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Abstract: Nano-ZnO particles were deposited on the surface of silver nanowires (AgNWs) by the
precipitation method, and the obtained AgNW@ZnO filler with core-shell structure was added to
epoxy resin to prepare AgNW@ZnO/EP thermally conductive composites. The ZnO coating on the
surface of AgNWs effectively improves the thermal conductivity of the composites. When 8 wt%
AgNW@ZnO filler was added to the epoxy resin, the thermal conductivity of the AgNW@ZnO/EP
composite increased to 0.77 W/(m·K). The enhancement of the thermal conductivity is attributed
to the fact that ZnO effectively improves the interface bonding between AgNWs and the epoxy
matrix, thus strengthening the contact between AgNWs. In addition, the electrical insulation of the
AgNW@ZnO/EP composites was improved upon the introduction of the ZnO coating over AgNWs.
For the filler content of 8 wt%, the volume resistivity of the AgNW@ZnO/EP composites was found
to be higher than 1013 Ω·cm. AgNW@ZnO/EP composites have also exhibited low dielectric constant
and good thermal stability.

Keywords: silver nanowires; zinc oxide; thermal conductivity; epoxy composite

1. Introduction

The rapid developments in the electronics industry show that the miniaturization
of electronic equipment is the future trend. As the miniaturized electronic equipment is
likely to produce an enormous amount of heat during operation, heat dissipation therein
has become a critical issue. If the generated heat is not dissipated in time, the internal
temperature will rise sharply, which affects the reliability, stability, and lifespan of the
electronic components. Generally, in integrated circuits, heat sinks are used to get rid of
the heat produced by the chip. However, the gaps between the chips and the heat sinks
may hinder the efficient transfer of heat, thus resulting in extremely low heat dissipation
efficiency by the heat sinks. To solve this problem, thermal interface materials (TIMs) with
high thermal conductivity need to be used to fill the gaps to reduce the interfacial thermal
resistance. Polymers are widely used as TIMs due to their low cost, light weight, chemical
resistance, and ease of processing. Ceramic fillers such as Al2O3 [1–3], BN [4–6], AlN [7–9],
and SiC [10–12] have been added to polymers to improve the thermal conductivity of
polymer composites. However, large amounts of ceramic filler content (30~60 vol%) are
needed to achieve higher thermal conductivity, which eventually shows a negative impact
on the mechanical properties and processability of the composites.

One solution to the above problem is to use nanofillers with high thermal conductivity.
Compared with ceramic fillers, metallic silver (Ag) has extremely high thermal conductivity.
Its thermal conductivity at room temperature is 427 W/(m·K), which is much higher
than the ceramic fillers used currently. Silver nanowires (AgNWs) are one-dimensional
structures that can be used as metallic fillers. AgNWs not only inherited the excellent
thermal conductivity of their bulk form but also have a large specific surface area, showing
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great application potential in the field of thermally conductive materials. AgNWs with a
high aspect ratio have the ability to construct a long heat conduction path in the lateral
direction. Therefore, the thermal conductivity percolation threshold of the composite
material with AgNWs fillers can be significantly reduced, and thermal conductivity can be
effectively improved even at the lower filler content [13].

In addition, AgNWs are also excellent electrical conductors. The electrical resistivity of
silver is 1.59 × 10−6 Ω·cm, which is the lowest among all the metals. Therefore, the addition
of AgNWs into the polymer matrix may result in a decrease in the electrical insulation
properties. TIMs must have high thermal conductivity and high electrical insulation.
Thus, the high electrical conductivity of AgNWs limits their applications to develop TIMs.
However, surface modification of AgNWs can be carried out to improve the electrical
insulation characteristics of the composites filled with AgNWs.

According to previous literature reports, the surface modification of metal nanowires
is carried out using common inorganic materials, SiO2 and TiO2. Simple preparation
methods and mild reaction conditions of SiO2 and TiO2 make them suitable for the sur-
face modification of other nanomaterials, such as CNTs [14] and graphene [15]. However,
the thermal conductivity of SiO2 and TiO2 is very low, about 1.5~3 W/(m·K) [16] and
2.5~5 W/(m·K) [17], respectively. Depositing inorganic oxides with low thermal conduc-
tivity on the surface of AgNWs cannot effectively take advantage of the high thermal
conductivity of AgNWs.

On the other hand, nano-ZnO (particle size of 5–100 nm) is a versatile multifunctional
inorganic material. Due to its unique properties, it is explored in many fields, such as
catalysis, optics, magnetism, and mechanics. Further, ZnO is also used as a thermally
conductive filler, owing to its good thermal conductivity of 60 W/(m·K) (which is much
higher than that of SiO2 and TiO2). Moreover, nano-ZnO shows good electrical insulation
characteristics, with its resistivity in the range of 106~109 Ω·cm [18]. Therefore, surface
modification of AgNWs with nano-ZnO can facilitate exploitation of the high thermal
conductivity of AgNWs. At the same time, the formation of an insulating layer over the
surface can effectively reduce the electrical conductivity of AgNWs, thereby enhancing the
electrical insulation of the composites.

In this paper, AgNWs with a high aspect were prepared. The morphology and
microstructure of the AgNWs were characterized. Subsequently, the precipitation method
was used to deposit nano-ZnO over the surface of AgNWs, thus obtaining ZnO-coated
AgNWs (AgNW@ZnO) filler. AgNW@ZnO was added to epoxy (EP) resin to prepare
AgNW@ZnO/EP composite material. Thermal conductivity, resistivity, thermal stability,
and dielectric constant of the AgNW@ZnO/EP material were studied and results were
compared with the unmodified AgNW/EP composites. The observed differences and
associated mechanisms were discussed and analyzed.

2. Experimental
2.1. Materials

Ethanol used as solvent was obtained from Tianjin Fuyu Chemical Co. (Tianjin, China).
Sodium chloride (NaCl) and glycerol, used as nucleating and reducing agents for Ag-
NWs synthesis, were also obtained from Tianjin Fuyu Chemical Co. (Tianjin, China).
Polyvinylpyrrolidone (PVP, Mw = 400,000), a surfactant used in the synthesis of Ag-
NWs, was obtained from Tokyo Chemical Industry Co. (Tokyo, Japan). Silver nitrate
(AgNO3), used to synthesize AgNWs, was obtained from Aladdin Bio-Chem Technol-
ogy Co. (Shanghai, China). Sodium hydroxide (NaOH) and zinc nitrate hexahydrate
(Zn(NO3)2·6H2O) used for the synthesis of nano zinc oxide were obtained from Guang-
dong Guanghua Chemical Co., Ltd. (Shantou, China). Epoxy resin (E51) was obtained
from Zhejiang Materials Industry Chemical Group Co. (Hangzhou, China), and the cor-
responding molecular structure is shown in Figure 1. The molecular weight and epoxy
equivalent weight of epoxy resins are 370~420 and 190, respectively. The curing agent
m-xylylenediamine (MXDA) was supplied by Macklin Chemistry Co. (Shanghai, China).



Polymers 2022, 14, 3539 3 of 14

Polymers 2022, 14, x FOR PEER REVIEW 3 of 15 
 

 

corresponding molecular structure is shown in Figure 1. The molecular weight and epoxy 
equivalent weight of epoxy resins are 370~420 and 190, respectively. The curing agent m-
xylylenediamine (MXDA) was supplied by Macklin Chemistry Co. (Shanghai, China). 

 
Figure 1. The molecular structure of the epoxy resin used in this paper. 

2.2. Preparation of Silver Nanowires (AgNWs) 
AgNWs were prepared by reducing AgNO3 with glycerol at high temperature as fol-

lows. First, 5.85 g PVP was added to 190 mL glycerol in a round bottom flask at 50 °C, and 
mechanical agitation was used to ensure homogeneity of the solution. When the solution 
was cooled to room temperature, 1.58 g AgNO3 was added to it. A mixed solution of 10 
mL glycerol and 0.5 mL deionized water containing 59 mg of NaCl was then added to the 
flask. The solution was continuously stirred for 1 h at 210 °C, and then it was cooled nat-
urally to room temperature. Finally, the resulting solution was diluted by adding 200 mL 
of H2O, followed by centrifugation at 8000 rpm for 30 min to obtain AgNWs. The centrif-
ugation process was repeated three times by using ethanol to remove residual glycerol 
and PVP on the surface of AgNWs. The obtained AgNWs were then dispersed in ethanol 
solution for later use at a concentration of 0.0053 g/mL. 

2.3. Preparation of AgNW@ZnO 
There exist many methods to synthesize nano-ZnO in the literature, which include 

solid-phase reaction [19], hydrothermal process [20], precipitation technique [21], chemi-
cal vapor deposition [22], electrolysis [23], and magnetron sputtering [24]. Among these 
methods, the precipitation technique is most widely used due to its simple operation and 
mild reaction conditions. The basic principle is to add the precipitant dropwise to the salt 
solution containing zinc to slowly precipitate crystal nuclei at an appropriate temperature. 
Further growth of nuclei results in nano-scale ZnO crystal grains. Therefore, in this paper, 
the precipitation method was used to synthesize nano-ZnO over the surface of the pre-
pared AgNWs. The schematic diagram of the preparation process of AgNW@ZnO is 
shown in Figure 2. 

Figure 1. The molecular structure of the epoxy resin used in this paper.

2.2. Preparation of Silver Nanowires (AgNWs)

AgNWs were prepared by reducing AgNO3 with glycerol at high temperature as
follows. First, 5.85 g PVP was added to 190 mL glycerol in a round bottom flask at 50 ◦C,
and mechanical agitation was used to ensure homogeneity of the solution. When the
solution was cooled to room temperature, 1.58 g AgNO3 was added to it. A mixed solution
of 10 mL glycerol and 0.5 mL deionized water containing 59 mg of NaCl was then added
to the flask. The solution was continuously stirred for 1 h at 210 ◦C, and then it was
cooled naturally to room temperature. Finally, the resulting solution was diluted by adding
200 mL of H2O, followed by centrifugation at 8000 rpm for 30 min to obtain AgNWs.
The centrifugation process was repeated three times by using ethanol to remove residual
glycerol and PVP on the surface of AgNWs. The obtained AgNWs were then dispersed in
ethanol solution for later use at a concentration of 0.0053 g/mL.

2.3. Preparation of AgNW@ZnO

There exist many methods to synthesize nano-ZnO in the literature, which include
solid-phase reaction [19], hydrothermal process [20], precipitation technique [21], chemical
vapor deposition [22], electrolysis [23], and magnetron sputtering [24]. Among these
methods, the precipitation technique is most widely used due to its simple operation and
mild reaction conditions. The basic principle is to add the precipitant dropwise to the salt
solution containing zinc to slowly precipitate crystal nuclei at an appropriate temperature.
Further growth of nuclei results in nano-scale ZnO crystal grains. Therefore, in this paper,
the precipitation method was used to synthesize nano-ZnO over the surface of the prepared
AgNWs. The schematic diagram of the preparation process of AgNW@ZnO is shown in
Figure 2.
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The typical preparation process of AgNW@ZnO is as follows: First, 100 mL ethanol
solution containing AgNWs with a concentration of 0.0053 g/mL was added to the reactor.
Then 0.44 g Zn(NO3)2·6H2O was added and stirred for 1.5 h to fully dissolve. In addition,
0.11 g NaOH was dissolved in 100 mL ethanol by stirring for 2 h. The prepared ethanol
solution containing NaOH was added dropwise to the solution containing AgNWs. The
process was carried out slowly such that the ethanol solution with NaOH was added
dropwise within 1 h. High-speed stirring was maintained throughout the reaction process
for the next 2 h. Next, the reaction vessel was sealed and equilibrated for 24 h. Upon
complete precipitation of the product, the supernatant was removed and the remaining
solution was centrifuged at 4000 rpm for 10 min. The obtained precipitate was separated
and washed several times with deionized water and ethanol to remove the residues in
the reaction. The final product was dried in a vacuum oven at 60 ◦C for 12 h to obtain
AgNW@ZnO filler.

2.4. Preparation of Composite Materials

The composite material was prepared by the solution mixing method. AgNW@ZnO
filler to a certain proportion was completely dispersed in ethanol solution ultrasonically for
20 min followed by stirring for 1 h. Subsequently, the solution was heated to 70 ◦C, and a
certain amount of epoxy resin was slowly added to the solution, which was ultrasonicated
for 20 min to ensure thorough mixing. The obtained mixture was vacuum-dried at 70 ◦C to
remove the residual ethanol from it. Further, the curing agent m-xylylenediamine (MXDA)
was added to the epoxy mixture, which was 25 wt% of the epoxy resin, and stirred for
10 min. The final epoxy resin product filled with AgNW@ZnO filler was vacuum-dried
and cured at 120 ◦C for 8 h to obtain the AgNW@ZnO/EP composite.

2.5. Material Characterization

X-ray diffractometer (XRD; XRD-6000, Shimadzu, Kyoto, Japan) was used to charac-
terize the crystal structure of the synthesized AgNWs and AgNW@ZnO. The morphologies
of AgNWs and AgNW@ZnO and their distribution in the epoxy matrix were examined
using scanning electron microscopy (SEM; Verios G4, FEI, Hillsboro, OR, USA). The distri-
bution morphology of nano-ZnO on the surface of AgNWs was observed by transmission
electron microscopy (TEM; Talos F200X, FEI, Hillsboro, OR, USA). The static contact angle
between the filler and the epoxy matrix was measured using a static contact angle meter
(OCA20, Stuttgart, Germany). Thermogravimetric analysis (TGA) of epoxy, AgNW/EP,
and AgNW@ZnO/EP composites was performed using a thermal analyzer (Q5000IR, TA
Instruments, New Castle, DE, USA). During the test, the temperature was increased from
25 ◦C to 700 ◦C in an air atmosphere at a heating rate of 10 ◦C/min. The glass transition
temperatures (Tg) of epoxy resin, AgNW/EP, and AgNW@ZnO/EP composites were mea-
sured using a differential scanning calorimeter (DSC; Q2000, TA Instruments, New Castle,
DE, USA). The volume resistivity of AgNW/EP and AgNW@ZnO/EP composites was
measured using an ultra-high resistivity meter (ZC36, Shanghai, China). The dielectric con-
stant of composites was tested by dielectric constant tester (ZJD-C, Beijing, China). The test
frequency range was 105 Hz~107 Hz. The diameter of the tested sample was 38.4~40 mm
and the thickness was controlled between 1 and 5 mm. The thermal conductivity of epoxy,
AgNW/EP and AgNW@ZnO/EP composites was determined by a laser flash analyzer
(LFA 447, Netzsch, Bavaria, Germany). The surface temperature of the composites was
measured using an infrared camera (IRS-S6, Shanghai, China).

3. Results and Discussion
3.1. Characterization of AgNWs

AgNWs were synthesized using the polyol method by heating at 210 ◦C for 1 h [25]
as discussed above. Compared with the synthetic method which used ethylene glycol,
glycerol contains more hydroxyl groups and therefore acts as a stronger reducing agent.
Figure 3 shows SEM images and XRD pattern of the obtained AgNWs. It can be seen
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from SEM images that the prepared AgNWs have a uniform diameter and contain fewer
particulate impurities. The purified AgNWs are one-dimensional nanostructures with a
length of 10–50 µm and a ratio of a diameter ranging from 100–130 nm. A large number
of AgNWs are piled up to form a random network structure, which is conducive to the
formation of phonon transmission channels in the polymer matrix, thereby effectively
reducing the thermal resistance. Five diffraction peaks at 38.1◦, 44.3◦, 64.4◦, 77.4◦, and 81.5◦

are noted in the XRD patterns of AgNWs, which correspond to the (111), (200), (220), (311),
and (222) crystal planes of face center cube crystals [26]. Thus, the successful preparation
of AgNWs is confirmed.
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3.2. Characterization of AgNW@ZnO

Nano-ZnO particles can be obtained by controlling the ratio of zinc salt and the pre-
cipitation agent in the precipitation method [27]. In this paper, by adjusting the ratio
and concentration of Zn(NO3)2·6H2O and NaOH, nano-ZnO was coated over the Ag-
NWs, which is termed AgNW@ZnO. SEM images, TEM images, and XRD pattern of the
AgNW@ZnO are shown in Figure 4a–d, respectively.

SEM image in Figure 4a clearly shows AgNWs covered by tiny ZnO particles. The
coating of ZnO is relatively complete, and there are no exposed AgNWs. The thickness
of ZnO coating is uniform, and no large agglomerates of ZnO are found. Figure 4b is the
high-magnification SEM image of AgNW@ZnO filler, in which nano-ZnO particles formed
by stacking over the surface of AgNWs can be observed clearly. The diameter of nano-ZnO
particles is 5–25 nm, and the thickness of ZnO coating is 15–50 nm as seen in the TEM
image of AgNW@ZnO (Figure 4c). By comparing with the SEM images of pure AgNWs,
it can be observed that the surface of the AgNW@ZnO with core-shell structure is much
rougher. Rough surface AgNW@ZnO fillers have a larger specific surface area, which is
beneficial to obtain good dispersion in the matrix.

The crystalline nature of AgNW@ZnO was characterized by an XRD study, and the
results are shown in Figure 4d. The diffraction peaks of (111), (200), (220), (311), and (222)
crystal planes corresponding to the AgNWs are seen. In addition, typical characteristic
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diffraction peaks of ZnO appeared at 31.9◦, 34.5◦, 36.3◦, 47.7◦, 56.7◦, 62.9◦, and 68.1◦ in the
XRD pattern, which can be indexed respectively to the (100), (002), (101), (102), (110), (103),
and (112) crystal planes of the hexagonal wurtzite structure of ZnO. Except for AgNWs and
ZnO phase diffraction peaks, no other peaks are noticed, which indicates the high purity of
the obtained AgNW@ZnO filler.
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3.3. Static Contact Angle Test of AgNW@ZnO

The prepared AgNWs and AgNW@ZnO fillers were respectively coated on glass
plates to form thin films, and their static contact angles with epoxy resin were estimated.
Images of the contact angle test are shown in Figure 5, and the contact angle data are given
in Table 1.

The contact angle of AgNW filler with epoxy resin is 31.7◦, whereas, for AgNW@ZnO,
it is 13.2◦. Upon coating AgNWs with the nano-ZnO layer, the contact angle of the filler
to epoxy decreased by 18.5◦, which indicates the enhancement of the interfacial bonding
of filler with epoxy matrix. The observed differences may be due to the smooth surface
of pure AgNWs, which leads to the relatively poor wettability by epoxy. On the other
hand, the surface of AgNWs becomes rough upon nano-ZnO coating, which is beneficial to
enhance the wettability of epoxy resin to fillers. In addition, nano-ZnO prepared in solution
possesses a large number of hydroxyl groups on its surface [28–31]. These hydroxyl groups
can interact with epoxy resin in a certain manner, which helps to enhance the wettability of
epoxy resin to the filler. Improving the wettability of resin and filler enhances the interfacial
bonding between them.
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Figure 5. (a,b) are static contact angle test images of AgNW and AgNW@ZnO with epoxy.

Table 1. Static contact angles of AgNW and AgNW@ZnO with epoxy.

Filler AgNW AgNW@ZnO

Static contact angle 31.7◦ 13.2◦

3.4. Characterization of Composite Materials

For nano-sized AgNW@ZnO filler, it is very important to ensure its uniform dispersion
in the matrix [32,33]. Since the prepared AgNW@ZnO filler can disperse better in ethanol,
ethanol was used as a solvent to mix the prepared nanofillers into epoxy resin to prepare
composite materials. In order to investigate the distribution of fillers in composites, SEM
was used to characterize the cross-sections of epoxy composites filled with AgNWs and
AgNW@ZnO. The cross-section SEM images of the composites are shown in Figure 6.
Figure 6a,b are the cross-sectional SEM images of AgNWs-filled epoxy resin composites,
whereas Figure 6c,d are the SEM images of AgNW@ZnO-filled epoxy composites cross-
sections.
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It can be seen that, in Figure 6a,c, there is no obvious difference in the filler distribution
of two epoxy composites, with AgNWs and AgNW@ZnO. Both fillers are uniformly
dispersed in epoxy resin, and no agglomeration is noticed. Therefore, the use of ethanol as
a solvent ensures good dispersion of the fillers in epoxy resin. However, in Figure 6b, gaps
at the interface of some AgNWs and epoxy matrix indicate that AgNWs are poorly bound to
the epoxy matrix. This may be because of the poor interface wettability of epoxy to AgNWs,
resulting in some AgNWs not closely interacting with the epoxy matrix. Whereas, no such
cases are observed in AgNW@ZnO-filled epoxy resin. Figure 6d shows a high-magnification
SEM image of the AgNW@ZnO distribution in an epoxy matrix. AgNW@ZnO is embedded
into the epoxy matrix, and there are no gaps at their binding interface. The close binding of
AgNW@ZnO and epoxy matrix helps to reduce the interfacial thermal resistance caused
by poor contact between them and effectively improves the thermal conductivity of the
composite material.

3.5. Thermal Conductivity of Composites

The thermal diffusivity of the AgNW/EP and AgNW@ZnO/EP composites was
measured using the laser thermal conductivity meter, and the corresponding thermal
conductivities of the composites materials were calculated. The results are shown in
Figure 7.
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The thermal conductivity of the AgNW/EP composites is significantly improved and
increased with the increase of AgNWs content. For instance, the thermal conductivity
of pure epoxy resin is only 0.18 W/(m·K), whereas, for 8 wt% AgNWs fillers content,
AgNW/EP composites’ thermal conductivity is increased to 0.63 W/(m·K). A similar
increasing trend of thermal conductivity is observed for AgNW@ZnO filler. In contrast,
for the same mass fractions of two fillers, the thermal conductivity of AgNW@ZnO/EP
composite is found to be higher than that of AgNW/EP composite. At 8 wt% AgNW@ZnO
filler content, the thermal conductivity of AgNW@ZnO/EP composites is 0.77 W/(m·K),
which is 22% higher than the AgNW/EP composites.

From the thermal conductivity curves of AgNW/EP and AgNW@ZnO/EP composites,
it can be seen that the overall thermal conductivity of the composites is increased for
the composites with nano-ZnO-modified AgNWs fillers, though ZnO has low thermal
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conductivity. This may be explained by the following two factors: as explained above,
the first one is related to the interfacial binding of filler-epoxy. As the surface of pure
AgNWs is very smooth, the wettability of epoxy resin to the surface of AgNWs is relatively
poor. This results in a small fraction of air gaps or voids at their interface and creates huge
interfacial thermal resistance, due to the very low thermal conductivity of air, which is
only 0.024 W/(m·K). It affects the overall thermal conductivity of AgNW/EP materials.
On the other hand, the surface of AgNW@ZnO is relatively rough and it accompanies a
large number of hydroxyl groups on its surface, which have a certain interaction with the
epoxy matrix. AgNW@ZnO is bonded intimately with the epoxy matrix, which reduces
the interfacial thermal resistance and enhances the overall thermal conductivity of the
composite. The thermal conduction of AgNWs in the composite mainly depends on the
thermal movement of free electrons, and its heat transfer efficiency is very high. The heat
conduction of the resin matrix mainly depends on the thermal vibration of the molecular
chains, and its heat transfer efficiency is extremely low. Good interface bonding between
the filler and the resin is beneficial to reduce the scattering of electrons and phonons at the
interface for better heat transfer efficiency.

In addition, during the preparation of AgNW@ZnO fillers, ZnO is not only deposited
over the surface of AgNWs but is also deposited over the contact points between AgNWs.
Due to this, the loose network originally formed by the overlapping of AgNWs is strength-
ened by the deposited ZnO at the contact points. The strengthened AgNWs network further
facilitates the stable transport of phonons and electrons in it, resulting in higher thermal
conductivity in the composites.

3.6. Electrical Properties of Composites

Volume resistivity of the AgNW/EP and AgNW@ZnO/EP composites was measured,
and the results are shown in Figure 8. The volume resistivity of the AgNW/EP is de-
creased sharply with the increase of AgNWs filler content. For 8 wt% AgNWs, the volume
resistivity dropped by seven orders of magnitude. However, the volume resistivity of
AgNW@ZnO/EP composites decreased gradually with the increase of filler content. For
8 wt% AgNW@ZnO filler fraction, the volume resistivity of the AgNW@ZnO/EP compos-
ites remains as high as 1013 Ω·cm, which indicates good electrical insulation. As AgNWs
are one-dimensional nanofillers with excellent electrical conductivity, increasing the mass
fraction of AgNWs forms a local conductive network which significantly reduces the overall
volume resistivity of the AgNW/EP composites. Whereas, the resistivity of nano-ZnO lies
between 106 and 109 Ω·cm, which is much larger than the AgNWs. The nano-ZnO coating
over the surface of AgNWs hinders the direct contact between AgNWs, which restricts
the electron transport of free electrons within the single AgNW. The nano-ZnO coating
thus breaks the conductive network path formed by the pure multiple AgNWs at higher
fractions. Consequently, the electrical insulating properties of the AgNW@ZnO/EP com-
posites are significantly enhanced. The AgNW@ZnO/EP thermally conductive composite
material can be recommended for specific applications where high electrical insulation is
also required.

3.7. Thermal Management Capabilities of Composites

In order to investigate the heat dissipation performance of different composites, cir-
cular samples of pure EP, AgNW/EP, and AgNW@ZnO/EP composites were placed on
a heating platform with an initial temperature of 30 ◦C. Subsequently, the platform heats
up with constant power to simulate the heat dissipation of electronic equipment. The in-
frared thermal imager is used to monitor the surface temperature of the composite samples.
Thermal images were taken at every 20 s interval as given in Figure 9. The filler content in
AgNW/EP and AgNW@ZnO/EP composites used for this study is 8 wt%.
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The surface temperature of all the samples is increased with the increase of heating
duration as shown in temperature curves (Figure 9); however, the rate of temperature rise
is different in each of them. Among them, pure EP has shown the slowest temperature rise
because of its low thermal conductivity, which results in extremely slow heat transfer. As
the thermal conductivity of the composites is increased upon the addition of thermally con-
ductive fillers, the temperature rise rate is significantly improved. Further, the temperature
increase rate of AgNW@ZnO/EP composite is found to be higher than that of AgNW/EP
composite, which is due to the better thermal conductivity of AgNW@ZnO/EP composites.
The infrared thermal photographs that were taken during different time intervals also
intuitively reflect the better thermal conductivity of the AgNW@ZnO/EP composite.
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3.8. Thermal Stability of Composites

Since thermally conductive materials are often used in high-temperature applications,
they should possess good thermal stability. Therefore, the thermal stability of thermally
conductive materials is an important parameter to evaluate their comprehensive performance.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were
used to characterize the thermal stability of EP, AgNW/EP, and AgNW@ZnO/EP samples.
The corresponding results are shown in Figure 10. The filler content of AgNW/EP and
AgNW@ZnO/EP composites with 4 wt% is used for this test. T5% and T50% are used as
the parameters to characterize the thermal weight loss of the samples, which represent the
temperature corresponding to the material mass loss of 5% and 50%, respectively. T5% is
also referred to as the initial decomposition temperature, which can be used to characterize
the heat resistance of materials. T5%, T50%, and glass transition temperature (Tg) of pure EP,
AgNW/EP, and AgNW@ZnO/EP samples are listed in Table 2.
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Table 2. TG and DSC data of EP, AgNW/EP, and AgNW@ZnO/EP composites.

Sample T5% (◦C) T50% (◦C) Tg (◦C)

EP 271.8 372.1 91.3
AgNW/EP 300.2 374.9 96.1

AgNW@ZnO/EP 329.4 382.3 99.6

Initial weight of the samples is decreased gradually during the heating process, and the
weight is dropped rapidly upon reaching a certain temperature. T5% and T50% of pure EP
are 271.8 ◦C and 372.1 ◦C, respectively, whereas, for AgNW/EP, T5% and T50% are increased
to 300.2 ◦C and 374.9 ◦C, respectively. Further, for AgNW@ZnO/EP, T5% and T50% are
329.4 ◦C and 382.3 ◦C, respectively which are significantly higher as compared with pure
EP. The significant improvement in thermal stability of AgNW@ZnO/EP composites may
be due to the fact that the ZnO coating over the surface of AgNW increases the interfacial
bonding between the fillers and matrix, thereby increasing the activation energy of the
thermal decomposition process in the composites.

The thermal stability of pure EP, AgNW/EP, and AgNW@ZnO/EP were further
characterized by DSC. Tg of the EP is enhanced upon adding AgNWs and AgNW@ZnO to
it, by about 5 ◦C and 8 ◦C, respectively, as shown in DSC curves (Figure 10). The DSC data
also indicate the higher thermal stability of the AgNW@ZnO/EP composite.
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3.9. Dielectric Constant of Composites

The dielectric constants of pure EP, AgNW/EP, and AgNW@ZnO/EP composites with
2 wt% filler content composites were determined in the high-frequency range (105 Hz–107 Hz).
The result is shown in Figure 11.
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Dielectric constant of pure EP is low, and it is 2.98 at the electric field frequency
of 105 Hz (as shown in Figure 11). Whereas, the dielectric constant of AgNWs/EP and
AgNW@ZnO/EP composites is significantly increased. AgNWs are metallic materials with
very good electrical conductivity, which is very different from that of epoxy resin. Under the
external electric field, a large amount of charge accumulation takes place at the metal-epoxy
interfaces, resulting in large interfacial polarization and dielectric constant. Further, the
dielectric constant of AgNW@ZnO/EP is found to be larger than that of AgNW/EP. This
is again attributed to the better filler and matrix interface in the case of nano-ZnO-coated
AgNWs. This enhances the polarization at the interface junction, which leads to the increase
in the dielectric constant of the AgNW@ZnO/EP composite.

4. Conclusions

In this paper, AgNWs with one-dimensional structure were prepared and nano-ZnO
particles were grown over the surface of AgNWs using the precipitation method to obtain
AgNW@ZnO fillers with core-shell structure. Thermally conductive AgNW@ZnO/EP
composites were prepared by adding AgNW@ZnO into epoxy resin. Compared with
AgNW/EP composite filled with the same quantity of AgNWs, the thermal conductivity
of AgNW@ZnO/EP composite is higher. AgNW@ZnO filler has shown a better effect on
improving the thermal conductivity of epoxy resin than pure AgNWs filler. For 8 wt% filler
content of AgNW@ZnO, the thermal conductivity of the composite material is increased
to 0.77 W/(m·K). The surface of AgNW@ZnO is rougher than the AgNWs and contains a
large number of hydroxyl groups over the surface. This contributes to the tight bonding
between AgNW@ZnO and epoxy matrix, which reduces the filler-epoxy interface voids. It
further leads to the lowering of interface thermal resistance, thereby improving the thermal
conductivity of the epoxy composite.
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An electrically insulating nano-ZnO coating over the surface of AgNWs also helped in
preventing the free electrons from efficiently transporting between the networks formed by
AgNWs. This inhibits the formation of the local conductive network in the composite, thus
enhancing the insulation of epoxy composite. For instance, for 8 wt% AgNW@ZnO filler
content, the volume resistivity of AgNW@ZnO/EP composite is still higher than 1013 Ωcm,
indicating that AgNW@ZnO/EP composites possess good electrical insulation. Further,
AgNW@ZnO-filled epoxy composites have shown higher initial thermal decomposition
temperature, glass transition temperature, and thermal stability than AgNWs-filled epoxy
composites. In addition, ZnO coating over the AgNWs does not significantly change the
dielectric constant of epoxy composites, and still shows a low dielectric constant.
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