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Abstract

A major challenge in evolutionary developmental biology is to understand how genetic muta-

tions underlie phenotypic changes. In principle, selective pressures on the phenotype

screen the gene pool of the population. Teeth are an excellent model for understanding evo-

lutionary changes in the genotype-phenotype relationship since they exist throughout verte-

brates. Genetically modified mice (mutants) with abnormalities in teeth have been used to

explore tooth development. The relationship between signaling pathways and molar shape,

however, remains elusive due to the high intrinsic complexity of tooth crowns. This hampers

our understanding of the extent to which developmental factors explored in mutants explain

developmental and phenotypic variation in natural species that represent the consequence

of natural selection. Here we combine a novel morphometric method with two kinds of data

mining techniques to extract data sets from the three-dimensional surface models of lower

first molars: i) machine learning to maximize classification accuracy of 22 mutants, and ii)

phylogenetic signal for 31 Murinae species. Major shape variation among mutants is

explained by the number of cusps and cusp distribution on a tooth crown. The distribution of

mutant mice in morphospace suggests a nonlinear relationship between the signaling path-

ways and molar shape variation. Comparative analysis of mutants and wild murines reveals

that mutant variation overlaps naturally occurring diversity, including more ancestral and

derived morphologies. However, taxa with transverse lophs are not fully covered by mutant

variation, suggesting experimentally unexplored developmental factors in the evolutionary

radiation of Murines.

Author summary

Teeth are found in almost all vertebrates, and they show many different morphologies. In

mammals, especially the cheek teeth or molars are highly diverse in shape, reflecting a vast

range of dietary habits and efficiency of occlusion. As teeth are the most durable part of

the body, they preserve well in the fossil record. The diversity of molar fossils has been

useful in reconstructing the diet and phylogeny of extinct mammals. Genetically modified

mice (mutants) show diverse modifications of their molar morphology, but we lack

computational tools to test to what extent mutant morphologies account for the natural
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diversity found in the wild. We developed data mining using machine learning and phy-

logeny-based methods to analyze three-dimensional molar shapes in mouse mutants and

natural species. Although many mutants and species have comparable features, most of

the mutant molar variation covers the more evolutionarily ancestral than the more evolu-

tionary derived shapes. Yet to be explored developmental factors may underly the more

extreme shapes.

Introduction

One general challenge in linking the genotype to the phenotype is the multidimensionality of

the phenotype. Especially when comparisons include both evolutionary diversity and experi-

mentally produced variants, methods need to account for both small and large differences in

the phenotype. Here we explore landmark-free morphometric mapping approaches to exam-

ine variation in the mammalian dentition. Dentitions provide many opportunities for the link-

ing of evolutionary transformations with experimental evidence on the genetic control of

development. Among jawed vertebrates, mammals show the highest morphological diversity

in tooth shape [1,2]. Especially molar teeth show a high diversity of shapes, which is closely

associated with different kinds of dietary adaptations among mammalian species [3–6]. Due to

the preponderance of teeth in the fossil record, numerous studies have examined dental char-

acters such as cusp and loph arrangement on occlusal surfaces of the molar teeth. Conse-

quently, mammalian molar tooth morphology has played a central role in species

identification and reconstruction of phylogeny and diet [6–9]. Concomitantly, tooth develop-

ment is becoming increasingly better understood. Developmental studies have unveiled when,

where, and what kind of genes are expressed and how they interact with each other [10,11].

More than 200 genes have been identified to be dynamically expressed during tooth develop-

ment. Many of these genes belong to transforming growth factor β (Tgfβ), fibroblast growth

factor (Fgf), sonic hedgehog (Shh), and Wnt signaling pathways that are required repeatedly

during tooth development.

Much of the experimental data about the role of the different genes in tooth development

come from studies using laboratory mice (Mus musculus). Mice belong to the subfamily Muri-

nae (murines) of the family Muridae. Murines are one of the most diverse mammal taxa,

which has been proposed to be partly due to the evolution of novel molar morphologies con-

tributing to the colonization of a broad spectrum of diets and habitats [12].

Many genetically modified mice have been reported to have distinctive tooth phenotypes

[13–16]. Genetic mutations typically simplify crown morphology, and large increases in com-

plexity appear to require the adjustment of multiple signaling pathways simultaneously [17].

More detailed analyses have shown that tooth characters present in stem murines can be

reproduced by tinkering with signaling, especially with that of ectodysplasin (Eda), a diffusible

tumor necrosis factor (TNF) family protein [18–20].

Tooth shape can be considered an archive of phenotypic variation, encompassing the past,

present, and laboratory-derived populations. Examining all these data together, a key question

related to evolution is the likelihood of different morphological transformations. Whereas the

effects of signaling pathways on tooth phenotype have been characterized in individual cases

[13,14,21,22], we lack comprehensive analyses of mutant morphologies in the context of evolu-

tionary diversity. Furthermore, it remains to be explored how different signaling pathways may

coinfluence dental characters. In this context, a problem that has hampered quantification of

mutant and evolutionary phenotypes is the complexity of the molar morphology itself and the
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extensive changes that gene inactivations can cause on the morphology. Since it is difficult to

assess how and to what extent crown variations differ from each other, the effect of signaling

pathways on molar morphology has not been thoroughly examined. The complexity thus

remains a challenge for interpreting the effect of gain and loss of function in gene expression on

the shape and inferring acquisition of novel characters involved in morphological evolution.

Here we compare molar shape variation in 31 murine species and 22 mouse mutants using

a novel integrated scheme of morphometric mapping (MM), which combines a landmark-free

approach for feature extractions with two data mining techniques, machine learning and phy-

logenetic signal [23] (Fig 1 and S1 Text). This method permits to quantify the complicated

morphologies by a set of densely sampling morphometric parameters. While various kinds of

morphometric tools and algorithms have been developed over the decade [24–28], it has

remained unclear how to select the appropriate variables according to research objective (but

see ref. [29]). As a solution to this problem, we introduced two data mining techniques to

select appropriate data set which meet the following objectives: i) machine learning for maxi-

mizing classification accuracy of mutant mice to clarify the relationship between signaling

pathway and molar shape variation and ii) phylogenetic signal that reflects phyletic relation-

ship adequately to place both mutant mice and murine species into the same morphospace,

thereby allowing the estimation of the evolutionary coverage of pathway modifications.

Results

Machine learning approach to analyze molar shapes of mutant mice

Our machine learning approach included steps to parameterize the lower first molar (LM1) of

22 mutant strains representing wild type (WT) with multiple metrics depicting their morphol-

ogy (Figs 1 and 2A). Here LM1 was chosen because it is the most commonly studied tooth in

developmental biology research. Specifically, the three-dimensional (3D) models of the sample

(Fig 2A) were parameterized with 4 morphometric parameters (Fig 1): surface curvature,

height from the cervix, radius from the centroid of cervical line, and vertex normal that repre-

sents the direction of each vertex as a unit vector in three dimensions (x, y, and z variables,

respectively). Before performing multivariate analysis, each morphometric map, i.e., the

matrix of morphometric variable, was converted into a set of coefficients by Fourier transfor-

mation for low-pass filtering. This procedure affects the scale of detail that is used in the subse-

quent analyses. We applied feature selection algorithms by utilizing machine learning to pick

the combination of morphometric variables and the size of low-pass filtering to optimize the

classification of the 22 mutants. To obtain a relatively broad range of classifications, we com-

pared seven types of map combinations by adjusting filter size in seven different classification

models (five basic learners: decision tree, linear, discriminant, support vector machine, and k-

nearest neighbor). Cross-validation was used to evaluate the performance of each model with

mean classification loss where data was randomly partitioned into ten subsets, and one subset

was used to validate the model trained using the remaining subsets. Five models showed com-

parable accuracy (accuracy = 1 – averaging cross-validation classification loss) of the best clas-

sifiers (79.1%) (S1 Fig and S2 Table). Among them, multivariate analysis was performed using

the most parsimonious model in which vertex normal with relatively small (size = 6) low-pass

filter were used as the “best” set of variables for the principal component analyses (PCA).

The PCA was performed on the mutant means (that is, between-group PCA; Fig 2B), with

the first two components accounting for 32% and 17% of the total variance, respectively.

Examining the PCA shows that shape variation along PC1 captures the difference due to the

number of cusps. The positive and negative extremes along PC1 correspond to Tabby and

WT, respectively (Fig 2B). While the former has only 2 or 3 cusps with an oval outline, the
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latter has a wedged outline. The PC2 captures variation in the outline shape of the tooth, as

also relative size and distribution of cusps. Overall, specimens of positive PC2 possess large

cusps relative to the crown surface. Most of the teeth from K14Eda and K14EdaShhGFP are

located in the lower middle, and their small cusps relative to the crown surface are distributed

in parallel with a rectangular outline. This cusp distribution leads to an increase in both trans-

verse and longitudinal lophedness (crests connecting adjacent cusps). Shape change towards

the negative extreme of PC2 eventually reaches a fused m1 and m2 configuration in double

mutants of Sostdc1 knockout K14Eda.

Fig 1. Outline of procedures for morphometric mapping with data mining. 3D-reconstructions of diverse tooth shapes are turned into different morphometric maps

that parameterize distinct aspects of the morphology, such as surface curvature, height from the cervix, radius from the center of the tooth crown, and vertex normal. All

maps are converted with Fast Fourier Transformation (FFT) for low-pass filtering and finally analyzed by Principal Component Analysis (PCA). Two data mining

schemes, machine learning and phylogenetic signal, are performed to select the combination of morphometric parameters and the size of low-pass filtering depending

on the composition of the sample.

https://doi.org/10.1371/journal.pcbi.1008436.g001
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Phenetic distance approximates the genetic distance of the mutants

Because our data set included a different combination of mutants (Fig 2A), including null

mutants that have been crossed with overexpression mice for another gene, we approximate

the cumulative effects of these genetic mutations. This was calculated as a ’pseudo-genetic dis-

tance’ of the mutants from WT mice (Materials and Methods). The distance of each mouse

strain from the WT was assumed to be the sum of individual mutations. For example, a mouse

mutant that is homozygous for one gene and heterozygous for another gene, would have a

Fig 2. Molar shape variation in 22 mutant strains. (A) Pseudo-genetic code for mutant strains with 3D models of the teeth (symbols correspond to PC plot in B). (B)

Shape variation depicted on the first two principal axes of between-group PCA on vertex normal vector with the first six sets of Fourier coefficients. 3D model and

corresponding vertex normal map of marked specimens are provided to illustrate shape variation. Red bidirectional arrow shows shape variation associated with the

number of cusps. Blue arrow exhibits shape change towards parallel distributed cusps and increased lophedness. Green arrow represents shape change towards a fusion

of two molar configurations. (C) The difference between the pseudo-genetic code from WT (x-axis) and phenetic distance from WT (y-axis) shows increasing

phenotypic change with genetic change.

https://doi.org/10.1371/journal.pcbi.1008436.g002
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distance of 1.5 from the WT. Similarly, we calculated the phenetic distance between the

mutants and WT teeth as Euclidean distance in morphospace. The two distance matrices show

an overall agreement (Fig 2C, r = 0.73, p< 0.001), suggesting that larger changes in signaling

result in larger changes in the phenotype. However, as the deviation from the regression line is

large when more than one gene is adjusted, the effect cannot be considered simple (Fig 2C),

underscoring the multidimensionality of the phenotypes (Fig 2B).

Molar shapes of wild murines partially overlap the mutant phenotypes

To explore links between developmental modification and evolutionary patterns in molar

morphology, we examined how the mutant mice and wild murines are distributed in a

morphospace.

Starting with wild murines, shape variables were selected that maximize the phyletic infor-

mation among the species. Specifically, to select the shape variables that best explain the phylo-

genetic relationships, we used the multivariate K statistic as the data mining criterion [30]. K

statistic provides a statistical measure of the phylogenetic signal relative to expectations under

the Brownian motion model of evolution [31]. When K is equal to 1.0, multivariate phenotypic

traits analyzed are assumed to evolve at a neutral rate, and its phenotypic variance is propor-

tional to genetic distance. We used 31 wild murine species for the analysis (S3 Table), and

their phylogenetic relationships were constructed following Steppan and Schenk [32]. Using

the same scheme as in machine learning, we calculated K statistic from various combinations

of morphometric variables and the size of low-pass filtering (S2 Fig). The analyses show that K

values are lower than 1.0 in all the models considered, the variable combination ’vertex normal

with radius’ (Nxyzr) and ’low-pass filter size 2’ (S4 Table) providing the highest value

(K = 0.704). Therefore, closely related species are more different from each other than expected

under the Brownian motion model. Because the phenotypic divergence of molars is indicative

of ecology, we analyzed the effect of diet on molar shape variation using phylogenetic general-

ized least squares (PGLS) with the variables providing the highest K value. The result shows

that the effect of diet is significant (S5 Table), suggesting ecology in driving murine molar evo-

lution [6].

Next, to examine the molars of the mutant mice in the context of murine species, we per-

formed a PCA combining the two datasets. This was done using the model showing the highest

K value for murine species (K = 0.704 with Nxyzr and low-pass filter size 2, S4 Table). These

variables were extracted from both the mutants and the wild species, and a morphospace was

generated using PCA (using the covariance matrix, Fig 3B). The phylogenetic tree (Fig 3A)

was projected onto morphospace by reconstructing hypothetical ancestral morphologies (that

is, internal nodes) using squared-change parsimony [33]. When the two PC spaces are com-

pared (Figs 2B and 3B), they appear roughly similar since the distance matrices of the first two

PC scores are highly correlated (r = 0.93, p< 0.001). Thus, shape space defined by mutants

and wild murine variation is largely comparable to that of mutants, although the order of the

first two PC axes is switched with each other between these two PCAs.

Examination of the PC shows that wild murines exhibit two distinct shape trends from the

estimated common ancestor of all Murinae rodents. The first is towards the negative PC1

direction, which shows a wedged outline with six relatively large main cusps and lacking acces-

sory cusps, such as in the genus Mus itself. The second is towards the positive PC1 direction,

which exhibits the most notable shape variation, that is, lamellation of cusps seen in Otomys.
This variation is not accounted for by the mutant phenotypes. Conversely, mutant phenotypes

characterized by a small number of cusps and rounded tooth shape (e.g., Tabby mutants, Fig

2) do not have corresponding mouse taxa. Overall, whereas there is considerable overlap
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between the mouse mutant and murine species morphologies, both groups also exhibit distinct

phenotypic variants.

Discussion

Relationship between signaling pathways and molar shape

Our results of machine learning showed that the combination of vertex normal with a rela-

tively small number of Fourier coefficients for low-pass filtering was efficient for the purpose

of classification of mutant molars. The vertex normal quantifies detailed (i.e., local scale) mor-

phology of the crown. On the other hand, a small number of Fourier coefficients permit to

capture global feature of the respective parameter. Thus, in the data set we used, the global fea-

tures of the local scale morphology reflected the genetic differences between mutants. How

can this be related to development? It is plausible that the global features capturing small scale

morphology (here, the vertex normal) are related to that of cusp patterning that is largely

determined at the morphogenetic phase of tooth development. This result no doubt reflects

the large changes that can be caused by mutations (Fig 2A).

Although mutants show a quite broad spectrum in dental morphology [18,34], their mor-

phological variation can be described largely as a combination pattern of the number, relative

size, and distribution of cusps, and outline shape of molar crowns (Fig 2). Most importantly,

the relationship between signaling pathways and molar shape is not necessarily linear. For

example, mutant strains related to Eda signaling (Tabby and K14Eda) and WT are not aligned

Fig 3. Molar shape variation of wild Murinae species. (A) Phylogenetic tree of murines used for the analysis. Acomys wilsoni is included as an outgroup (symbols

correspond to PC plot in B). Examples of a 3D model for each taxon are shown. (B) Shape variation depicted on the first two principal axes of between-group PCA on

vertex normal vector and radius with the first two sets of Fourier coefficients. Morphometric map representation is the same as Fig 2. Blue−green arrow signifies shape

change associated with a wedged outline and relatively large six cusps on a crown. Purple arrow captures shape change towards lamellation. Legends for mutants are the

same as in Fig 2. Circled ‘a’ represents the estimated last common ancestor of murines analyzed.

https://doi.org/10.1371/journal.pcbi.1008436.g003
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on a straight line in morphospace. Additionally, Sostdc1 heterozygous mutant mice are not

located in the middle between WT and Sostdc1 null mice. Consequently, the correlation

between phenetic distance matrix data and the pseudo-genetic distance matrix was moderate

(r = 0.48). Nevertheless, disparity from WT between pseudo-genetic code and molar shape

shows relatively high correlation and R-squared coefficient (r = 0.73, R2 = 0.53; Fig 2C). This

may stem from the fact that shape changes in heterozygous strains in subtle ways, and the

extent of shape change is rendered unstable when more than one genetic loci are adjusted in

unison. Signaling pathways expressed in tooth development are iteratively used during mor-

phogenesis, and small effects may have cascading effects over development.

Evo-devo perspective on molar shape variation in murine rodents and

mouse mutants

Using the data set composed of vertex normal and radius with the first two sets of Fourier coef-

ficient that provides the highest phylogenetic signal, we compared the shape variation of wild

murines with mutants. The inferred last common ancestor of murines is located close to

Sostdc1 knockout specimens, suggesting they share complex molar morphology. The Murinae

supposedly originated in the Middle Miocene of southern Asia around 14 million years ago

[35,36]. The fossils assigned to early murines exhibit fairly complicated crown structure with

not only six cusps but also several accessory cusps [37], which is largely consistent with the

estimated common ancestor in our analysis (Fig 3). Although we used a dataset that reflects

phylogeny among the specimens, the phylogenetic signal in our data was lower than expected

under neutral evolution. This indicates prevalent convergent evolution in murine radiations.

Selective pressures on dietary adaptations are a likely explanation for some of the convergent

morphologies (S5 Table [6]). These similarities include complex crown morphologies that also

include longitudinal crest (called stephanodonty), features also present in some of the mouse

mutants [19]. Nevertheless, considering the relatively extensive phenotypic changes produced

by single gene mutations in our data (Fig 3B), convergent morphologies do not necessarily

imply convergent adaptation.

Whereas our results show an overlap between wild murine diversity and mutant shape vari-

ation, several taxa are out of the mutant range (S3 Fig). This indicates that the morphological

diversity found in wild murines is not fully explained by the developmental factors in the cur-

rently known mutants. In other words, ’hopeful monsters’ produced in the laboratory are not

a match for the ’wild beast’ produced by evolution. Specifically, our PC space made up of

mutants and wild species is a type of theoretical morphospace [38] and can suggest boundaries

of developmental or phylogenetic constraints. The simplified morphology of Tabby, the null

mutant of Eda, does not have an equivalent in the wild species in our sample. This does not

exclude the possibility that in specific selective regimes, a comparable morphology could be

attained in evolution. Indeed, Rhynchomys species with a high proportion of worms in their

diet show a reduction in their dental complexity reminiscent of Tabby teeth [39].

The lamellation, which is captured as disparate shape variation among wild murines, is not

realized in the studied mutants. This is suggestive that some additional, yet to be discovered

factors may regulate the formation of these tightly packed lateral crests. Although the lateral

placement of cusps and stronger development of transverse crests have been reported for Eda

pathway overactivation [17], these morphologies do not approach the extreme lamellation

seen in Otomys. One possibility is that strong selective pressures related to a fibrous diet have

selected both the Eda pathway and other pathways is regulating lamellation. Yet another possi-

bility is that regulation of lateral cusp configuration can be partly outsourced to the adjacent

jawbone [40].
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Overall, our approach overcomes the challenge of studying shapes that lack homologous

landmarks among disparate shapes. This, in turn, allowed us to compare disparate mutants

and contrast these shapes to real species. These data and analyses help to identify areas where

we still lack experimental evidence on the regulation of the phenotype. Conversely, develop-

mental data can be used to project the kind of phenotypic variants that are likely to evolve.

Combining phenotypic and genotypic information based on comparative data in light of natu-

rally selected variation will provide us with a further understanding of evolutionary modifica-

tion of development.

Materials and methods

Mutant and wild murine samples used in the study

Our total mutant sample (N = 235) consists of 22 strains (including wild type) related to 12 sig-

nal transduction genes (S1 Table). Each strain represents null (knockout), heterozygote-null,

overexpression under keratin-14 promoter, or a combination of two different gene modifica-

tions. Mice were maintained on a mixed genetic background, and littermates were used as

wild type. All mutant strains are stored at the University of Helsinki. Comparative data set of

Murinae, a subfamily of Muridae, consists of 31 species, including Acomys wilsoni (Deomyi-

nae) as an outgroup (S3 Table).

All the specimens were micro-CT scanned at the Department of Physics, University of Hel-

sinki, Finland, using SkyScan 1272, Bruker with voxel resolution of 10 μm. The 3D-reconstruc-

tions were made using the software Amira 6.4 (Thermo Fisher Scientific, Waltham,

Massachusetts, USA).

Morphometric mapping with data mining

We used a landmark-free morphometric mapping approach, which is suitable for morphologi-

cally highly complicated and extremely variable teeth used in this study. The workflow of this

method is represented in Fig 1 and S1 Text. Prior to parametrize 3D molar shape with mor-

phometric variables, each 3D surface model was placed in the Cartesian coordinate system fol-

lowing Morita et al. [23]. Briefly, the cervical line was manually digitized on the surface model,

and the least-squares plane of the outline was computed. Each molar was positioned so that

the cervical plane was horizontal to xy-plane (z = 0). The molar was centered on matching

with the centroid of this coordinate system, followed by shifting-down of the 3D model along

the z-axis up to the upper 80% of tooth crown height (from the highest cusp tip to the cervical

plane) being above xy-plane. This procedure ensures that the analyses are done on the cuspal

morphology of the teeth. Next, the molar surface was sectioned by 300 vertical planes radiating

from the z-axis, perpendicular to the basal (x−y) plane, and cross-sectioning the molar in 300

equiangular sections (L = 300). In each vertical cross-section, 300 points were sampled along

the intersection of the vertical section with the EDJ surface, running from the z-axis to the

outer intersection at z = 0. This was done in 300 equidistant intervals (K = 300). For each of

the 300 sampled points along the 300 equiangular sections, the following morphometric

parameters were recorded: surface curvature (c), height from the basal plane (h), horizontal

distance, i.e., radius, from the centroid (r), and vertex normal that represents the direction of

the local area in 3D as a unit vector (Nxyz). The morphometric data of each molar were thus

represented as K × L matrices (K = 300, L = 300) for each of the four parameters of six variables

(c, h, r, and Nxyz). The morphometric variables were mapped onto a polar coordinate system

(d, θ). Here, d denotes the normalized position along each cross-sectional outline (d = 0!1:

center!outer crown base), and θ denotes the anatomical direction (θ = 0˚!360˚: buc-

cal!mesial!lingual!distal!buccal). The 3D morphology of the crown surface was thus
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visualized in the form of two-dimensional morphometric maps M (d, θ). These morphometric

maps are shown as false-color maps. Each element of the vertex normal vector (x, y, z) is

assigned to an RGB value, respectively, and integrated into a map. To facilitate visual inspec-

tion, morphometric maps are reconstructed to represent the outline at the cervix by padding

the background according to relative length at the cervix. The effects of scaling were corrected

by normalization of the variables c, h, and r using centroid size (CS, the square root of the

summed squared distances calculated from h and r variables). This approach is analogous to

normalization by centroid size in standard geometric morphometrics [41]. Each row of the

K × L matrix for each specimen was sequentially weighted by a concentrically subdivided area

with radius 1 and constant internal angle (= 1/L) that was equidistantly sectioned (= 1/K).

Each specimen was preoriented according to the anatomical direction. Then, 2D-Fourier

transforms F(Mi) of all Mi (i = 1, 2, . . ., n) were calculated (M had natural periodicity in θ).

This resulted in K × L sets of Fourier coefficients representing a specimen’s shape of the EDJ

surface as a point in the multidimensional Fourier space. Differences due to orientation were

corrected, limiting the freedom of rotation to only around the z-axis. This optimal fitting was

achieved by iteratively minimizing inter-specimen distance in Fourier space through rotation

around θ (z-axis).

After all specimens were aligned by the optimal fitting, we carried out two data mining

techniques: i) machine learning, and ii) phylogenetic signal, to select a combination of mor-

phometric variables and the number of a set of Fourier coefficients (i.e., the size of low-pass fil-

tering in Fourier space) to reduce the number of variables relative to the number of specimens

and to focus on the major patterns of shape variation.

In the first scheme, machine learning was used to maximize the classification accuracy of

22 mutant strains. We trained multiclass error-correcting output codes (ECOC) model [42],

using five types of leaners: decision tree, linear classification, discriminant analysis, support

vector machine (SVM), and k-nearest neighbors (number of neighbors was set to 1, 3, and 5

with neighborhood defined by Euclidean distance). 10-fold cross-validation was used as a mea-

sure of model accuracy with the seven classification models described above. We compared

seven combinations of morphometric variables with adjusting the size of low-pass filtering

from 1 to 50: chr, c, hr, Nxyz, Nxy, Nxyzr, chrNxyz.

For the second scheme, the multivariate K statistic was used to maximize the phylogenetic

signal among the sample implemented with the R package geomorph [30, 43]. The phylogeny

of murine rodents was modified from the molecular phylogeny of Steppan and Schenk [32],

which is based on multiple nuclear and mitochondrial markers and included multiple fossil

calibrations. Aethomys hindei, Apodemus sylvaticus, and Notomys mitchellii were not in Step-

pan and Schenk (2017), and we estimated the position of these taxa at the generic level with

Mesquite v. 3.05 [44]. We compared the same seven types of map combinations with adjust-

ment of low-pass filter size from 1 to 100.

Multivariate analysis

After data mining procedures, we conducted two between-group principal component analysis

(PCA). We performed PCA on the data set of only mutants according to the result of machine

learning, and that of both mutants and wild murines based on the phylogenetic signal, respec-

tively. The phylogenetic tree was projected onto the latter PC space with reconstructed internal

nodes (the position of ancestral states) using the maximum likelihood method for continuous

data implemented with the R package phytools [33,45]. Group-mean molar shapes of mutants

were used to evaluate a between-population phenetic distance matrix. The scheme for pseudo-

genetic coding is based on the expression of each signaling: loss, 0; hetero, 0.5; gain, 2; normal,
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1. The ‘pseudo-genetic distance’ from WT was defined as the disparity from the normal based

on this coding system. The disparity from the wild type was evaluated in both phenetic and

pseudo-genetic data to examine the phenetic-genetic relationship. Furthermore, to evaluate

the correlation between molar shape and pseudo-genetic distance matrices for mutants, the

Mantel test was used. All parametrization and calculations for MM were performed in

MATLAB 9.5 (MathWorks, USA). To evaluate the effect of diet on molar shape variation, we

used phylogenetic generalized least squares (PGLS) with R packages geomorph [43]. The

murine species were placed into four dietary categories (generalist, herbivore, insectivore, and

frugivore) obtained primarily from the recent summary of the literature [46,47] where they

emphasized on the primary resource in a given diet, and also by consulting the cited primary

literature [48,49].
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