how best to tease apart the intertwined impacts of multiple comorbidities and 

demographic variables on patient health remains a daunting challenge [1, 3–9].

We used a massively-scalable comorbidity discovery method called Poisson Binomial based 

Comorbidity (PBC) discovery [10] to search Electronic Health Records (EHRs) from the 

University of Utah and Primary Children’s Hospital for comorbid diagnoses, procedures, 

and medications. In this context, we refer to co-occurring medical diagnoses, procedures 

and medications using the single blanket term, comorbidity. PBC can also discover temporal 

relationships and quantify transition rates between various comorbidities. The result is 

a disease network, devoid of Protected Health Information (PHI), that is well-suited for 

powering downstream outcomes research.

Although comorbidity discovery is a necessary first step towards enabling outcomes 

research, it is not an end in itself. Comorbidities do not exist as isolated pairs, rather 
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they combine to create a complex web of influence on any given outcome. While PBC 

is powered to discover that web, harnessing it for outcomes research requires a separate 

computational machinery, one capable of calculating the joint contributions of multiple, 

conditionally dependent variables on an outcome, so called multimorbidity calculations 

[1,3,11–13]. Moreover, because researchers seek not merely to predict outcomes, but also 

to measure the contributions of factors driving them, ‘explainable’ solutions [14–22], rather 

than black box approaches are required. We have adapted Probabilistic Graphical Models 

(PGMs) [2,22–27] to address these needs.

PGMs are well suited for outcomes research. Contrary to other methods, e.g. generalized 

linear models (with or without mixed effects), PGMs are capable of: (1) discovering 

and modelling any number of multilevel dependencies between variables, (2) capturing 

non-additive or non-multiplicative interactions, and (3) their application does not require 

excluding nor imputing missing data [28]. Moreover, PGMs model the full joint probability 

function governing relationships in the data, and thus do not necessitate a dichotomy 

between response and input variables. Rather, PGMs are capable of answering a prediction 

query for any variables conditioned on any set of inputs included in the model.

Using these computational technologies, we mined the EHRs of over 1.6 million University 

of Utah and Primary Children’s Hospital patients, including over 500,000 mother-child 

pairs, for comorbid diagnoses, procedures, medications, and lab tests driving diverse 

cardiovascular health outcomes, focusing on three areas: heart transplant, sinoatrial 

node dysfunction, and congenital heart disease. Our results illuminate the comorbid 

and demographic landscapes surrounding these key cardiovascular outcomes in the US 

intermountain west, and demonstrate how our approach can inform health care disparities 

with precise, quantitative results in the context of a specific health care system.

Results

PBC is well powered for discovery of cardiovascular comorbidities

Table 1 demonstrates the utility of the PBC [10] approach for discovery, by comparing the 

power of PBC versus a standard stratification approach (followed by χ2) to detect the well 

documented comorbid relationship between atrial fibrillation (AF) and acute cerebrovascular 

disease (stroke) [29,30]. Table 1 provides a power analysis as a function of corpus size 

and number of demographic variables. The effects of stratifying the data for χ2 analysis, 

versus adding them to the PBC calculation, can be observed as one proceeds down the table 

columns.

Results for three different starting cohort sizes are shown. Note how stratification lowers 

the strength of p-values as a function of the size of the stratum. This effect is exacerbated 

when more than a few potentially confounding variables are controlled for, and stratification 

quickly results in cohorts that are too small for discovery activities, as the comorbidities 

fail to achieve statistical significance. For example, using a starting corpus of 9,525 records, 

stratification followed by χ2 analysis fails to detect the well-known comorbid relationship 

between AF and Stroke for female patients aged 50–59 when white ancestry is included 

Wesołowski et al. Page 3

PLOS Digit Health. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the stratum description. By contrast, the PBC approach maintains power across all 

comparisons. For more on these points, see [10].

Comorbidities of heart transplant

We evaluated every pairwise combination of diagnoses, procedures, and medications 

mentioned in our EHR corpus for comorbid associations, using PBC [10] to adjust on a 

patient-by-patient basis for the potentially confounding demographic variables shown in Fig 

1. Fig 2A summarizes the results of this computation as a patient disease network. The 

network provides a visual overview of the entire EHR corpus, wherein every node (state) 

is a diagnosis, procedure, or medication, and edges denote Bonferroni significant comorbid 

relations between terms. Given a node of interest, heart transplant, for example, its comorbid 

diagnoses and associated procedures and medications can be recovered by following edges 

to that node back to their terms.

The transition probabilities associated with each edge provide means to calculate the 

pairwise contributions of each term to the outcome’s observed (marginal) frequency in 

the EHR corpus. This provides a way to intuit an outcome’s comorbidity landscape, and 

calculate the expected flux of patients through that region of the network. These patient 

‘trajectories’ provide a framework for cost prediction and service allocation activities. For 

example, the trajectory for adult heart transplant (2B) tracks the time course of diagnoses, 

procedures and medication use preceding and following heart transplantation. Thus, one 

can follow the trajectory of ischemic heart disease, flowing through the diagnosis of 

heart failure, cardiogenic shock, administration of the vasoactive medication milrinone, and 

culminating in heart transplantation with subsequent downstream complications. Crucially, 

this methodology provides precise measures of patient flux between these nodes.

Multimorbidity network for heart transplant supports conditional outcome risk calculations

Although trajectories provide intuitive and useful overviews of the comorbidity landscape, 

effective outcomes research requires calculating the joint contributions of conditionally 

dependent multimorbid terms on an outcome. We leverage Probabilistic Graphical Models 

as an explainable AI solution for this computationally intensive task. Fig 3A illustrates 

a multimorbidity network derived from a temporalized Probabilistic Graphical Model for 

the predisposing comorbidities of adult heart transplant presented in Fig 2B. Because 

the edges in a multimorbidity network denote conditional dependencies between terms, 

rather than transition probabilities, the multimorbidity network’s topology is necessarily 

different from the trajectory topology shown in Fig 2B. The PGM provides easy means to 

calculate outcomes risk for any combination of variables in it. For example, a prior diagnosis 

of cardiomyopathy (non-ischemic) increases the risk of heart transplantation 86±35 fold, 

whereas a diagnosis of viral myocarditis confers a 59±21 fold increase in risk. The strongest 

single variable for heart transplant risk is the use of the vasoactive medication milrinone, 

which increases risk 175±30 fold. Note that we are not suggesting milrinone causes heart 

transplant—rather that the prescription of milrinone in a patient’s medical record is a 

powerful predictor of future heart transplant.
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The utility of PGMs for outcomes research is best illustrated by their application to 

problems of complex multimorbid outcomes analyses, where conditional dependencies 

of these variables interact to further modulate risk for the outcome under study. For 

example, we can explore the role of heart disease etiology on transplant risk in the 

context of milrinone infusion. Thus, a cardiomyopathy patient requiring milrinone has a 

407±101 fold increased risk for heart transplant. Likewise, a patient with viral myocarditis 

requiring milrinone therapy has a 346±93 fold increased risk for heart transplant; while 

milrinone use in a patient with ischemic heart disease confers a 205±28 fold increased 

risk of heart transplant. Moreover, while both cardiomyopathy and ischemic heart disease 

have similar increased risks for heart transplant in isolation (86±35 fold and 64±14 fold, 

respectively), cardiomyopathy patients who require milrinone therapy are at far greater risk 

for heart transplant than patients with ischemic heart disease requiring milrinone. Additional 

conditional queries conducted with the PGM are presented in Fig 3A. This list is by no 

means exhaustive—the PGM is capable of answering an astonishing number of queries—

325 to be precise. We encourage the reader to explore these by following the link to 

the corresponding web application https://pbc.genetics.utah.edu/lemmon2021/bayes. In this 

context, the explainable nature of PGMs lays the foundation for massively parallel testing of 

novel hypotheses between multiple, complex clinical variables of interest.

The comorbidity landscape for pediatric heart transplant is dramatically different from 

that of adults, as it includes a large contribution from congenital heart defects (CHD) 

and palliative surgical procedures. Fig 3B presents a multimorbidity network for 13 

common CHD terms defined by echocardiogram and identified by PBC as comorbid with 

pediatric heart transplant. A prior diagnosis of dilated cardiomyopathy (DCM), defined 

as genetic/idiopathic DCM, increases a child’s risk for heart transplant 102.2±33.6-fold, 

over the marginal probability of transplant. Among single ventricle forms of CHD, 

patients with hypoplastic left heart syndrome (HLHS) are at the greatest risk for heart 

transplant (56.8±17.8-fold), as compared to tricuspid atresia (17.1±11.8-fold) or laterality 

defects (25.8-fold ± 8.5). Again, the utility of PGMs for complex multimorbid analyses is 

highlighted by the ability to calculate the additional risk for heart transplant in a child with a 

laterality defect, if that child also requires the Norwood surgery (51.3±10.5-fold).

Multimorbidity network for sinoatrial node dysfunction supports multimorbidity risk 
calculations for a range of clinical and demographic health predictors

Fig 4A extends the investigations to include the impacts of these same pediatric heart 

surgeries in the context of various CHD phenotypes on a different clinical outcome, 

sinoatrial node dysfunction (SND). The Fontan surgery dominates the landscape of pediatric 

SND, increasing the risk 19.6±6.4-fold over the marginal probability of SND. Moreover, 

Fontan surgery is the only clinical variable with a direct connection to SND; the other 

clinical variables connect indirectly to SND via the Fontan node. Thus, the relative risk 

of SND for specific forms of single ventricle CHD (HLHS, tricuspid atresia, unbalanced 

AVSD) following the Fontan surgery are similar (Fig 4), indicating that the Fontan surgery 

itself is the primary indicator of future SND, rather than the underlying form of CHD that 

required the procedure. Collectively, the preceding analyses demonstrate how multiple nets 

can be used in tandem to address complex multimorbidity outcomes questions.
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Multimorbidity networks also provide powerful means to investigate the impacts of various 

demographic factors upon outcomes. The net in Fig 4B models the multimorbid landscape 

surrounding SND in adult patients. As SND and AF are both risk factors for each other 

[31], we temporalized the network (see Methods) to analyze clinical variables that precede 

SND. The ancestry and ethnicity nodes enable explorations of demographic impacts upon 

SND and its comorbidities. Thus, in the University of Utah Hospital system, a Hispanic 

patient with AF has a 61±6 fold increased risk of SND, compared to 30±1 fold risk for white 

ancestry and 40±7 fold risk for African Americans. These results underscore the potential of 

our approach to inform ethnic/racial health care disparities with precise, quantitative results, 

and in the context of a specific health care system. Moreover, these findings illustrate how 

our approach can empower these discussions despite demographic skews in the underlying 

EHR corpus (see S2 and S3 Tables); an important finding for the Utah health system.

Multimorbidities of congenital malformations augmented by maternal health data

The impact of maternal health on health outcomes in the child is an area of intense 

investigation. The Multimorbidity network shown in Fig 5A places a child’s risk for 

congenital malformations in the context of a maternal diagnosis of pregnancy-induced 

hypertension (HTN-PREG) during that pregnancy, leveraging outcomes data for over 

130,000 births at the University of Utah Hospital system over the last 15 years. HTN-PREG 

elevates the risk of cardiac and circulatory congenital anomalies 1.83±0.03-fold, an effect 

not due to maternal age differences (S1 Fig). The multimorbidity network also illuminates 

the strong dependencies between clinical variables and allows for quantitative assessments 

of risk. For example, a diagnosis of Down Syndrome is associated with a 25.9±0.8-fold 

increased risk for a congenital cardiac anomaly (S4A Table). Moreover, a child with a 

congenital cardiac anomaly is a priori 9.2±0.9-fold more likely to have a nervous system 

anomaly than baseline (S4B Table). The impact of maternal health on a child’s risk 

of CHD is further explored in Fig 5B. Our ability to seamlessly combine and compute 

upon maternal/child EHR data highlights the extensibility of our approach to study health 

outcomes across generations in order to define the impacts of maternal health on childhood 

outcomes.

Web-based outcomes calculators

We repackaged the multimorbidity networks as stand-alone web-based outcomes calculators. 

This allows users to interact with a multimorbidity network as an ‘app’, whereby they can 

use slider buttons to toggle values of its states and to select an outcome of interest. These 

web-apps are available here: https://pbc.genetics.utah.edu/lemmon2021/bayes/bayes.

Methods

Ethics statement

Human subjects approval for this study was obtained following review by the University 

of Utah Institutional Review Board, IRB_00095807 under a waiver of consent and 

authorization. Patient data was not anonymized prior to the start of the study. All authors 

completed Human Subjects research requirements.
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Utah data resource

The University of Utah maintains an Enterprise Data Warehouse (EDW)–a central storage 

and search facility for all clinical data collected from all affiliated University hospitals and 

clinics across the Intermountain West. SQL queries were used to aggregate data from various 

tables and collect the following information: (1) gender, ancestry, ethnicity, and age for each 

patient; (2) list of patient visits, along with visit dates, and medical terms associated with 

each visit, including diagnostic codes, procedure codes, and medications ordered. ICD9 and 

ICD10 diagnosis codes consist of 18,000 and 142,000 codes respectively, while procedural 

codes (CPT) include around 10,000 codes. In all, we collected records for 1.6 million 

patients, 21 million visits and 166 million diagnosis (DX), procedure (PX) and medication 

(RX) codes. See S1–S5 Tables for additional details.

We combined these data with the Primary Children’s Hospital’s database of 

echocardiographic variables (diagnoses, ventricular function, valve gradients, chamber/

vessel sizes, etc.) dating back to 2006 for 65,618 probands, 44,254 of which also appear 

longitudinally in the University’s EDW. These data contain 529,317 mother-child pairs with 

EHR data, 14,155 of which include a child with echo data, allowing us to study maternal 

contributions to congenital heart disease (CHD). Collectively, these data comprise the Utah 

Data Resource (UDR). For the purposes of computation, custom encryption is applied to the 

UDR to produce data free of protected health information (PHI) and unintelligible without 

its cyphers. We can then generate statistics on this PHI free data in a variety of compute 

environments, decrypting the results on PHI approved machines.

In this analysis, a patient’s diagnoses are inferred via billing codes. Thus, the investigations 

and risk calculations presented herein reflect medical practice within the University of 

Utah Hospital network and Primary Children’s Healthcare. How closely they approximate 

underlying universal (‘true’) risks is still unknown. Moving forward, we note that the 

methods described below provide powerful means for large-scale cross institutional 

comparisons aimed at discovering differences in medical practice and billing trends.

Patient disease network

We used a Poisson Binomial based methodology called PBC [10] to discover comorbidities 

within our EHR corpus. Standard methods such as stratification seek to control for 

confounding variables through ‘stratifying’ by age and gender (for instance) and calculating 

comorbidity statistics for each strata, under the restrictive assumption a every patient in a 

stratum has the same probability of manifesting each morbidity. However this approach fails 

to scale, since the use of many confounding variables leads to strata too small to detect a 

statistical significance comorbidity. In contrast, PBC models the effects of age, gender, race, 

ethnicity, insurance type, and the length and density of each patient’s medical record. These 

input features are used to determine per-patient probabilities for each medical term, using a 

Poisson binomial test. The result is much greater statistical power [10].

PBC was used to find significant connections among every possible combination of ICD 

diagnoses, procedures, and RxNorm medication terms, thereby creating a patient disease 

network [10]. Patient disease network is a term borrowed from Capobianco et. al3 and 
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denotes a network comprising all significant connections among diagnoses, procedures and 

medications (Bonferroni p-value cutoff 10E-9.48). We only considered terms appearing 

in at least 15 patients. This filter reduced the number of unique terms to 39,055 ICD10 

diagnosis codes, 5,716 CPT procedure codes, and 1,764 RxNorm medication codes. We 

used Minimum Description Length clustering [32] to visualize the data, so that nodes 

with similar combinations of edges would lay near one another in the network. We also 

determined the patient flux between every pair of nodes. The result is shown in Fig 2A, 

which provides a visual representation of our patient disease network for the entire EHR 

corpus.

In keeping with previous work [13,33–36] on patient disease networks, we refer to a sub-

portion of the network, focused on a single outcome as a trajectory, or term trajectory. 

Fig 2B shows a trajectory for adult heart transplant. Trajectories provide means to display 

additional features of the network, such as transition probabilities (which correspond to 

patient flux between nodes), and the marginal frequencies of outcomes and comorbid terms 

within the EHR corpus. Collectively, this information allows for better intuition of the 

disease landscape surrounding an outcome. The trajectory is also a useful starting point for 

cost and service allocation calculations.

Multimorbidity networks

While trajectories describe transition probabilities between two comorbid terms, they 

provide no means to determine the combined effects of multiple comorbid diagnoses, 

and associated clinical procedures and medications upon an outcome. We have employed 

Probabilistic Graphical Models (PGMs) to overcome this limitation. We learned the 

structures of the PGMs using the python3 package “pomegranate” [28], which provides 

a Bayesian Information Criterion (BIC)-based DP-A* exact structure search algorithm 

[37,38,46]. The exact search algorithm explores the entire applicable space of conditional 

dependencies in order to discover the optimal network structure for the data. Parameter 

learning for this optimal network is accomplished using the loopy belief propagation 

algorithm [39]. We use the same package for our inference and multimorbidity risk 

calculations. The visual interpretation was designed using the graph_tool [40] Python3 

package and D3.js Java library.

For each Probabilistic Graphical Model, a maximum of 25 comorbid features were selected 

using PBC and validated by experts in the medical field (TAM, DW, MDP, BEB, RUS, 

MTF). Features that were judged to be of clinical relevance, importance or interest for 

the field under study were selected and used as inputs to learn the PGM structure and 

infer risk. These selected features became the inputs used to learn the PGM structure 

and infer risk. The patient’s features were described in a categorical data format, (e.g. 

indicating the ancestry, ethnicity, or insurance type) or “present/absent” binary variables 

in case of medical diagnoses and procedures. A continuous feature (e.g. age, BMI, blood 

pressure) were discretized based on established clinical thresholds. Because the PGMs only 

present the facts about the data, PGMs themselves cannot discover or infer the temporal 

order of the events (unless specified as a Dynamic PGM). To overcome this issue, for 

our temporalized PGMs we have imposed the order (discovered using PBC; see [10] 
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for additional details.) on the EHR extraction process prior to learning the Probabilistic 

Graphical Model structure. When trained on temporalized data, PGMs are forced to learn 

temporal conditional probabilities. Missing data are handled inherently by the Probabilistic 

Graphical Model structure learning process. That is, no patients were excluded due to 

missing data and no missing data was imputed. The resulting temporalized structures we call 

multimorbidity networks.

Probabilistic Graphical Models represent conditional dependencies in the dataset as a 

directed acyclic graph (DAG); however, it is important not to confuse directionality with 

causality or temporal ordering. In keeping with best practice, the multimorbidity networks 

are visualized in their undirected, moralized form, in which every node is connected to 

its Markov blanket. A single constructed multimorbidity Network provides an inference 

engine capable of answering O(3n) personalized conditional risk queries, where n denotes 

the number of features describing a patient’s condition, and the base of the exponent is 3, 

because in case of binary health records data there are three states for each node that can be 

specified: present, absent, or status unknown.

Confidence values

Risk estimates derived from Probabilistic Graphical Models are maximum likelihood 

estimates given the optimal structure under the BIC and an assumed uniform prior 

probability of any distinct EHR. To obtain standard deviation values for these estimates, 

we created 100 nets in parallel [41] from bootstrap replicates of the same data used to 

create Figs 3, 4 and 5. We then queried the resulting replicate nets, and calculated standard 

deviations of risks of outcomes of interest.

Discussion

The ability to model dependencies among multiple risk factors is crucial for meaningful 

outcomes research. Unfortunately, traditional techniques, such as logistic regression, have 

limited ability to capture so-called ‘conditional dependencies’ between variables, which are 

the heart and soul of multimorbid analyses. Although mixture and generalized linear models 

with mixed effects can (in principle) overcome this weakness, these techniques are limited 

because a new model must be designed for every question. Neural nets provide one possible 

alternative. Although they can account for non-linear interactions in the data and are 

scalable [7], Neural nets are often referred to as ‘black boxes’ (i.e., lacking explainability) 

[14,15,20,21,42–46] due to the difficulties in determining precisely how and why different 

input variables were used to produce the outputs.

Because we sought not merely to predict outcomes, but also to understand the relationships 

between multiple clinical variables and outcomes, we selected an ‘explainable’ AI 

solution, rather than a black box approach. Probabilistic Graphical Model-based [23–25,46] 

multimorbidity networks offer best-practice solutions to this problem. Moreover, they 

effectively model data without recourse to a fixed decision protocol (e.g decision trees), and 

are resilient to missing/unknown data. Crucially, the contributions of different combinations 

of variables to an outcome can be precisely and easily determined.
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Explainability comes at a cost; unlike Neural nets, which are incredibly scalable, 

multimorbidity networks can model a maximum of only 30 or so variables at once 

[28,37,38]. It is therefore necessary to pre-identify high impact variables when modeling 

an outcome, a need fulfilled by PBC [10]. We argue that the ability to rigorously 

investigate interrelations among 30 or so primary determinants represents a giant step toward 

understanding cardiovascular disease.

Our results illustrate how multimorbidity networks provide explainable solutions for 

understanding the joint impacts of diagnoses, medications, and medical procedures on 

cardiovascular health outcomes. We emphasize that the necessarily brief results reported 

here hardly exhaust the contents of these machineries. Consider that a multimorbidity 

network with n nodes supports ~3n possible queries. The net shown in Fig 4B, for example, 

supports ~314 different queries—a number that gives some indication both of the complexity 

of the data being extracted from the EHR corpus by our approach, and the value of these 

multimorbidity networks to further outcomes research.

Conclusion

The analyses presented here provide a first step toward a global description of heart 

disease and associated comorbidities across the USA intermountain west. However, the 

map we seek resides not so much in the results reported here, as it does in the products 

of our analyses: the PGM multimorbidity networks. As we have explained, these networks 

support multitudes of queries, and when used in combination, support both wide-ranging 

and focused explorations of a disease landscape. Given the right datasets, we have shown 

that the approach can provide new insights, such as the mother-child cross-generational 

cardiovascular multimorbidities we described. However, our approach also has limitations. 

Our exact approach allows us to model at most ~30 health conditions at a time. In future 

work we would like to relax this limiting factor by allowing approximate solutions that 

enable us to scale up the complexity of the multimorbidity networks to thousands of health 

conditions. Another area for innovation regards incorporation of continuous variables, as 

current software packages do not allow us to incorporate such variables at scale, however 

there is no theoretical limitation preventing their use in a PGM framework.

A major strength of our approach is that these outcomes machineries can be redistributed 

as web-based tools. Indeed, the multimorbidity Networks described here have been made 

available online [pbc.genetics.utah.edu/lemmon2021/bayes], with the hope that the wider 

scientific community will find them useful for their own outcomes research. The ability 

to transform enormous collections of EHR data into compact, portable machines for 

outcomes research, with no exchange of PHI, solves many of the legal, technological, and 

data-scientific challenges associated with large-scale EHR analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Percent of medical terms influenced by various demographic features.
Demographic variables used in the comorbidity discovery process are displayed on the 

y-axis. The percent of all diagnoses, procedures, and medications influenced by a given 

demographic feature is displayed on the x-axis. For example, sex influences 42.2% percent 

of diagnoses, procedures, and medications in the Utah EHR corpus; ancestry influences 

27.4% and EHR exposure 100%. EHR exposure includes subject age, length of medical 

record history, number of visits. See article [10] for details. Features were selected using L1 

regularization.
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Fig 2. Patient Disease Network for the Utah Data Resource.
Panel A. Graphical representation of the Patient Disease Network. 39,055 ICD 10 diagnosis 

codes, 5,716 CPT procedure codes, and 1,764 RxNorm medication codes comprising 50 

million comorbidities are represented by the map. To render the patient disease network 

more readily interpretable, we utilized Minimum Description Length clustering, so that 

nodes with similar comorbidity patterns lay near to one another in the network. The 

comorbidities of Heart Transplant are labeled red for reference purposes. See Methods 

for details. Panel B. Term trajectory for Adult Heart Transplant. Nodes represent 

diagnosis (black), procedures (red), and medications (blue). Edges are temporally ordered 

comorbidities (Bonferroni alpha = 10E-9.5), arrows denote direction. Edges are labeled 

with transition probabilities (e.g. patient flux). For example, an adult patient with viral 

myocarditis has a 17% chance of developing a heart failure diagnosis, and a 4.9% chance of 

undergoing heart transplantation. See Methods for additional details and S5 Table for code 

references for the highlighted terms.
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Fig 3. Multimorbidity Landscape of Heart Transplant.
Panel A. PGM for Adult Transplant. N = 1.6 million individuals. The clinical variables 

were chosen based on Bonferroni-corrected ICD10 and RXnorm billing codes significantly 

associated (preceding) with heart transplant. Each node represents a diagnosis, procedure, 

or medication code and each edge represents a conditional dependence between nodes. 

For detailed description of the clinical variables, please refer to S5 Table. Panel B. PGM 

for Pediatric Transplant. N = 26,458 individuals. Clinical variable terms represent terms 

in the Primary Children’s Hospital echocardiographic database or CCS billing codes when 

available. For detailed description of the clinical variables, please refer to the S5 Table. 

DCM: Dilated cardiomyopathy; Norwood: Norwood surgery; HLHS: hypoplastic left heart 

syndrome; Glenn: Glenn surgery; Fontan: Fontan surgery; AVSD: atrioventricular septal 

defect; ASD: Atrial septal defect; BAV: Bicuspid aortic valve; Coarctation: Coarctation of 

the aorta; VSD: Ventricular septal defect. Heart Transplant is highlighted in orange. For A 
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and B, the target node (heart transplant) is colored red and nodes with direct connections to 

the target (ie, within the Markov blanket) are circled red. Values in Tables represent mean ± 

STD.
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Fig 4. Multimorbidity Landscape of Sinoatrial Node Dysfunction (SND).
Each node represents a diagnosis or procedure, each edge represents a conditional 

dependence between nodes. For detailed description of the clinical variables, please refer to 

S5 Table. Panel A. Pediatric SND. N = 26,458 individuals. Clinical variable terms represent 

terms in the Primary Children’s Hospital echocardiographic database or CCS billing codes 

when available. Fontan: Fontan surgery; HLHS: hypoplastic left heart syndrome; Norwood: 

Norwood surgery; dTGA: d-transposition of the great arteries; RV fen: right ventricular 

function; TR: > = moderate tricuspid regurgitation; BAV: bicuspid aortic valve. Panel B. 
Adult SND. N = 1.6 million individuals. Clinical variable terms represent CCS billing 

codes. Ancestry: Western European, African American, or Other; Ethnicity: Hispanic, or 

non-Hispanic. DCM: Dilated cardiomyopathy; AS: Aortic stenosis; Coarctation: Coarctation 

of the aorta. SND is highlighted in red in both panels. The target node (SND) is colored red 
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and nodes with direct connections to the target (ie, within the Markov blanket) are circled 

red. Values in Tables represent mean ± STD.
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Fig 5. Impact of maternal health on congenital anomalies in the child.
Panel A. Multimorbidity landscape for child’s risk for congenital malformations in the 

context of pregnancy-induced hypertension. N = 125,014 mothers. Clinical variable terms 

represent CCS billing codes present in the EHR database. Maternal diagnosis is highlighted 

in orange; HTN-Preg: Maternal diagnosis ofhypertension complicating pregnancy (aka, 

pregnancy-induced hypertension); Diaphragm: Diaphragmatic congenital abnormalities; 

Genito-Urinary: Genito-Urinary congenital abnormalities; Cardiac: Cardiac and Circulatory 

congenital abnormalities; Skeletal: Skeletal congenital abnormalities; Down: Trisomy21; 

Digestive: Congenital abnormalities of the gastrointestinal tract; Nervous: Nervous system 

congenital abnormalities; Eye: Congenital abnormalities of the Eye; CleftLip: Cleft lip. 

Panel B. Multimorbidity landscape for child’s risk of congenital heart defects in the context 

of pregnancy-induced hypertension. N = 125,014 mothers. ASD, atrial septal defect; VSD, 

ventricular septal defect, HLHS, hypoplastic left heart syndrome; Coarctation, coarctation of 
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the aorta; TOF, tetralogy of fallot; BAV, bicuspid aortic valve. For detailed description of the 

clinical variables, please refer to S5 Table. The target node (HTN-PREG) is colored red and 

nodes with direct connections to the target (ie, within the Markov blanket) are circled red. 

Values in Tables represent mean ± standard deviation.
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Table 1.

PBC is well powered for comorbidity discovery on demographically complex datasets, unlike stratification.

Atrial Fibrillation and Acute Cerebrovascular Disease

Features PBC p-value χ2 p-value

N = 1,538,059 N = 95,407 N = 9,525 N = 1,538,05 N = 95,407 N = 9,525

no features 1e-31020 1e-1715 1e-203 1e-31020 1e-1715 1e-203

+sex 1e-31017 1e-1955 1e-215 1e-16657 1e-1125 1e-147

+age 1e-25448 1e-1589 1e-200 1e-1304 1e-88.3 1e-13.1

+ancestry 1e-14381 1e-628 1e-73.1 1e-15.72 1 1

+ethnicity 1e-11357 1e-806 1e-110 1e-12.25 1 1

+insurance 1e-11533 1e-771 1e-83 1e-2.68 1 1

+span 1e-11325 1e-698 1e-84.1 1e-1.75 1 1

Progressively smaller random samples were drawn from the Utah EHR corpus, such that each cohort is a subset of this larger precursor. N = the 
number of subjects in each cohort under consideration. Cells in the table contain p-values for the association between Atrial Fibrillation and Acute 

Cerebrovascular Disease (stroke), as calculated by PBC or χ2 (for stratification). P-values less than the Bonferroni corrected alpha (1e-9.5) are 
shown in light blue, while cells that do not pass the significance threshold are red. Stratum filters apply to the features’ column, row by row as 
follows: no filters, female, 50–59 years of age, white, non-Hispanic, commercial insurance, minimum of 2 years of medical history.
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