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Abstract

Background

Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well

as increased impulsivity. Event-related oscillations (EROs) have been used to effectively

measure brain (dys)function during cognitive tasks in individuals with alcoholism and

related disorders and in those at risk to develop these disorders. The current study exam-

ines ERO theta power during reward processing as well as impulsivity in adolescent and

young adult subjects at high risk for alcoholism.

Methods

EROs were recorded during a monetary gambling task (MGT) in 12–25 years old partici-

pants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and compar-

ison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics

of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were

also compared between LR and HR groups.

Results

HR offspring showed lower theta power and decreased current source density (CSD) activ-

ity than LR offspring during loss and gain conditions. Younger males had higher theta

power than younger females in both groups, while the older HR females showed more theta

power than older HR males. Younger subjects showed higher theta power than older sub-

jects in each comparison. Differences in topography (i.e., frontalization) between groups

were also observed. Further, HR subjects across gender had higher impulsivity scores and

increased prevalence of externalizing disorders compared to LR subjects.
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Conclusions

As theta power during reward processing is found to be lower not only in alcoholics, but also

in HR subjects, it is proposed that reduced reward-related theta power, in addition to impul-

sivity and externalizing features, may be related in a predisposition to develop alcoholism

and related disorders.

Introduction
Electrical activity of the human brain, termed electroencephalogram (EEG), was first recorded
by the German physiologist and psychiatrist Hans Berger (1873–1941) in 1924 (cf. [1]). The
EEG activity recorded during specific cognitive events has been studied either in the time
domain as event-related potentials (ERPs) comprising trial-averaged waveforms, or in the fre-
quency domain as event-related oscillations (EROs) with time-frequency characteristics.
According to Basar [2], specific frequencies of EROs underlie different cognitive functions, and
selectively distributed delta, theta, alpha and gamma oscillatory systems act as resonant com-
munication networks through large populations of neurons during cognitive processing. ERO
signals with phase-alignment across the trials of cognitive events are termed ‘evoked’ or ‘phase-
locked’ oscillations, while the signals that are ‘out-of-phase’ are ‘induced’ or ‘non-phase-locked’
oscillations [3]. The ‘total’ ERO power consists of both evoked and induced signals [4].

ERO methods have been effectively implemented to investigate cognitive processing in
healthy individuals [5–14] as well as in a variety of clinical conditions [15], including alcohol
use disorders (AUDs) [16]. AUD is a common disorder with complex etiology involving
genetic and environmental influences and their interactions (cf. [17]). Several neurocognitive
dysfunctions, reflecting impairments in several brain regions and/or neural circuitries, have
been associated with AUDs. In recent years, several studies have employed EROs to investigate
brain dysfunction in individuals with (chronic) alcoholism as well as in those with a predisposi-
tion to develop alcoholism (for a review, see Pandey et al. [16]).

Over the past few decades, studies have reported electrophysiological abnormalities related
to resting state and during cognitive processing in individuals with AUDs and in high risk
(HR) subjects with a family history of alcoholism (for reviews, see [17–19]). Dysregulation in
reward systems is a prominent dysfunction in alcoholism [20–22], and electrophysiological
studies during gambling paradigms have revealed reward processing dysfunction in alcoholics
and HR offspring [23–26]. ERP studies of reward processing have frequently employed mone-
tary gambling tasks and examined two major components: a negative going component around
200–250 ms called the outcome- or feedback-related negativity (ORN or FRN or N2), and a
positive going component at about 300–500 ms called the outcome- or feedback-related posi-
tivity (ORP or FRP or P3) [27–42]. These outcome-related ERP components have been shown
to be predominantly composed of theta oscillations [14,30,39,43–45] that mediate aspects of
cognitive processing [14,15,46–60], and have been implicated in several neuropsychiatric dis-
orders (for reviews, see [15,61–63]), including alcoholism [4,16,49,64–66].

While the electrophysiological signatures of reward processing have been well-established,
the reward processing mechanisms that may mediate alcohol dependence and its risk have not
yet been fully understood, as there are only a few ERP/ERO studies that have examined reward
processing in alcoholics and their high risk offspring. In 2008, using the Balloon Analogue Risk
Task (BART), Fein and Chang [24] reported smaller FRN in treatment-naive alcoholics from
families densely affected with alcohol problems. Using a monetary gambling task, our group
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reported that alcoholic subjects showed smaller outcome related ERP components (ORN/N2
and ORN/P3) [25] as well as decreased theta power during reward processing [49] compared
to controls. During reward processing, alcoholics were also found to manifest increased impul-
sivity and negative correlations between impulsiveness and P3 amplitude [25] as well as
between impulsiveness and theta power [49]. Recently, we conducted an ERP study in adoles-
cents and young adult offspring from alcoholic families (HR, high risk to develop alcoholism
who had at least one parent with alcohol dependence) and found that adolescent females and
young adult males showed reduced P3 amplitudes during the loss conditions [67] but no differ-
ence in the gain conditions compared to low risk offspring from control families (LR) who had
no parental history of alcoholism. It is surprising that very few studies have examined the
reward related ERP components (ORN and ORP) as well as the theta EROs underlying these
components in the realm of alcoholism [24,25,49,67]. Further, reward related theta oscillations,
a primarily constituent of these ERP components, have not yet been studied in high risk off-
spring of alcoholics, while this measure has been explored in normal subjects [14,30,39,43,44]
and alcoholics [49] during reward processing.

The current study is the first to examine ERO theta power during reward processing in a
high risk sample, and has used a large sample of adolescent and young adult HR offspring from
high density alcoholism families in the Collaborative Study on the Genetics of Alcoholism
(COGA). The present study is an extension of our previous work, and seeks to determine: (i)
whether lower reward related ERO theta power and increased impulsivity observed in alcohol-
ics [49] is also present in HR compared to LR subjects; and (ii) whether HR subjects, who man-
ifested lower P3 amplitude during reward processing in our previous study [67], would also
show decreased reward related ERO theta power underlying the P3 [68,69] wave while evaluat-
ing loss and gain. Specifically, the current study aims to address whether (i) deficits in the same
measure (lower ERO theta power) that has been observed in alcoholics is also observed in HR
subjects, and (ii) the same group (HR subjects) shows deficits in both measures (P3 and EROs)
during reward processing. Although theta oscillatory activity during reward processing has
been studied in healthy individuals [39,44,70] and in alcoholics [49], the present study is the
first to examine event-related theta activity during reward processing in a monetary gambling
task in subjects who are at high risk for alcoholism. Using the same approach as in our previous
studies of reward processing [49,67], the present study also examined current source density
(CSD), to analyze the cortical sources of the surface potentials [71] during theta EROs. The
study has compared psychometrically assessed impulsivity as well as externizing diagnoses,
such as substance use disorders, conduct disorder (CD), antisocial personality disorder
(ASPD), attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder
(ODD), between the risk groups (i.e., HR and LR). We expected that HR compared to LR off-
spring would manifest lower ERO total theta power and decreased CSD activations in both loss
and gain conditions, along with increased impulsivity scores and higher prevalence rates of
externalizing disorders. Therefore, findings from the current study may further characterize
ERO theta power during reward processsing in individuals at risk and in addition to externaliz-
ing characteristics, including impulisivity, may serve as a potential marker for a predisposition
to develop alcoholism and related disorders.

Methods

Ethics Statement
The experimental protocols were approved by Institutional Review Board (IRB) of each partici-
pating centers of COGA: University of Connecticut; Indiana University; University of Iowa;
SUNY Downstate; Washington University in St. Louis; University of California at San Diego;
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Rutgers University; University of Texas Health Science Center at San Antonio, Virginia Com-
monwealth University, Icahn School of Medicine at Mount Sinai, and Howard University.
Data were collected from the first six of these eleven centers. All participants signed an IRB
approved written consent form. Parents or legal guardians signed for their minor children.
Consent was obtained by research personnel who had adequate training and competency in
ethical guidelines and consent process. Study procedure, risks and benefits were explained to
each participant and/or the parent/guardian before collecting data. It was also ascertained that
participants were not disadvantaged in any way by not participating in the study.

Participants
The sample included 1821 adolescents and young adults (874 males and 947 females) between
12 to 25 years of age (see Table 1) and was derived from the prospective sample [72] of the
COGA study [73,74]. The sample included offspring of the high-risk (multiple alcohol depen-
dent adult family members) and comparison (community) families ascertained in previous
phases of COGA. Participants are reassessed every two years with clinical, behavioral and
neurophysiological assessments. Data from the six collection centers have been included in this
study. Recruitment and assessment procedures have been described elsewhere [73,75–77], and
are also available at this website: https://zork5.wustl.edu/coganew/data/instruments.html.
Details regarding access to COGA data are available through the National Institute of Alcohol-
ism and Abuse at http://www.niaaa.nih.gov/research/major-initiatives/collaborative-studies-
genetics-alcoholism-coga-study#Access. COGA data are also available from the publically
accessible dbGAP database at http://www.ncbi.nlm.nih.gov/gap/?term=COGA [IDs:
phs000092.v1.p1, phs000125.v1.p1, and phs000763.v1.p1].

Subjects were instructed to refrain from using alcohol and substances for 5 days prior to
EEG recording. Subjects were excluded from neurophysiological assessment if they had any of
the following: (1) report of recent drug/alcohol use or a positive breath-analyzer test, (2)
hepatic encephalopathy/cirrhosis of the liver, (3) history of head injury, seizures or neurosur-
gery, (4) uncorrected sensory deficits, (5) history/symptoms of psychoses, (6) self-reported
positive test for human immunodeficiency virus, and/or (7) other acute/chronic medical ill-
nesses that affect brain function. The HR group consisted of individuals from the COGA high
density alcoholism families who had at least one parent with DSM-IV alcohol dependence,
while the participants for the LR group consisted of individuals from the community families
without any parental history of alcohol dependence. The current study is cross-sectional by
design and involves data from the initial (first) assessment only. The groups were further sub-
divided based on gender and age group (12–15 and 16–25 years old) (see Table 1). These age
ranges were adapted in order to maintain proportionally optimal sample size in each subgroup.
Although unequal interval of age range in these groups was due to skewness in the sample,

Table 1. Number of participants and age (mean and SD) categorized by age group and gender across risk groups (HR and LR). Mean ages between
LR and HR groups have been compared using t-tests.

Gender Age Group LR HR t-value p

N Age N Age

Mean SD Mean SD

Male 12–15 67 13.34 1.28 319 13.64 1.20 -1.775 0.0737

Male 16–25 62 18.85 1.95 426 19.28 2.20 -1.475 0.1408

Female 12–15 97 13.48 1.18 334 13.67 1.24 -1.329 0.1845

Female 16–25 61 19.22 2.19 455 19.51 2.16 -0.979 0.3281

doi:10.1371/journal.pone.0142659.t001

Deficient Reward Processing in Individuals at Risk for Alcoholism

PLOSONE | DOI:10.1371/journal.pone.0142659 November 18, 2015 4 / 32

https://zork5.wustl.edu/coganew/data/instruments.html
http://www.niaaa.nih.gov/research/major-initiatives/collaborative-studies-genetics-alcoholism-coga-study#Access
http://www.niaaa.nih.gov/research/major-initiatives/collaborative-studies-genetics-alcoholism-coga-study#Access
http://www.ncbi.nlm.nih.gov/gap/?term=COGA


with more subjects represented at younger ages, these age ranges provided statistical power to
investigate differences in younger and older groups. The HR and LR groups did not differ in
sample distribution in terms of mean age (see Table 1) and gender (χ2 = 1.27; p = 0.2741).
Table 2 shows prevalence rates of lifetime diagnoses for externalizing disorders for HR and LR
groups in males and females. The prevalence rates were significantly higher in HR subjects
compared to LR individuals in several diagnoses for each gender and in the combined sample.

Assessment Tools
The clinical and impulsivity data of the sample were collected with three COGA instruments:
(1) Semi Structured Assessment for the Genetics of Alcoholism (SSAGA) [78] evaluated clini-
cal diagnoses and symptoms; (2) Family History Assessment Module (FHAM) [79] assessed
Axis I psychiatric disorders, including AUDs and related disorders, among relatives of the par-
ticipants as assessed from other relatives; and (3) Barratt Impulsiveness Scale (BIS) [80] pro-
vided ratings of impulsivity in three categories viz., attentional, motor, and non-planning, as
well as total scores. Cognitive/attentional impulsivity involves making quick/hasty decisions,
motor impulsivity represents acting without thinking, and non-planning impulsivity indicates
a lack of “futuring” or forethought [81].

Table 2. Prevalence rates in counts and percentage (in parentheses) for the diagnoses of externalizing disorders (EXT) in LR and HR groups for
each gender and for total sample. Significance levels based on Chi-square tests (Pearson χ2 or Likelihood Ratio) have been marked with asterisks (in HR
columns). Empty cell (with a dash) means the count of zero.

Diagnoses (DSM-IV) Male Female Total

LR HR LR HR LR HR

Alcohol Dependence 2 (1.55) 20 (2.69) 1 (0.63) 28 (3.55)* 3 (1.05) 48 (3.13)*

Alcohol Abuse 7 (5.43) 92 (12.37)* 4 (2.53) 62 (7.86)** 11 (3.83) 154 (10.04)***

Tobacco Dependence 5 (3.88) 64 (8.60)* 2 (1.27) 62 (7.86)*** 7 (2.44) 126 (8.21)***

Marijuana Dependence 6 (4.65) 100 (13.44)** 3 (1.90) 59 (7.48)** 9 (3.14) 159 (10.37)***

Marijuana Abuse 4 (3.10) 56 (7.53)* 1 (0.63) 33 (4.18)** 5 (1.74) 89 (5.80)***

Cocaine Dependence - 7 (0.94) - 7 (0.89) - 14 (0.91)*

Cocaine Abuse - 2 (0.27) - 1 (0.13) - 3 (0.20)

Stimulant Dependence - 5 (0.67) - 11 (1.39)* - 16 (1.04)*

Stimulant Abuse - 1 (0.13) - 2 (0.25) - 3 (0.20)

Sedative Dependence - 1 (0.13) - 3 (0.38) - 4 (0.26)

Sedative Abuse - 2 (0.27) - 1 (0.13) - 3 (0.20)

Opiate Dependence - 1 (0.13) - 5 (0.63) - 6 (0.39)

Opiate Abuse - 4 (0.54) - 4 (0.51) - 8 (0.52)

Other Drug Dependence - 6 (0.81) - 8 (1.01) - 14 (0.91)*

Other Drug Abuse - 2 (0.27) - 4 (0.51) - 6 (0.39)

ASPD 3 (2.33) 39 (5.24) 1 (0.63) 25 (3.17) 4 (1.39) 64 (4.17)

CD 5 (3.88) 80 (10.75)** 5 (3.16) 45 (5.70) 10 (3.48) 125 (8.15)**

ADHD 3 (2.33) 27 (3.63) 2 (1.27) 13 (1.65) 5 (1.74) 40 (2.61)

ODD 1 (0.78) 21 (2.82) 1 (0.63) 13 (1.65) 2 (0.70) 34 (2.22)*

Any EXT disorder 21 (16.28) 262 (35.22)*** 16 (10.13) 203 (25.73)*** 37 (12.89) 465 (30.33)***

*p < 0.05

**p < 0.01

***p < 0.001

doi:10.1371/journal.pone.0142659.t002
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Monetary Gambling Task
The monetary gambling task (MGT) used in this study is illustrated in Fig 1. Each trial began
with a choice stimulus (CS), with two numbers 10¢ (left box) and 50¢ (right box) displayed for
800 ms. The participants selected a bet of either 50¢ or 10¢, and received feedback of either loss
or gain for the selected amount (outcome stimulus, OS). The task details have been described
in our previous publications [14,25,41,49]. The inter-stimulus interval (ISI) between a CS and
OS, and between an OS and next CS is 1500 ms. The task involved a total of 172 trials, each
with one of four possible outcomes: Loss 50¢, Loss 10¢, Gain 50¢, and Gain 10¢. Irrespective of
the overall amounts chosen during the task, the probability of loss and gain outcomes were
50% (i.e., the number of ‘red’ and ‘green’ outcomes were equal), although the participants were
not aware of this information. However, since the subject has the option to freely select the
amount during each trial, the relative probability for each of the four outcomes (+50, −50, +10,
−10) ranged from 0 to 50%. For example, if a subject selects ‘50’ in all the trials, the probabilities

Fig 1. Schematic illustration of the Monetary Gambling Task (MGT). Each trial starts with a choice
stimulus (CS) (white boxes) which lasts for 800 ms and displays two amounts (10¢ or 50¢). The participant
selects one of the amounts with a corresponding button press. An outcome of either gain (green box) or loss
(red box) for the selected amount is shown by the outcome stimulus (OS). A trial with a gain of 50¢ and the
next trial with a loss of 10¢ are illustrated. The ISI between the CS and the OS is 1500 ms. Participants were
required to respond to the OS within 1000 ms (i.e., response window) by selecting one of the two amounts.
ERO analysis was performed on trial epochs of 1000 ms post-stimulus period after the onset of the OS (i.e.,
analysis window).

doi:10.1371/journal.pone.0142659.g001
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will be 50%, 50%, 0%, and 0% for the outcomes of +50, −50, +10, −10, respectively. Trial epochs
containing the outcome stimuli (1000 ms poststimulus) representing the feedback of either loss
or gain for each trial (i.e., the epochs following colored frames in Fig 1) were used for ERO sig-
nal processing. A prestimulus interval of 200 ms prior to the OS was used for the ERP/ERO
preprocessing and/or analyses. The trials were presented in two equal size blocks, and the sub-
jects were given a feedback of the cumulative amount lost or gained at the end of each block. At
the end of the experiment, participants were paid a constant amount (irrespective of their net
loss or gain) for their participation.

EEG Data Acquisition and Preprocessing
Identical experimental procedures and EEG acquisition systems were used at all neurophysiol-
ogy collection sites of COGA [73,74] with high inter-laboratory consistency in recordings [82–
85]. Subjects were seated comfortably 1 m from a monitor in a dimly lit sound-attenuated RF-
shielded booth (Industrial Acoustics, Inc., Bronx, NY, USA), and wore a 61-channel electrode
cap (Electro-Cap International, Inc., Eaton, OH, USA) based on the Extended 10–20 Systems
[86–88] (Fig 2), with a reference electrode at the tip of the nose and with a ground electrode at

Fig 2. Sixty-one electrodes using extended 10–20 system as recorded in the current study. Twelve
electrodes (F3, FZ, F4, C3, CZ, C4, P3, PZ, P4, O1, OZ, O2) representing frontal, central, parietal and
occipital regions were selected for statistical analyses (shaded).

doi:10.1371/journal.pone.0142659.g002
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the forehead. The electrooculogram (EOG) was recorded by a supraorbital vertical electrode
and by a horizontal electrode on the external canthus of the left eye. Electrode impedances
were maintained below 5 kΩ. Electrical activity was amplified 10,000 times using SynAmps2
amplifiers (Compumedics USA, Charlotte, NC) and was recorded continuously over a band-
width of DC–100.0 Hz on a Neuroscan system (Versions 4.3–4.5; Compumedics USA, Char-
lotte, NC) at the sampling rate of 500 Hz. The entire EEG data was resampled offline to 256 Hz
for the analyses. In this study, only ‘loss 50’ (representing the loss condition) and ‘gain 50’ (rep-
resenting the gain condition) were analyzed, as majority of the subjects had more trials for the
50¢ than the 10¢ condition. The preprocessed trial epochs with waveforms exceeding ±100 μV
(about a third of total trials) were excluded from the analyses.

ERO Signal Processing using S-Transform
Time-frequency (TF) data were derived using the S-transform signal processing method, intro-
duced by Stockwell et al. [89]. S-transform has been explained in our previous papers [14,49].
S-transform is deduced from short-time Fourier transform and continuous Wavelet transform,
and has a better flexibility and utility in the processing of non-stationary and complex signals
[90]. This method has been applied in several recent studies to analyze time-frequency signals
of event-related oscillations [4,14,65,66,91–93]. The S-transform is considered to be a generali-
zation of the Gabor transform [94] and an extension to the continuous wavelet transform. The
S-transform generates a time-frequency representation (TFR) of a signal by integrating the sig-
nal at each time point with a series of windowed harmonics of various frequencies as follows:

STðt; f Þ ¼
Z 1

�1
hðtÞ jf jffiffiffiffiffiffi

2p
p e�

ðt�tÞ2 f 2
2 e�i2pf tdt

where h(t)is the signal,f is frequency, τ is a translation parameter, the first exponential is the
window function, and the second exponential is the harmonic function. The S-transform TFR
is computed by shifting the window function down the signal in time by τ across a range of fre-
quencies. The window function is Gaussian with 1/f2 variance and scales in width according to
the examined frequency. This inverse dependence of the width of the Gaussian window with
frequency provides the frequency-dependent resolution. The amplitude envelope of the com-
plex-valued S-transform TFR is calculated by taking the absolute value |ST(f,τ)|.

In the current study, total ERO theta power (which is a combination of both phase-locked
and non-phase-locked activity) was computed from the outcome trials of loss and gain condi-
tions. Since theta activity has been shown to underlie both N2 and P3 components of the ERP
[14,69,95], theta power (3.5–7.5 Hz) within the TFR corresponding to 200–500 ms of post-
stimulus time window (corresponding to N2 and P3 components of outcome-related ERPs)
was processed (see, Kamarajan et al. [14] for detail). The filter setting to extract theta band
included a 5th order Chebyshev type I filter (two-step cascade type) with ripple factor (ε) of
0.108 and ripple attenuation (Rp) of 0.05. Only the subjects who had at least fifteen artifact-
free trials for each condition were included for further analyses.

CSDMapping
Estimation of CSD was performed using surface Laplacians [96]. These methods are more sen-
sitive than surface potentials to local brain sources [97] as they improve the spatial resolution
of EEG [98]. The CSD methods have been widely employed in studying several neuropsychiat-
ric disorders to understand the cortical sources underlying scalp potentials during resting state
and during cognitive processing (for a review, see Kamarajan et al. [99]). The CSD maps were
constructed from the Laplacian transformed data as described by Wang and Begleiter [100].
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This method has also been applied in our earlier studies [41,101]. Since the recorded potential
at each electrode represents the resultant contributions from several adjacent and distal
sources, local sources cannot be clearly estimated [102]. The CSD transform acts as a spatial fil-
ter and provides an estimate of the local radial current density [96,102,103] and represents
components of the primary neural activity in the scalp region [104]. In the present study, sur-
face Laplacian was computed on the grand mean waveforms representing ERO total theta
amplitude for each subgroup and for each task condition separately. The surface Laplacian was
calculated at a scalp location based on the weighted average of the measured potentials at
neighboring electrodes, where the electrodes closer to the index location get more weight.
Topographic maps representing mean CSD potential within 300–500 ms (μV/r2, where r =
head radius in cm) were created. Z-scores were calculated for each scalp map by keeping the
mean SL/CSD values of all 61 scalp electrodes as zero (‘0’) and the values above and below the
mean were represented in SD units (z-scores). Then the z-score converted CSD maps were also
plotted in order to compare topographic features regardless of the amplitude differences across
the maps. Positivity or the source (red/orange) in the CSD maps represents increased ERO
amplitude or synchronization, whereas negativity or the sink (blue/cyan) indicates decreased
amplitude or desynchronization [105].

Statistical Analyses
Statistical analyses were performed using SPSS 21.0 (IBMCorporation, Armonk, NY). Log-trans-
formed (natural log) ERO theta power (3.5–7.5 Hz) values derived from 12 electrodes represent-
ing 4 regions, viz., frontal (F3, FZ, F4), central (C3, CZ, C4), parietal (P3, PZ, P4), and occipital
(O1, OZ, O2), were used in the analysis. A repeated measures analysis of variance (RM-ANOVA)
of the general linear model (GLM) was used, involving Risk Group (HR and LR), Age Group
(12–15 and 16–25 years), and Gender (male and female) as between-subjects factors, and Task
condition (Loss and Gain) and Region (frontal, central, parietal, and occipital) as within-subjects
factors. Although affected status (i.e., individuals with any externalizing diagnosis as shown in
Table 2) was initially used as a covariate in the RM-ANOVAmodel, it was removed from the
later analysis which is presented here, as the covariate showed neither a main effect nor any inter-
action effect with any factors in the model. The RM-ANOVA results were extracted from the
multivariate test statistics (http://www-01.ibm.com/support/knowledgecenter/SSLVMB_20.0.0/
com.ibm.spss.statistics.help/alg_glmrm_within-subjects.htm) as the ERO data for the within-
subjects factors did not adhere to sphericity assumptions (i.e., the equality of the variances of the
differences between levels of the repeated measures factor such as region). In other words, an
appropriate alternative for the sphericity assumption while analyzing the EEG data is to use mul-
tivariate tests on the within-subjects effects within the GLM repeated measures model [106–
108], as used in the current study. Further, Bonferroni adjusted pairwise comparisons within
each significant main and interaction effects were analyzed using estimated marginal means
(EMM) and standard errors (SE). The BIS scores between LR and HR groups were analyzed
using one-way ANOVA. Chi-square tests (Pearson χ2) were used to determine the significance
levels for the prevalence rates of externalizing diagnoses between HR and LR groups. Likelihood
ratio was used when any cell in the comparison had less than 5 observations. Pearson correla-
tions were used to analyze the relationship between BIS scores and theta power.

Results

Theta Power
Main and interaction effects of theta power are listed in Table 3 (for all the effects of risk group
as well as for the significant effects of gender and age group). The mean and SD values of
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log-transformed theta power for all the factors and their levels have been provided in S1 Table.
Pairwise comparisons of the estimated marginal means between the levels of risk groups, gen-
der, and age groups at each scalp region for the loss and gain conditions are illustrated in Fig 3.
The results of the RM-ANOVA for the between-subjects factors (i.e., risk group, gender, and
age group) as well as for the within-subjects factors (i.e., condition, and scalp region) have been
summarized below. While the EMM and SE (in parentheses) have been provided only for the
significant effects, mean and SD for the total sample as well as for the subgroups have been pro-
vided in the S1 Table.

Risk Group. As shown in Table 3, the main effect of risk group was highly significant
[F = 20.83; p< 0.0001], showing that HR subjects [2.96 (0.01)] manifested significantly lower
theta power than their LR counterparts [3.10 (0.03)]. Significant risk group × region interaction
effect revealed that the difference between HR and LR subjects were significant in all four
regions, and that the highest difference was observed in the parietal region [HR = 3.01 (0.01);
LR = 3.18 (0.03); F = 22.92; p< 0.0001], followed by central [HR = 2.96 (0.01); LR = 3.12
(0.03); F = 21.92; p< 0.0001], occipital [HR = 2.95 (0.01); LR = 3.10 (0.03); F = 20.10;
p< 0.0001], and frontal regions [HR = 2.92 (0.01); LR = 3.01 (0.03); F = 7.53; p = 0.0061]. Due
to the highly significant main effect of risk group, most of the interaction effects of risk group
were not significant (see Table 3) but most of the comparisons (HR vs. LR) within each of these
interaction effects were significant (HR< LR) as shown in Table 4.

Table 3. Main and interaction effects of theta power as elicited by the GLMRM-ANOVAmodel. F-val-
ues and p-values (*p < 0.05, ***p < 0.001) are shown for all the effects of risk group as well as for the signifi-
cant effects of gender and age group.

Effect F p

Risk Group 20.83 <0.0001***

Risk Group × Gender 1.79 0.1805

Risk Group × Age Group 0.00 0.9652

Risk Group × Gender × Age Group 0.88 0.3493

Risk Group × Condition 1.85 0.1737

Risk Group × Gender × Condition 0.98 0.3214

Risk Group × Age Group × Condition 0.00 0.9856

Risk Group × Gender × Age Group × Condition 0.07 0.7843

Risk Group × Region 3.75 0.0107*

Risk Group × Gender × Region 0.93 0.4237

Risk Group × Age Group × Region 2.27 0.0786

Risk Group × Gender × Age Group × Region 0.30 0.8263

Risk Group × Condition × Region 1.43 0.2322

Risk Group × Gender × Condition × Region 0.90 0.4426

Risk Group × Age Group × Condition × Region 1.60 0.1882

Risk Group × Gender × Age Group × Condition × Region 0.68 0.5618

Gender × Age Group 23.65 <0.0001***

Gender × Condition 14.93 0.0001***

Gender × Condition × Region 3.08 0.0264*

Age Group 163.81 <0.0001***

Age Group × Condition 13.34 0.0003***

Age Group × Region 12.21 <0.0001***

Condition 73.31 <0.0001***

Region 61.07 <0.0001***

Condition × Region 59.57 <0.0001***

doi:10.1371/journal.pone.0142659.t003
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Fig 3. Multiple comparisons of log-transformed theta power across risk group, gender and age group. Estimated marginal means and standard error
(±1 SE) of pairwise comparisons between the risk groups (panel-sets A1 and A2), gender (panel-sets B1 and B2), and age groups (panel-sets C1 and C2) in
loss and gain conditions have been plotted for each scalp region (F, frontal; C, central; P, parietal; and O, occipital). Bonferroni adjusted level of significance
for each comparison is shown in asterisks (**p < 0.01, ***p < 0.001). [M = Male; F = Female; Yo = Younger Age Group (12–15 years); Ol = Older Age Group
(16–25 years)].

doi:10.1371/journal.pone.0142659.g003
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Table 4. Comparisons between LR and HR groups within the interaction effects of risk group. Significant comparisons (HR < LR) have been marked
with asterisks (Sig.: *p < 0.05, **p < 0.01, ***p < 0.001), while the dash sign (-) indicates ‘not significant’. Unrelated factors (cells) have been left blank.
[Regions: F = Frontal, C = Central, P = Parietal, O = Occipital; Factors: RG = Risk Group, AG = Age Group, Gen = Gender, Con = Condition].

Effect Between-subjects factor Cond (Sig.) Reg (Sig.)

Group (Cond) Sig. Loss Gain F C P O

RG × Gen Male ***

RG × Gen Female *

RG × AG Younger ***

RG × AG Older **

RG × Gen × AG Younger Male ***

RG × Gen × AG Older Male *

RG × Gen × AG Younger Female -

RG × Gen × AG Older Female *

RG × Cond *** ***

RG × Gen × Cond Male *** **

RG × Gen × Cond Female * *

RG × AG × Cond Younger *** **

RG × AG × Cond Older ** *

RG × Gen × AG × Cond Younger Male *** **

RG × Gen × AG × Cond Older Male ** -

RG × Gen × AG × Cond Younger Female - -

RG × Gen × AG × Cond Older Female - -

RG × Reg ** *** *** ***

RG × Gen × Reg Male ** *** *** ***

RG × Gen × Reg Female - ** ** *

RG × AG × Reg Younger * ** *** ***

RG × AG × Reg Older - *** *** *

RG × Gen × AG × Reg Younger Male ** ** ** ***

RG × Gen × AG × Reg Older Male - * * *

RG × Gen × AG × Reg Younger Female - - - -

RG × Gen × AG × Reg Older Female - * * -

RG × Cond × Reg Loss ** *** *** ***

RG × Cond × Reg Gain * *** *** ***

RG × Gen × Cond × Reg Male (Loss) ** *** *** ***

RG × Gen × Cond × Reg Male (Gain) ** ** ** **

RG × Gen × Cond × Reg Female (Loss) - * ** *

RG × Gen × Cond × Reg Female (Gain) - ** ** *

RG × AG × Cond × Reg Younger (Loss) * ** *** ***

RG × AG × Cond × Reg Younger (Gain) - ** ** **

RG × AG × Cond × Reg Older (Loss) - *** *** *

RG × AG × Cond × Reg Older (Gain) - ** ** *

RG × Gen × AG × Cond × Reg Younger Male (Loss) * ** ** ***

RG × Gen × AG × Cond × Reg Younger Male (Gain) ** ** * *

RG × Gen × AG × Cond × Reg Older Male (Loss) - ** ** *

RG × Gen × AG × Cond × Reg Older Male (Gain) - - - -

RG × Gen × AG × Cond × Reg Younger Female (Loss) - - - *

RG × Gen × AG × Cond × Reg Younger Female (Gain) - - - -

RG × Gen × AG × Cond × Reg Older Female (Loss) - * * -

RG × Gen × AG × Cond × Reg Older Female (Gain) - * * -

doi:10.1371/journal.pone.0142659.t004
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Fig 3 illustrates all possible pairwise comparisons (Bonferroni adjusted) between HR and
LR groups. It is clearly shown that the HR group has manifested significantly lower theta
power than the LR group in both males and females, while the differences were more robust in
males, especially in younger males [panel sets A1 and A2]. Specific differences were observed
in: (i) younger males during both loss and gain conditions in all scalp regions (p< 0.001); (ii)
older males during the loss condition at central, parietal, and occipital regions (p< 0.001); (iii)
younger females during the loss condition only at occipital regions (p< 0.05); and (iv) older
females during loss and gain conditions at central and parietal regions (p< 0.05).

Gender. A significant gender × age group interaction (Table 3) suggested that younger
males [3.34 (0.03)] had highly significant increases in theta power [F = 23.62; p< 0.0001] com-
pared to younger females [3.13 (0.03)], while older females [2.88 (0.03)], on the other hand,
showed higher theta power [F = 4.63; p = 0.0315] than older males [2.78 (0.03)]. A significant
gender × condition interaction revealed that a significant gender difference [F = 8.34;
p = 0.0039] was observed only in the loss condition, where males [3.03 (0.03)] showed higher
theta power than females [2.93 (0.02)]. Gender × condition × region interaction effect revealed
that males had higher theta power than females only during the loss condition at frontal
[male = 3.05 (0.03); female = 2.92 (0.03); F = 10.73; p = 0.0011] and central regions
[male = 3.05 (0.03); female = 2.92 (0.03); F = 11.38; p = 0.0008]. Further, this 3-way interaction
suggested that males showed higher theta power during loss compared to gain (loss> gain) in
frontal regions [loss = 3.05 (0.03); gain = 2.94 (0.03); F = 21.04; p< 0.0001] and an opposite
pattern (gain> loss) in central [loss = 3.05 (0.03); gain = 3.10 (0.03); F = 6.00; p = 0.0144], pari-
etal [loss = 3.05 (0.03); gain = 3.18 (0.03); F = 38.42; p< 0.0001], and occipital region
[loss = 2.98 (0.03); gain = 3.12 (0.03); F = 53.43; p< 0.0001]. On the other hand, the same
3-way interaction revealed that females showed significantly more theta power for gain than
for loss (gain> loss) in central [loss = 2.92 (0.03); gain = 3.10 (0.03); F = 77.87; p< 0.0001],
parietal [loss = 2.98 (0.03); gain = 3.17 (0.03); F = 94.52; p< 0.0001], and occipital regions
[loss = 2.90 (0.03); gain = 3.10 (0.02); F = 108.93; p< 0.0001]. Pairwise comparison across gen-
der (male vs. female) shown in Fig 3 [panel sets B1 and B2] revealed more specific findings.
Younger males (both HR and LR groups) displayed significant increases in theta power com-
pared to younger females [left column of panel sets B1 and B2]. On the other hand, older
females, especially the HR females during the gain condition, exhibited significantly increased
theta power compared to their male counterparts [right column of panel set B2].

Age Group. Main effect of age group, as shown in Table 3, indicated that younger subjects
[3.24 (0.02)] displayed significantly higher theta power [F = 163.81; p< 0.0001] than older sub-
jects [2.83 (0.02)] in general, and in all or most of the comparisons within the subgroups (see
Fig 3, panel sets C1 and C2). Age group × condition effect showed that the younger group dis-
played significantly higher theta power during loss [younger = 3.21 (0.02); older = 2.76 (0.03);
F = 173.85; p< 0.0001] as well as during the gain condition [younger = 3.26 (0.02);
older = 2.90 (0.03); F = 117.33; p< 0.0001]. The same interaction effect also revealed that sig-
nificant condition differences (gain> loss) were more robust in the older age group [F = 68.21;
p< 0.0001] than in the younger group [F = 13.30; p = 0.0003]. On the other hand, age
group × region interaction effect showed that while the difference in theta power between the
younger and the older age group was significant in all four regions (younger> older), the high-
est age difference was observed in the occipital region [younger = 3.26 (0.02); older = 2.79
(0.03); F = 194.06; p< 0.0001], followed by parietal [younger = 3.32 (0.02); older = 2.87 (0.03);
F = 160.56; p< 0.0001], central [younger = 3.22 (0.02); older = 2.86 (0.03); F = 103.91;
p< 0.0001], and frontal region [younger = 3.14 (0.02); older = 2.79 (0.03); F = 100.49;
p< 0.0001]. The pairwise comparisons, shown in Fig 3 [panel sets C1 and C2], revealed that
age differences in theta power were highly significant (younger> older) within each gender
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and risk group during the loss as well as the gain condition, and that these differences were
more robust in males compared to females.

Within-Subjects Factors. Main effect of condition showed that the gain condition [3.08
(0.02)] showed significantly higher theta power [F = 73.31; p< 0.0001] than the loss condition
[2.98 (0.02)] (Table 3). The region main effect revealed that theta power significantly
[F = 61.07; p< 0.0001] varied across the regions: parietal [3.10 (0.02)]> central [3.04 (0.02)]
> occipital [3.02 (0.02)]> frontal region [2.96 (0.02)]. Further, condition × region interaction
indicated that the loss condition had higher theta power than the gain condition only in the
frontal region [loss = 2.98 (0.02); gain = 2.95 (0.02); F = 6.03; p = 0.0142], while the reverse
(gain> loss) was true for central [loss = 2.98 (0.02); gain = 3.10 (0.02); F = 61.11; p< 0.0001],
parietal [loss = 3.02; gain = 3.17; F = 124.72; p< 0.0001], and occipital regions [loss = 2.94;
gain = 3.11; F = 155.45; p< 0.0001].

Fig 4 shows time-frequency plots and topographic head maps for the younger and older
male subjects. Topographically, theta power during loss condition showed an anterior focus
while the gain condition had a posterior focus in younger subjects and a wider activation
involving frontal-central-parietal regions was seen in older subjects. HR subjects showed signif-
icantly lower theta power than LR individuals. Overall, the older subjects have shown lower
theta power compared to their younger counterparts in each subgroup.

Fig 4. Time-frequency (TF) plots of theta power. TF plots during loss at FZ electrode (middle panels on the left side) and gain conditions at PZ electrode
(middle panels on the right side) for the younger (top two rows) and older male subjects (bottom two rows) are shown. Theta power differences between HR
and LR subjects (HR < LR) were more robust in males (as shown in these plots) compared to females (not shown). In these panels, each TF plot is flanked by
a topographic map of absolute values on the left side and z-scored values on the right side. The rectangle box inside the TF plots represents the Time
Frequency Region of Interest (TFROI) of ERO theta band (3.5–7.5 Hz, y-axis) within 200–500 ms (x-axis). Loss condition with anterior maximum and gain
condition with posterior focus are shown. Older groups displays more anterior activity than younger groups (“frontalization”).

doi:10.1371/journal.pone.0142659.g004
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CSD Topography
CSD topographic maps of ERO theta activity are shown in Fig 5. During the loss condition,
bilateral temporal sources in younger HR males were relatively weaker compared to their LR
counterparts, while there was no prominent difference between risk groups in younger females.
During gain condition, younger HR males showed lower CSD potential in bilateral sources as
well as in frontal sinks, while females did not show any marked differences. Among the older
groups, both male and female HR subjects displayed weaker frontal sinks than their LR coun-
terparts during loss and gain conditions.

Externalizing Disorders and BIS Impulsivity
As shown in Table 2, prevalence rates were significantly higher in HR compared to LR subjects
in several diagnoses (especially for substances such as alcohol, tobacco, marijuana use, as well
as for CD and any EXT diagnosis) in males and/or females and in the combined sample. BIS
impulsivity scores between LR and HR groups across gender and age groups are shown in Fig
6. Overall, the HR subjects showed significantly increased impulsivity on each of the subscales
of BIS (attentional, motor, and non-planning) as well as in total impulsivity in each subgroup.
Specifically, younger HR males exhibited significantly higher impulsivity in all subscales and
total score than the LR counterparts. On the other hand, older HR males showed higher impul-
sivity in motor and total score compared to the LR subjects. Further, all BIS scores were signifi-
cantly higher in younger HR females compared to the LR subjects. Finally, compared to their

Fig 5. Topographic maps of ERO theta activity. The maps illustrate absolute (Abs) and Z-scored (Zsc) CSD potentials across risk groups for the loss (left
columns of panelset A) and gain condition (right columns of panelset B) in the younger (panelset A) and older group (panelset B). Uniform color scales for the
absolute maps (μV/cm2) and for the Z-scored maps (from minimum to maximum) are shown at the bottom.

doi:10.1371/journal.pone.0142659.g005
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LR counterparts, older HR females showed significantly increased BIS scores for non-planning,
motor and total impulsivity. However, correlations between BIS impulsivity scores and theta
power were not significant and had very small ‘r’ values (ranging between 0.005 and 0.056).

Discussion
The major objective of the current study was to examine neurocognitive deficits during reward
processing as measured by ERO theta power in HR offspring from families densely affected by
alcoholism compared to LR subjects from comparison (community) families. Theta power,

Fig 6. Comparison of impulsivity scores between LR and HR across subgroups. The mean and standard error (SE) of the BIS scores have been
plotted. The error bars represent 1 SE. The significance levels have been marked with asterisks (*p < 0.05; **p < 0.01; ***p < 0.001).

doi:10.1371/journal.pone.0142659.g006
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CSD, and behavioral impulsivity were compared between the risk groups in the context of gen-
der and age group. The major findings of the present study are as follows:

1. ERO theta between risk groups: HR subjects showed significantly lower theta power than LR
subjects (HR< LR), and the differences were more robust among males;

2. CSD between risk groups: Differences in CSD topography (HR< LR) were also observed in
HR subjects, especially in males, compared to their LR counterparts;

3. ERO theta between age groups: Younger subjects manifested significantly higher theta power
than their older counterparts consistently across groups and conditions. Further, older sub-
jects displayed relatively more theta activity at anterior sites than younger subjects (“fronta-
lization”) during the loss condition;

4. ERO theta between genders: Males displayed increased theta power than females during
younger ages (during loss and gain), while females manifested augmented theta power than
males (during the gain condition).;

5. BIS scores between risk groups: HR subjects as a whole and in several subgroups showed
increased impulsivity scores compared to their LR counterparts (17 out of 20 comparisons
were significant).

Lower Theta Power and CSD in HR Subjects
The major finding of the present study is that HR subjects displayed lower theta power com-
pared to LR participants across several comparisons (see Figs 3 and 4 and Table 4). Specifically,
as shown in Fig 3, compared to the LR subjects, the HR subjects from younger male and older
female subgroups showed lower theta power during loss and gain conditions, while the older
HR males and younger HR females showed a decrease only during the loss condition. Further,
these differences between the risk groups were more robustly displayed by male compared to
female subjects. To our knowledge, this is the first study that has examined reward related ERO
theta in HR subjects during a monetary gambling paradigm. This finding of lower ERO theta
power during reward processing in HR subjects can be viewed in the light of previous reward
related ERP studies which have reported lower amplitudes in N2 during Balloon Analogue
Risk Task [24] and in P3 during a visual discrimination task [26]. As the time range of theta
power (200–500 ms) used in the present study includes the timing of both N2 and P3 compo-
nents, and since theta activity is considered to be a major constituent of N2 and P3 [14,69,95],
our finding of lower theta power in HR subjects is in line with previous ERP findings during
reward processing in similar sample of at risk groups [67]. Although ERO measures, which
underlie the P3 wave, have been shown to provide additional information to that offered by
conventional ERP amplitude measures [4], comparison of both measures was beyond the
scope of the current study.

On the one hand, lower ERO theta power during reward processing observed in this study
is suggestive of a dysfunctional reward system in HR subjects. On the other hand, since ERO
theta activity has been shown to be related to a variety of behavioral, cognitive, and motiva-
tional or emotional aspects of human information processing including reward processing
[6,7,11,14,30,39,59,60,109–122], and since HR subjects have been shown to have lower ERO
power during other cognitive tasks, such as Go/NoGo [65] and visual oddball [66], our finding
of lower theta activation in HR subjects may also indicate a generic cognitive deficit in these ‘at
risk’ individuals. However, growing evidence for specific dysfunction in reward processing in
HR subjects has been demonstrated by electrophysiological [24,26,67] as well as fMRI studies
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[123,124]. Since the HR subjects showed lower theta power during both loss and gain condi-
tions, it is reasonable to assume that these ‘at risk’ individuals may have difficulty in evaluating
the both positive and negative outcomes. Therefore, this finding may indicate blunted mone-
tary outcome salience or deficient neural reward sensitivity in these subjects. This deficient
processing could also be due to general “cortical insufficiency”, a concept initially proposed in
developmental dyslexia to explain a deficient processing at specific cortical regions (cf. [125]).
In addition, similar to alcoholics, who showed weaker CSD activation during reward process-
ing [49], the findings of the present study demonstrate weaker sources and sinks in HR subjects
during reward processing in frontal and temporal regions (Fig 5). As shown by the structural
and functional MRI studies, it is possible that brain circuitry underlying reward and emotional
processing [126–128] as well as the integrity of white matter pathways are altered in individuals
with positive family history for alcoholism [129,130]. Pre-existing cognitive deficits in high risk
subjects are also evident from the neuropsychological findings showing compromised execu-
tive functioning in these subjects [131–133]. Therefore, it is reasonable to assume that asyn-
chronous (delayed) maturation of prefrontal-limbic circuitry may be involved in the
predisposition to develop substance use and related disorders in high risk adolescents and
young adults (for a review, see Bava and Tapert [134]).

Gender Differences in Theta Power
It was found that ERO theta power between HR and LR subjects was statistically significant,
and this difference was more robust in males compared to females (Fig 3, Panels A1 and A2).
This gender-specific neurophysiological finding in HR subjects is supported by the P3 studies
in the literature. For instance, smaller P3 amplitudes in high risk subjects has been reported
more often in males [26,135–144] than in females [145,146]. Further, P3 reduction has been
shown to be more robust in high risk males than in females (e.g., [147,148]). On the other
hand, there are only a few ERO studies on high risk subjects to compare our findings, and gen-
der effect in these studies were either not analyzed [65] or not to be found significant [66]. Nev-
ertheless, it is well-known that the incidence of alcoholism is higher in males than in females,
with reports in the United States indicating that both life time and 1-year prevalence rates for
alcohol abuse and dependence were more than 2 times higher for males compared to the
females [149]. Our finding implicating HR males as biologically more vulnerable compared to
the HR females may be partially explained by gender differences in the heritability of alcohol
problems [150] as well as in the patterns of transmission of alcoholism between family mem-
bers [151].

Another gender related finding was that while males produced relatively more theta power
(male> female) at younger ages (during both loss and gain), the reverse pattern
(female>male) was observed in the older age group (more apparent during the gain condi-
tion). (Fig 3, Panels B1 and B2). Similar to this finding, Chorlian et al. [46] reported that both
auditory and visual theta EROs were relatively higher in 12–15 year males (than females) while
theta power in females more steadily increased (than males) at/after 15 years of age until 25
years. Previous studies from our group have also found that adult females have higher P3
amplitude [152–154] and increased ERO delta and theta power compared to males in cognitive
and emotional paradigms [155], including the gambling paradigm [14,41]. More studies on
gender differences are needed to confirm our findings as the ERP/ERO studies showing gender
differences across development are rare, although gender differences in ERO responses in dif-
ferent frequency bands to cognitive and emotional processing have been widely documented in
adult samples [155–159]. As noted by Jausovec and Jausovec [158], gender differences in ERO
during visual processing could be explained by evolutionary theories of human visuospatial sex
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differences [160,161]. This observation could be further reinforced by the evidence for gender
differences in anatomical and functional features of the human brain [162–165]. Further stud-
ies examining developmental trajectories of reward-related ERO theta power in adolescence
and young adults of both genders may shed further light to explain our findings.

Theta Power between Age Groups
Our results show a significant and robust decrease of ERO theta power with age, presumably
reflecting developmental changes in the neural mechanisms of outcome monitoring (Fig 3 Pan-
els C1 and C2). This finding is in line with well-known developmental reduction of P3 ampli-
tude [166,167] and resting EEG power [168–174]. In error monitoring paradigms, the error-
related P3 amplitude (“error positivity”) decreased with age [175], in contrast to the error-
related negativity (ERN) that showed a significant increase from 7 to 17 years of age [176].
Although there have been no reward related ERO findings reported between different age
groups, Hammerer et al. [177] measured the FRN in children, adolescents, younger adults, and
older adults, and found that the amplitude of the FRN after gains and losses decreased mono-
tonically from childhood to old age. These developmental changes could be due to dopaminer-
gic and prefrontal contributions to reward-based learning and outcome monitoring across
development from childhood to old age [177,178], and may also reflect changes associated
with the salience of reward information as well as the declining ability to monitor and control
behavior across the life span [179]. In an fMRI task comparing age groups during reward pro-
cessing, Bjork et al. [180] found that compared with young adults (22–28 years of age), adoles-
cents (12–17 years of age) displayed less recruitment of the right ventral striatum and right-
extended amygdala while anticipating responding to gains. Recent fMRI studies have further
confirmed differences in reward processing mechanisms between adolescents and adults [181–
183].

The current study also indicates topographic changes in ERO theta oscillations during
reward processing in adolescent brain development (see Panels C1 and C2 of Figs 3 and 4)
comparing adolescent to young adult subjects. Although both older and younger groups mani-
fested anterior maxima of theta power for the loss condition and posterior maxima for the gain
condition in line with our earlier study [49], the topography of theta activity in the current
study showed increased anteriorization (and decreased posterior activity) during development
from adolescence to young adulthood. Gasser et al. [184] studied topographic aspects of EEG
development of normal children and adolescents from 6 to 17 years, and reported that the mat-
uration of low frequencies (specifically, theta and alpha bands) started at posterior regions and
terminated at anterior derivations with maturation. Further concurring with developmental
ERO studies in the literature [52,58,185–188], our finding corroborated the phenomenon of a
gradual shift towards anteriorized topography and greater frontal activation in theta activity
(i.e., “frontalization”) [189,190], whereby the prefrontal cortex progressively matures and
assumes greater control over neural processing from childhood through adolescence to adult-
hood by virtue of a posterior to anterior progression during brain development [191,192].
According to Gogtay et al. [191], higher-order association cortices (e.g., the prefrontal cortex),
mature only after lower-order structures (e.g., somatosensory and visual cortices) in a parietal-
to-frontal direction, and phylogenetically older brain areas (e.g., basal ganglia and the limbic
system) mature earlier than newer ones (e.g., the prefrontal cortex). Frontalization has also
been observed in resting EEG, which corresponds to grey matter development, showing relative
power distributed as a function of age with posterior regions maturing earlier than anterior
regions (cf. Segalowitz et al. [193]). Specifically, theta-alpha maturation of resting EEG occurs
first in occipital regions and then progresses gradually to frontal regions [170,172,194]. These
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electrophysiological and neuroimaging studies support our finding of more anteriorized theta
activation in older subjects compared to the younger group.

Impulsivity, Externalizing Disorders, Brain Development and Risk for
Alcoholism
The HR subjects in general showed increased impulsivity on all subscales and total score of the
BIS compared to the LR group, although subgroup-specific findings (i.e., age group and gender
related) were also present (Fig 6). Studies have reported higher impulsivity scores and increased
prevalence of externalizing disorders in general, and in particular substance use disorders
[195–198]. It is also interesting to observe that while younger subjects of both genders showed
significant differences between risk groups on all subscales of the BIS, older females displayed
significant differences in nonplanning and motor impulsivity, while the older males were sig-
nificantly different only for motor impulsivity. Similar to our findings, age and gender differ-
ences in impulsivity have been reported in the literature [199,200]. It has also been reported
that the association between gender and risk for alcohol problems may be mediated by impul-
sivity [200]. Further, etiological connections between impulsivity and alcoholism and/or other
SUDs have also been proposed (for reviews, see [201–203]). Consistent with this view, the cur-
rent study has also found that the prevalence rate of externalizing disorders was significantly
higher in the HR compared to the LR group (Table 2). Importantly, the prevalence rates of
externalizing disorders in subjects with family history of alcoholism are higher than normal
population levels [76,204,205].

Impulsivity involves actions and tendencies that are poorly conceived, premature, unduly
risky and often inappropriate in a given context [206], and by extension is related to hyper-sen-
sitivity to immediate reward (delay discounting), the inability to inhibit pre-potent responses
(response disinhibition), and risk taking [207]. Impulsivity includes deficits in attention, lack
of reflection and/or insensitivity to consequences, all of which occur in addiction (cf. [208]).
Evidence suggests that limitations in brain development during adolescence restrict the ability
to control impulsivity and may lead to substance use and addiction [209]. Dysfunctional fron-
tal executive functions have often been linked to impulsivity [208] and substance dependence
[210]. According to de Wit [207], impulsivity is both a determinant and consequence of drug
use. Further, causal connections linking impulsivity, brain development, and risk for SUDs
and/or externalizing disorders have been proposed (for reviews, see [202,208,209]). Taken
together, the findings of the present study lend support to these etiological propositions. In
other words, each of our findings—decreased theta power reflecting possible cortical insuffi-
ciency during reward processing along with increased impulsivity and higher rate of externaliz-
ing disorders in HR subjects—may be inherently related to each other in causing and/or
maintaining the vulnerability or risk status for alcoholism and other related disorders.

However, it should also be mentioned that correlations between ERO theta power and BIS
impulsivity scores were not significant, although such a relationship has been well established
in alcoholic subjects [49]. This suggests that neural mechanisms (or circuits) underlying
reward processing on the one hand, and that of impulsivity on the other hand, may each be
separately related (“parallel connections”) to risk status without influencing each other at rela-
tively younger ages (HR sample) than in older age groups (alcoholic sample). Another possi-
bility is that only those with significant correlations between (and thereby interaction across)
these two systems related to reward theta EROs and impulsivity may develop alcohol depen-
dence, although we do not have any evidence in the current study to support this assertion. In
a previous study in alcoholics, we found a significant correlation between theta ERO during
reward processing and impulsivity (BIS) [49]. This lack of correlation between theta ERO and
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impulsivity in the current study may be attributable to the differences in brain maturation and
reward processing mechanisms between adult alcoholics and the relatively younger HR sub-
jects [181,182]. Geier and Luna [211] report that adolescents relative to adults demonstrated
decreased anticipatory processing and assessment of risk, but an increased consummatory
response, leading to suboptimal representations of reward valence and decision-making. It is
also possible that theta power during the feedback of loss/gain was not inherently related to
impulsivity in the younger sample as used in our study, but rather theta power underlying
(impulsive) decision making (which the current study has not analyzed) may be more directly
related to impulsivity. Further, similar to our results, Bernat et al. [45] did not find a negative
relation between ERO theta activity underlying reward processing and externalizing prone-
ness in a sample of university undergraduates, while such a relationship has been reported for
the error paradigm (ERN) in a similar sample [212]. Bernat et al. [45] explained that this
seemingly inconsistent finding is perhaps due to a functional differences between the compo-
nents, such that the ERN reflects endogenous representations while the feedback related P3
reflects exogenous cues. While reward theta EROs and risk status may have bidirectional
influence with each other, externalizing disorders, which are known to have impulsivity as a
core factor, were more prevalent in the HR subjects relative to the LR group, suggesting that
both trait impulsivity measured by the BIS and the clinical manifestations of impulsivity (in
the form of externalizing disorders) may also be intricately linked to the risk status associated
with AUD. Although these explanations might hold true for the results of the current study,
future studies may further explore this issue.

Limitations and Future Directions
The current study has successfully elicited deficient ERO theta power and CSD along with
heightened impulsivity in HR subjects; yet caution is advised as there are some limitations: For
instance, (i) the sample sizes for the LR groups are smaller than the HR groups; (ii) the trials
involving both low and high bet amounts (10¢ and 50¢) have been combined for loss and gain
conditions in order to maximize trial numbers and sample sizes; and (iii) other frequencies of
EROs, which have not been analyzed (based on our previous studies), may yield additional
information. Nevertheless, the findings of the present study may have considerable implica-
tions to further characterize neurocognitive dysfunction in alcoholism and risk status.

We suggest that future studies overcome the limitations of the present study to further
advance the field, by attempting: (i) to examine the brain circuitries underlying reward/out-
come processing in high risk individuals by using coherence/synchrony measures of electro-
physiology and by using functional connectivity measures of neuroimaging; (ii) to examine the
trajectories of reward-related ERO activity in HR subjects and to delineate longitudinal changes
associated with ERO measures in HR subjects using multiple assessments over a period of
time; (iii) to extend the study to examine EROs in several externalizing disorders (considered
as a spectrum) along with alcohol use disorders; (iv) to include multiple measures of impulsiv-
ity and externalizing features in AUD and HR subjects to understand the complex interactions
among these factors; (v) to examine, in addition to the outcome processing analyzed in the cur-
rent study, the decision making aspect, which might prove to be more sensitive in younger HR
samples; (vi) to compare the absolute ERO power with the baseline normalized power and to
utilize possible complementary merits in both approaches, (vii) to study the effects of genetic
variants on trajectories of electrophysiological phenotypes during adolescent and young adult
development in high risk and low risk samples; and (viii) to parse out the influence of state
(e.g., quantity/frequency of alcohol intake) and trait factors (e.g., impulsivity) in order to mea-
sure the distinct as well as the relative contributions of these factors.
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Conclusions
The current study has examined ERO theta power underlying reward processing (i.e., during
evaluation of loss/gain outcomes) as well as impulsivity features in HR offspring from high
density alcoholism families of COGA and in LR individuals from community families. HR
male subjects showed significantly lower ERO theta power and deficient CSD activity during
reward processing compared to LR subjects. HR subjects also manifested increased impulsivity
and higher rates of externalizing disorders than LR subjects. This lower ERO theta activity dur-
ing reward processing in HR may reflect neurocognitive deficits that may underlie heightened
impulsivity, and increased rates of externalizing disorders, that are inherently related to vulner-
ability for SUDs. It is suggested that ERO theta power during reward processing may be a use-
ful endophenotype in predicting risk for developing alcoholism and related disorders, and
studies are underway to measure the effects of genotypes and phenotypes as well as their inter-
action in causing specific clinical outcomes.
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