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Meiosis is essential to the continuity of life in sexually-reproducing organisms through
the formation of haploid gametes. Unlike somatic cells, the germ cells undergo two
successive rounds of meiotic divisions after a single cycle of DNA replication, resulting in
the decrease in ploidy. In humans, errors in meiotic progression can cause infertility and
birth defects. Post-translational modifications, such as phosphorylation, ubiquitylation
and sumoylation have emerged as important regulatory events in meiosis. There are
dynamic equilibrium of protein phosphorylation and protein dephosphorylation in meiotic
cell cycle process, regulated by a conservative series of protein kinases and protein
phosphatases. Among these protein phosphatases, PP2A, PP4, and PP6 constitute
the PP2A-like subfamily within the serine/threonine protein phosphatase family. Herein,
we review recent discoveries and explore the role of PP2A-like protein phosphatases
during meiotic progression.
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INTRODUCTION

In eukaryotes, reversible phosphorylation and dephosphorylation of proteins represents an
prominent type of post-translational modification that has an crucial effect on controlling some
cellular processes and events (Hunter, 1995). The state of protein phosphorylation can be
adjusted by some highly conserved protein kinases and protein phosphatases (Mumby and Walter,
1993). In general, it is necessary for a number of critical biological events to keep a proper
balance between protein kinases and protein phosphatases (Cassimeris, 1999). Disruption of this
equilibrium can contribute to many pathological circumstances and even diseases. This spatial and
temporal regulation of protein phosphorylation occurs not only in mitotic program, but also in
meiotic progression.

Meiosis is a peculiar type of division in which one single round of DNA replication is followed by
two sequential rounds of chromosome segregation (meiosis I and meiosis II), which is an important
procedure for gamogenesis. Through this progression, diploid parent cells give rise to haploid
gametes with the correct number of chromosomes. Similar to mitosis, meiotic division occurs in all
eukaryotes and is an intricate event that is needed to change the cell cycle (Wolgemuth and Roberts,
2010). DNA replication and chromosome segregation both occur in meiosis. However, there are
some other particular events in meiosis, such as homologous chromosome pairing, synaptonemal
complex formation, double-strand break (DSB) repairing, meiotic recombination and a reductional
division (Berchowitz and Copenhaver, 2010). Prior to the meiotic divisions, changing maternal and
paternal chromosome behaviors including pairing, synapsis, and recombination must occur in a
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highly adjusted manner during prophase (Sato-Carlton et al.,
2014). Therefore, according to the different behaviors of
chromosomes, the prophase I also can be divided into five stages
which are named as leptotene, zygotene, pachytene, diplotene,
diakinesis. These events result in the mutual exchange of DNA
material between homologous chromosomes and increasing
genetic diversity (Bishop and Zickler, 2004). During meiosis
I, homologous chromosomes are segregated whereas sister
chromatids are still interacted on each other. Then sister
chromatids are fully segregated in the second meiotic division
(Canela et al., 2003; Qi et al., 2013). Errors in any of these events
attribute to failure of the gametogenesis. In this progress, human
oocytes have an abnormally high chromosome error rate that
significantly increases with age, with severe results for human
fertility (Keating et al., 2020).

A battery of protein phosphorylation and protein
dephosphorylation events, which are adjusted by protein
kinases and protein phosphatases, are critical for meiotic process
(Bornslaeger et al., 1986; Lu et al., 2001). Protein kinases shift
a phosphoryl group from adenosine triphosphate (ATP) to the
hydroxyl group of serine, threonine and tyrosine residues, while
protein phosphatases dephosphorylate protein by phosphate
group hydrolysis and thus oppose the actions of protein kinases
(Lillo et al., 2014). Among the phosphorylation, almost 98% of
protein phosphorylation occurs on serine and threonine residues
(Pearlman et al., 2011; Hunter, 2014). In human genome,
there are more than 500 protein kinases encoded that catalyze
the phosphorylation (Subramani et al., 2013).These protein
kinases can phosphorylate the specific sites of target proteins.
Nevertheless, it is insufficient for protein kinases alone to control
dynamic processes. Because the phosphorylation of serine and
threonine sites is extraordinary stable, which has long half-life
(Lad et al., 2003), protein phosphatases can ensure that protein
phosphorylation is dynamic and reversible (Nilsson, 2019).
For various reasons, compared with the rich knowledge on
protein kinases, there is a relative lack of information about the
functions of protein phosphatases (Afshar et al., 2016). Among
these conserved phosphoprotein phosphatases, PP2A, PP4, and
PP6 constitute the PP2A-like subfamily within the serine and
threonine protein phosphatase family (Bielinski and Mumby,
2007). These phosphoprotein phosphatases play crucial roles in
multiple series of fundamental cellular events. Recent studies
have implicated that PP2A-like protein phosphatases play critical
roles in regulating meiosis. In this review, we will summarize
recent discoveries and explore the role of PP2A-like protein
phosphatases during meiotic progression.

Classification of Protein Phosphatases
In the past decades, there are numerous studies about
the biological roles of protein phosphatases, especially in
meiosis. Generally, eukaryotic protein phosphatases can be
divided into four major gene families based on specific
substrate, catalytic activity and inhibitor sensitivity (Lillo et al.,
2014). These families are phosphoprotein phosphatases (PPP),
Mg2+/Mn2+-dependent protein phosphatases (PPM), aspartate-
based protein phosphatases, and phosphotyrosine phosphatases
(PTP) (Kerk et al., 2008). Among these families, the PPPs are

the most comparatively conservative members across the whole
eukaryotic species from yeast to human, indicating their
“housekeeping” importance (Brautigan, 2013). In eukaryotic
cells, almost 80% of the protein phosphatase activity is regulated
by PPP family (Janssens and Goris, 2001). The PPP family
includes seven members, namely PP1, PP2A, PP2B (also known
as PP3), PP4, PP5, PP6, and PP7.

The Structure of PP2A-Like Protein
Phosphatases
Within the PPP family, PP2A, PP4, and PP6 come into being
an independent cluster, whose catalytic subunits are most closely
related, suggestive of a common origin (Chen et al., 2017). The
catalytic subunits combine with scaffolding and/or regulatory
subunits to form heterotrimeric or heterodimeric holoenzyme
complexes (Brautigan and Shenolikar, 2018). Although their
catalytic subunits have high sequence similarity, they have their
own special structural compositions (Nasa and Kettenbach,
2020). PP2A is a heterotrimer holoenzyme complex consisting
of a catalytic subunit, a scaffold subunit, and a regulatory
subunit. The heterodimeric holoenzyme also named as core
enzyme, composing of the catalytic and scaffold subunit, which
is indispensable for the function of the holoenzyme (Price and
Mumby, 2000). In higher eukaryotes, there are two isoforms in
PP2A catalytic subunit (PPP2ACα and PPP2ACβ), which have
97% sequence similarity with each other. There are also two
isoforms in PP2A scaffold subunit (PPP2R1α and PPP2R1β),
which have abmost 87% sequence similarity (Saurin, 2018).
The PP2A regulatory subunit has multiple members, which
belong to four different families: B (B55), B′ (B56), B′′ (B72),
and B′′′ (Striatin) family (Janssens and Goris, 2001). Therefore,
the different combination of subunits results in various PP2A
holoenzyme, differing in subcellular localization and distinct
substrate specificity. For PP4, catalytic subunit combines
with different regulatory subunits to form heterodimers or
heterotrimers. The PP4 regulatory subunit has five isoforms:
PPP4R1, PPP4R2, PPP4R3A, PPP4R3B, and PPP4R4 (Kloeker
and Wadzinski, 1999; Cohen et al., 2005). Like other type 2A
serine/threonine protein phosphatases, PP6 also works as a
holoenzyme, consisting of a catalytic subunit, PPP6C, one of
the three regulatory subunits including PPP6R1, PPP6R2 and
PPP6R3, and one of the three ankyrin subunits including ARS-A,
-B, -C (Stefansson and Brautigan, 2006; Stefansson et al., 2008).

PP2A-Like Protein Phosphatases in
Regulation of Meiotic Progression
PP2A
Among type 2A protein phosphatases, PP2A is the most famous
and is widely researched. For a long time, accumulating evidence
revealed its cellular and molecular importance. Studies also
suggest that PP2A is involved in multiple steps of meiosis.
In mouse oocytes, up-regulation of PP2A activity results in
the meiotic arrest phenotype (Su et al., 2012). In Oikopleura
dioica, PP2A is also necessary for meiotic arrest and precaution
of parthenogenesis by restraining the abnormal Ca2+ burst
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(Matsuo et al., 2020). These results indicate that the function of
PP2A is highly conserved in different organisms.

PP2A is essential for chromosome segregation during meiosis
(Kerr et al., 2016). Several in vitro experiments have indicated
that PP2A can associate with shugoshins and hold back the
phosphorylation of Rec8 at the centromeres, a member of
the cohesin complex, and finally stop split of Rec8 and keep
the cohesion of chromatids in meiosis I (Kitajima et al.,
2006; Lee et al., 2008; Rattani et al., 2013). In addition,
Sororin and Shugoshin-PP2A collaborates in the regulation
of centromeric cohesion during meiosis (Gomez et al., 2016).
In Drosophila meiosis, the Shugoshin MEI-S332 and PP2A
reciprocally promote localization of the other to centromeres
and together they thus function to ensure accurate segregation
(Pinto and Orr-Weaver, 2017). Also, a new study indicated that
SCF (Skp1–Cul1–F box) -Fbxo42 down-regulates the protein
level of the PP2A-B56 during synaptonemal complex assembly
and maintenance (Barbosa et al., 2021). In mice spermatocytes,
Previato de Almeida et al. found that Sgo2 is essential to protect
centromere pairing by recruiting PP2A, while Sgo1 regulates
non-exchange segregation by recruiting PP2A to centromeres
(Previato de Almeida et al., 2019). In meiosis II, sister chromatids
disjoin upon cleavage of centromeric Rec8. One assumption is
that PP2A is separated from Rec8 by bipolar spindle forces
in metaphase II. A recent experiment suggested that PP2A is
removed from centromeres by the ubiquitin-ligase APC/CCdc20,
which can decrease the activity of Sgo1 and kinase Mps1
(Arguello-Miranda et al., 2017; Jonak et al., 2017).

Exact kinetochores-microtubule (KT-MT) is essential for
correct chromosome segregation. In mitosis, correct KT-MT
attachments are stabilized by inner sister KT stretching and the
phosphorylation level of the KT. However, because of inherent
property of the MI chromosomes, there is a difference between
meiosis I and mitosis. This may explain the high incidence of KT-
MT attachment errors in oocytes. In meiosis, PP2A-B56, which
is regulated by the BubR1, is essential to determine the stability
of KT-MT attachments independently of bivalent stretching
(Yoshida et al., 2015). Overall, PP2A is targeted by Shugoshin
and BubR1 to protect centromeric cohesion and stabilize KT-MT
attachments in yeast and mouse meiosis. In C. elegans meiosis,
the function of PP2A remains unclear. A recent study found
that PP2A is necessary for female meiotic progression, such as
spindle assembly and chromosome segregation. The mechanism
is that BUB-1 targets PP2A-B′56 via a conserved LxxIxE motif
and this regulation is necessary for correct meiotic progression
(Bel Borja et al., 2020).

In addition, treatment with okadaic acid (OA) or calyculin-A
(CL-A), which inhibits PP2A, caused an absence of microtubule
polymerization and spindles. These studies have also showed
that PP2A participated in microtubule organization and spindle
formation (Lu et al., 2002). Protein phosphatase 2A regulatory
subunit B55α (PP2A-B55α) is encoded by Ppp2r2a. Liang
et al. found that PP2A-B55α was an important regulator of
oocyte asymmetric division, chromosome congression, DNA
damage response and spindle dynamics by RNA interference
(Liang et al., 2017). In Xenopus oocytes,protein phosphatase
2A regulatory subunit B′56 (PP2A-B′56) and calcineurin (CaN)

jointly contributes to APC/CCdc20 activation by inhibiting
phosphorylation of XErp1 (Heim et al., 2018). Two studies
suggested that PP2A might be controlled by two distinct
mechanisms in mouse oocytes. One is a post-translational
modification by which MASTL (microtubule associated
serine/threonine kinase-like), inhibit PP2A activity to promote
anaphase (Adhikari et al., 2014). The other is CRL4-mediated
degradation of the PP2A scaffold subunit, which reduces PP2A
activity to facilitate non-reversible meiotic progression (Yu et al.,
2015). These two regulation mechanisms of PP2A activity in
conjunction with other meiotic regulators ensure precise meiotic
progression in oocytes.

By using genetically modified mouse models, we further
studied the functions of PP2A in oocyte meiosis We employed
the conditional knockout method by using growth differentiation
factor 9 (Gdf9)-Cre mice to gain mutant mice with depletion
of PPP2R1α in oocytes in order to research its function
in female meiosis. The results indicated that oocyte-specific
depletion of PPP2R1α resulted in female subfertility because of
production of aneuploid oocytes came from wrong separation of
sister chromatids, but did not affect folliculogenesis, ovulation
and spindle formation during meiosis II (Hu et al., 2014).
Interestingly, another report generated conditional knockout
mice by crossing Ppp2caf/f and (or) Ppp2cbf/f with Zp3-Cre mice
to study PP2A in female meiosis. They found that single knockout
PPP2ACα females or PPP2ACβ females were fertile, indicating
the paralogs were functionally redundant. Only the deficiency
of both PPP2ACα and PPP2ACβ in oocytes finally resulted in
female infertility (Tang et al., 2016). In this study, they also
found that the PP2A can regulate chromosome behavior and
bipolar spindle formation in meiosis I. PP2A counteracts Aurora
kinase B/C to ensure bivalent stretching and KT-MT attachment
stability (Tang et al., 2016). In contrast, PP2A is also essential for
spermatogenesis, especially meiosis (Pan et al., 2015). However,
the study is descriptive only, with a lack on mechanistic insight.
It will be fascinating to reveal the deeply regulatory mechanism
of PP2A in male meiosis.

PP4
PP4 has been widely studied over the past decade. However,
there is a relative lack of information about PP4 in meiosis. In
C. elegans, PP4 is indispensable for spindle formation during
male meiosis, but it is not essential for female meiosis (Sumiyoshi
et al., 2002). Moreover, at least four critical events in prophase
require PP4, such as synapsis-independent chromosome pairing,
prevention of non-homologous chromosome synapsis, DSB
initiation, and crossover formation. The failure of these series
of events eventually results in the failure of chiasmata formation
(Sato-Carlton et al., 2014). In yeast, PP4 seems to be highly active
during the whole meiotic progression. PP4 has an important
role in single-end invasions, synaptonemal complex assembly,
spindle formation and centromere pairing (Falk et al., 2010).
To clarify whether PP4 has conserved functions in meiosis
in mammalian species, we generated its catalytic subunit gene
Ppp4c conditional knockout (Ppp4cf/f) mouse strain using
CRISPR/Cas9 technology, and showed that loss of PPP4C did
not affect male germ cell meiosis, acrosome formation, nuclear
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TABLE 1 | Consequences of deletions of PP2A-like protein phosphatases in
mouse germ cells.

PP2A-like
protein
phosphatases

Subunit
deleted

Cre
recombinase

Phenotype References

PP2A PPP2R1α Gdf9 Subfertile Hu et al., 2014

PPP2ACα Zp3 Fertile Tang et al., 2016

PPP2ACβ Zp3 Fertile Tang et al., 2016

PPP2ACα&
PPP2ACβ

Zp3 Infertile Tang et al., 2016

PPP2ACα DDx4 Infertile Pan et al., 2015

PP4 PPP4C Stra8 Infertile Han et al., 2020

PP6 PPP6C Zp3 Subfertile Hu et al., 2015

PPP6C Gdf9 Infertile Hu et al., 2016

PPP6C Stra8 Infertile Lei et al., 2020

condensation and elongation, but caused the defect of cytoplasm
removal, which in turn leads to the failure of spermiogenesis
completion and male infertility (Han et al., 2020). Hence, the
physiological roles and regulatory mechanism of PP4 in other
organisms remain to be further studied.

PP6
Like other type 2A serine/threonine protein phosphatases, PP6 is
also ubiquitously expressed in cells. However, PP6 has suffered
less notice than its near relative PP2A and PP4, especially in
meiosis. Until now, there only three papers about the functions of
PP6 in meiosis. We showed that knockout of PP6 in oocytes from
primary follicle stage resulted in female subfertility by disturbing
MII spindle formation and MII exit after fertilization, indicating
that PP6 can act as antagonizer to oocyte aneuploidy. But it is
dispensable in oocyte meiotic maturation, follicle growth and
ovulation (Hu et al., 2015). However, we showed that knockout of
PP6 in oocytes from primordial follicle stage resulted in complete
infertility of female mice. Deletion of PP6 caused meiotic

prophase oocyte loss and abnormal folliculogenesis because of
aberrant phosphorylation level of H2AX, which then led to
lots of oocyte disappearance and eventually premature ovarian
failure (POF). These results indicated that PP6 can also safeguard
oocyte genomic integrity and regulate folliculogenesis during the
long prophase I arrest (Hu et al., 2016). In male meiosis, our
recent study by crossing Ppp6cf/f mice with Stra8-Cre mice to
obtain genetically mutant mice with specific malformation of
the Ppp6c in male germ cells. We discovered that the mutant
mice were male infertile and male germ cells were blocked at the
pachytene stage during meiosis. Further study found that the loss
of PP6 in male germ cells affected chromatin relaxation owing to
abnormal MAPK pathway activity, thus stopping the recruitment
of DSB repair factors to the appropriate sites on chromosomes
(Lei et al., 2020).

Perspectives
Undoubtedly, protein phosphorylation is one of the most
significant post-translational modifications during meiotic
progression. The phosphorylation state of a special protein
is regulated by protein kinases and protein phosphatases. As
a member of PPP family, these new researches on PP2A-
like protein phosphatases reported in past decades enriched
the list of functions in meiosis, especially by employing
conditional knockout mice (Table 1). Nonetheless, the most
studies are descriptive only, with a lack of deep mechanistic
insight. The special substrates of the different PP2A-like
protein phosphatases are still a remaining impediment. In
meiosis, it is not hard to notice that all three members can
play the same role in special stages or special biological
events (Figure 1). Are they functionally redundant? In the
future, these unanswered questions remain to be further
studied. Quantitative mass spectrometry-based proteomic and
phosphoprotoemic approaches maybe provide a solution for
understanding regulatory functional mechanism of PP2A-like

FIGURE 1 | Role of PP2A-like protein phosphatases in meiotic progression.
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protein phosphatases in meiotic progress. In addition, the
progress of short linear motifs (SLiM) also provides a method to
study their biological functions and distinct substrates. These will
fill the gaps in the regulation networks of phosphorylation.
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