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Abstract

Background: We explored premature stop-gain variants to test the hypothesis that variants, which are likely to
have a consequence on protein structure and function, will reveal important insights with respect to the
phenotypes associated with them. We performed a phenome-wide association study (PheWAS) exploring the
association between a selected list of functional stop-gain genetic variants (variation resulting in truncated proteins
or in nonsense-mediated decay) and an extensive group of diagnoses to identify novel associations and uncover
potential pleiotropy.

Results: In this study, we selected 25 stop-gain variants: 5 stop-gain variants with previously reported phenotypic
associations, and a set of 20 putative stop-gain variants identified using dbSNP. For the PheWAS, we used data
from the electronic MEdical Records and GEnomics (eMERGE) Network across 9 sites with a total of 41,057
unrelated patients. We divided all these samples into two datasets by equal proportion of eMERGE site, sex, race,
and genotyping platform. We calculated single effect associations between these 25 stop-gain variants and ICD-9
defined case-control diagnoses. We also performed stratified analyses for samples of European and African ancestry.
Associations were adjusted for sex, site, genotyping platform and the first three principal components to account
for global ancestry. We identified previously known associations, such as variants in LPL associated with
hyperglyceridemia indicating that our approach was robust. We also found a total of three significant associations
with p < 0.01 in both datasets, with the most significant replicating result being LPL SNP rs328 and ICD-9 code 272.
1 "Disorder of Lipoid metabolism” (Paiscovery = 2.59%10-6, Prepiicating = 2.7x10-4). The other two significant replicated
associations identified by this study are: variant rs1137617 in KCNH2 gene associated with ICD-9 code category 244
"Acquired Hypothyroidism” (Pgiscovery = 5.31x103, Preplicating = 1.15%10-3) and variant rs12060879 in DPT gene
associated with ICD-9 code category 996 “Complications peculiar to certain specified procedures” (Pgiscovery = 8.
65X103, Preplicating = 416x10-3).

Conclusion: In conclusion, this PheWAS revealed novel associations of stop-gained variants with interesting
phenotypes (ICD-9 codes) along with pleiotropic effects.
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Background
Genetic variations can result in changes in the success
of transcription and translation, as well as modification
of the structure and function of resulting proteins. These
changes are also responsible for potential downstream
effects across pathways and ultimately affecting pheno-
typic outcomes. Thus, exploring the associations between
functional genetic variants and a number of phenotypes
can be helpful in highlighting the impact of genetic
architecture on outcomes in a more biologically interpret-
able manner. A number of resources for identifying the
function of genetic variants on transcription, translation,
protein structure and function have emerged, providing a
way to highlight genetic variants that likely have an impact
on protein structure or function. Loss-of-function or gain-
of-function variants are responsible for changing the
function of protein products, and these functional variants
have been shown to be important for identifying clinically
relevant associations in pharmacogenetic studies [1, 2].
Nonsense mutations result in premature termination of
translation that result in the production of in non-
functional polypeptides [3]. Variations that result in new
stop-codon are referred to as stop-gain variants. Stop-gain
variants have been shown to be associated with Mendelian
diseases in the OMIM database [4]. Thus, there is the
potential for stop-gain variants to explain stronger effects
than other types of variants [5] In this study, we applied
an approach to explore phenotypes conditional on geno-
types, namely phenome wide association study (PheWAS).
PheWAS evaluates associations between selected
genetic variants and an extensive set of phenotypes and
thus is an effective approach. This approach has been
successfully used to identify disease associations using
EHR (Electronic Health Record) -based phenotype data
[6, 7]. PheWAS has also been implemented within epi-
demiological and clinical trials datasets and has become
an important tool for identifying novel associations as well
as discovering pleiotropic effects [8—11]. PheWAS can
identify associations across multiple phenotypes, where
genetic variation is associated with more than one pheno-
type, some of which may be due to pleiotropy [12] and
also some that are observed through multiple GWA stud-
ies can thus be identified with this approach. An example
includes variation in the human leukocyte antigen (HLA)
region known to be associated with variety of autoimmune
diseases [13]. PheWAS has been shown to be effective at
identifying cross-phenotype associations (pleiotropic asso-
ciations) of functional variants [14]. In this study, we hy-
pothesized that stop-gain variants are more likely to
impact clinically relevant outcomes compared with the
common variants targeted by genome-wide genotyping ar-
rays. Therefore, to identify associations between EHR-
based phenotypes and stop-gain variants, we performed a
PheWAS between 25 selected stop-gain variants and
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multiple phenotypes in EHR data and to determine
whether one or more of these putative functional variants
are associated with any clinical conditions. Unlike GWAS
studies where the clinical relevance of identified variants
is difficult to explain, with this study we aimed at study
only clinical or scientific relevant variants and its associ-
ation with a comprehensive list of ICD-9 diagnoses codes.
The Electronic MEdical Records and GEnom-
ics (eMERGE) is a large dataset consisting of many sites
where samples are also genotyped on various platforms.
We provide a first of its kind approach to describe
methods and challenges in investigating samples from
various demographic regions within USA.

Methods

Study dataset

For the study we used the imputed genotype data available
from the electronic medical records and genomics
(eMERGE) network [15]. The eMERGE Network consists
of 9 sites that are aimed at identifying genotype associa-
tions using phenotype data from the EHR [16]. The
eMERGE Network consists of 55,289 samples genotyped
across multiple platforms and imputed to 1000 Genomes
reference panel covering ~18 million variants with age of
participants ranging from infants to above 90 years of age.
In order to identify relevant associations and replications,
we used 41,057 adult samples (=19 years of age) from the
eMERGE Network. EHRs contain a variety of kinds of
data, including International Classification of Diseases,
Ninth Revision (ICD-9) codes, clinical lab variables, medi-
cation, demographics etc. ICD-9 codes classify variety of
signs, symptoms, diseases, and injuries. In this study, we
used ICD-9 diagnosis codes to define case/control status
for a variety of conditions. Since samples in eMERGE were
genotyped on several different platforms, genotypic
imputation was performed on these datasets to combine
them. eMERGE data were imputed using IMPUTE?2 [17]
with phasing done using SHAPEIT2 [16].

Discovery and replication dataset

To obtain highly robust results from this PheWAS, we
divided the eMERGE dataset into a discovery and replica-
tion set using a random sampling approach. Samples in
eMERGE are from diverse populations and several geno-
typing platforms were used in the analysis. Therefore, in
order to consider confounding factors when dividing the
data, we used a stratified sampling strategy to reduce the
impact of potential biases that could arise after dividing
the data due to extreme diversity in the dataset. We
proportionately allocated samples by each stratum; where
stratum is a class to which samples were distributed by
sex, eMERGE site, genotyping platform, and race/ethni
city. We had a total of 21,085 samples in the discovery set
and 21,065 samples in the replication dataset. Additional
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file 1: Table S1 shows the distribution of samples across
each dataset by each stratum before quality control was
performed on samples.

Quality control of genetic data

We used samples from eMERGE phase I and II. Samples
from all sites in eMERGE I were genotyped on one of two
platforms (Illumina 660 and 1 M) and in eMERGE-I],
samples from all sites (9 sites) were genotyped on different
platforms (a total of 9 different platforms) [15, 18, 19].
The overlap among the SNPs from different genotyping
platforms was fairly small (about 20,000 SNPs), thus each
dataset was imputed to enable robust combination of
datasets. Described in detail in a previous publication, we
imputed all samples using IMPUTE2 best practices guide-
lines and 1000 Genomes reference panel [20] which
resulted in approximately 38 million variants across the
entire dataset. Identity by decent (IBD) estimation was
performed using PLINK’s method of moment in R pack-
age SNPrelate [21] in order identify and remove related
samples from further analysis. The evaluation of related-
ness was more appropriate after dividing the eMERGE
dataset because there are known sample relationships
from some sites and IBD estimation after randomly
dividing the dataset dropped fewer samples. One member
from a pair of individuals with kinship coefficient > 0.125
was removed which resulted in 20,526 and 20,531 unre-
lated samples in discovery and replication datasets
respectively. Principal Component Analysis (PCA) was
performed using smartpca program in Eigensoft package
[22]. The first three principal components or eigenvectors
were then used to adjust models for global ancestry.

Identifying stop-gain variants

To determine the functional impact of the all variants, we
first annotated all SNPs that passed QC criteria with six
bioinformatics annotation and prediction tools i.e., SNPeff
[23], ANNOVAR [24], GEMINI [25], Variant effect
predictor [26], VAT [27] and SeattleSeq [28]. The results of
variant function predicted across these tools were quite
different for the SNPs of this study as shown in Additional
file 2: Table S2. As observed by others, functional predic-
tion tools differ in their predictions [29]. To obtain a more
robust measure of functionality of these eMERGE SNPs,
we thus queried all genetic variants of this study against all
stop-gain variants found in dbSNP137 and identified 225
stop-gain variants in our data. We then compared these
dbSNP-annotated variants with the cross tissue average of
every transcript generated from Illumina BodyMap 2.0
project data [30]. Within the Illumina BodyMap project
there are 16 different tissues with RNAseq data and we
considered the most widely expressed transcript as the
most canonical transcript. After this filtering step, a total of
46 likely loss-of-function stop-gain variants were selected.
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To serve as positive controls, we included 9 additional
SNPs with known association with traits. The list of 46
likely stop-gain variants and 9 proof-of-principle SNPs,
were then extracted from both discovery and replication
datasets. Variants below minor allele frequency (MAF)
threshold of 0.005 were filtered out, thus resulting in total
of 25 variants that were considered for association testing.
Out of the 25 variants selected, 20 were identified
through the annotation pipeline as stop-gain variants
and five variants (Table 1) were used as positive
controls for proof-of-concept validation.

Phenotype data

The phenotypic data consisted of 11,879 distinct ICD-9
codes for 41,057 individuals with genotype data. We
defined case-control status for each ICD-9 code, where a
case status is assigned when an individual has>3
instances of an ICD-9 code and control status is
assigned based on the absence of an ICD-9 code. In
cases of samples with more than one but fewer than
three ICD-9 code instances, we removed them from
analysis for that ICD-9 code. We further excluded the
ICD-9 diagnoses that were present in fewer than 10 indi-
viduals. Using these filtering criteria on ICD-9 code data,
there were 20,526 samples and 2,879 ICD-9 codes in the
discovery dataset and 20,531 samples and 2,854 distinct
ICD-9 codes in the replication dataset.

Association testing

We conducted standard and penalized regression in the
discovery and replication dataset separately using PLATO
(http://www.ritchielab.psu.edu/software/plato-download)
and we adjusted the models for sex, site, platform, and the
first three principal components to account for global an-
cestry. In the discovery dataset, we performed association
testing with penalized logistic regression between 25 SNPs
and 2,859 ICD-9 based case/control status and in the repli-
cation dataset 2,854 ICD-9 codes were included. Results of

Table 1 Proof of concept null variants. Note that ICD-9 codes
are not shown for all traits because there is not a known
association with an ICD-9 code for all traits

SNP Gene “Trait Previously Associated
rs328 LPL Pure hyperglyceridemia
(ICD9 272.1) [14]
152814778 DARC White Blood Cell count [47]
rs1815739 ACTN3 Dystrophinopathy [48],
type 2 diabetes [49]
rs16910526 CLEC7A Inflammatory bowel disease [50],
candidiasis [51], aspergillosis [52]
rs601338 FUT2 Gastroenteritis [53],

Crohn's disease [53]

?ICD-9 codes are not shown for all traits because there is not a known
association with an ICD-9 code based definition of the condition
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tests of association were visualized using Synthesis-View
[31]. Because some of the SNPs might have shown associ-
ation in one racial/ancestry group compared to another,
and one of our proof-of-concept SNPs is more prevalent in
people of African ancestry (DARC variant rs2814778) we
also performed association testing stratified by the two
largest racial/ethnic groups in the present study: European
ancestry (EA) and African ancestry (AA).

ICD-9 codes classify diagnoses; there are three digit [CD-
9 codes that specify disease categories (e.g. code 405 for
“secondary hypertension”) that can are further be further
subdivided using multiple four or five digit sub- ICD-9
codes (e.g. 405.1 for “benign secondary hypertension”,
405.11 “benign renovascular hypertension”). We therefore
analyzed results based on replication requiring the exact
ICD-9 code for more specific replication (three to five digit
sub- ICD-9 codes), as well as evaluating results based on
replication requiring only the same three digit ICD-9 code
category, a more broad replication for a given case/control
diagnosis. For seeking replication, we required a P < 0.01
with the same direction of genetic effect in both the testing
discovery and replication dataset for the same SNP, and the
same 3-digit ICD-9 code category as well as the exact same
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code (from three digit to 5 digit). Complete pipeline of the
process from selecting of variants to running association
analysis is shown in Fig. 1.

Results

Association analyses for the discovery and replication
datasets were performed independently. We performed
both standardized and penalized regression analyses,
however, standard regression failed due to complete or
quasi-complete separation. Therefore, we describe results
from only penalized logistic regression in the sections
below. On the individual dataset level we identified 192
SNP-diagnoses associations in the discovery set and 195
SNP-diagnosis associations in replication dataset with a p <
0.01, at the 5-digit level ICD-9 code level (Additional file 3:
Table S3 and Additional file 4: Table S4).

The most significant association in the discovery
dataset was the association between ICD-9 coded 272.1
“Pure hyperglyceridemia” and the proof-of-principle LPL
SNP rs328 (P=2.59 x 10°, OR=052 [95 % CI: 0.39,
0.70]), replicating a previously published association for
this SNP. The most significant association in the replica-
tion dataset was between the SNP rs601338 in CC2D2A

~N

eMERGE Version 3 Imputed Dataset
(Genotype-Phenotype common samples)

]

Extract Null Variants
(25 SNPs)

v

Extract adult samples
(Ages 19 and above)

Discovery Dataset
~ All_samples with ICD-9 code

~ Stratified by Race with ICD-
code

IBD, MAF >=0.005; ICD-9 code with count >=3 and sample >=10 on each dataset

Replication Dataset
~ All_samples with ICD-9 code

~ Stratified by Race with ICD-
code

\

PheWAS on both datasets, adjusted by Sex, Site, Platform, PC1, PC2, PC3

'

e pval<0.01
e same direction of effect
L

Seek Replication by following criteria:

replication based on 3 digit and 5 digit ICD-9 codes

Fig. 1 Flowchart showing the analysis pipeline for PheWAS on functional variants in eMERGE data
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gene with ICD-9 code 266.2 “B-complex deficiencies”
with P =3.73 x 107, OR = 0.74 [0.64, 0.85]. SNP rs601338
is in high LD with a non-synonymous common variant
rs602662 which has a known association with plasma vita-
min B12 [32].

We sought replication of results between the discovery
and replication datasets at the three-digit level (more
broad ICD-9 code level) as well as for the exact ICD-9
code (anywhere from the exact 3 digit to 5 digit code for a
given association).

Only one association was found replicating at the 5-
digit “exact” ICD-9 code level. A total of three associa-
tions replicated at the broader 3 digit ICD-9 level with
P <0.01 and same direction of genetic effect (Fig. 2).

We also included proof-of-principle variants that have
known association with disease, and evaluated how well
we replicated known associations for these variants. As
previously mentioned, the most significant result in the
discovery dataset was for LPL SNP rs328, and ICD9 code
272.1. This result replicated with P =27 x 10" The SNP
rs328 is a premature stop codon in gene LPL (lipoprotein
lipase) known to be associated with lipid metabolism [33,
34]. In analyses including all adults, we did not find repli-
cation for any other proof-of-principle SNPs that were
included in our list of variants. Among the novel results
consistently associated in both the discovery and replica-
tion datasets at the 3-digit level was a variant in KCNH2
(rs1137617) a gene known to cause long QT syndrome
with ICD-9 codes 244 “Acquired hypothyroidism” (Pgiscoy-
ery = 5.31x 10 and Preplication = 1.15x107%).

Stratified analyses among European-American adults
resulted in seven associations replicating by the 3 digit
ICD-9 code category criteria (Fig. 1). Among the top asso-
ciations was KCNJ11 SNP rs5219 and ICD-9 368 “Visual
Disturbances” with discovery P = 6.6 x 10 and replication
P =25 x 107, Interestingly, we observed that majority of
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the samples that were case for ICD-9 code 368 also had
diagnosis for Diabetes Mellitus (ICD-9 code category
250). KCNJ11 rs5219 is known to be associated with Type
2 diabetes [35-37], thus suggesting a potential interesting
link between visual disturbances and diabetes. We found
the association between LPL rs328 and disorders of lipid
metabolism again in the European American adult ana-
lyses for both discovery and replication datasets (P =2.8 x
10 and 9.91 x 107, respectively). We did not find any
statistically significant associations replicating for the
African Americans adult analyses.

Discussion

In this study, we focused on examining the effect of stop-
gain variants on disease using a PheWAS approach. Stop-
gain variants were selected for this analysis because these
are high impact variants and they are expected to be clinic-
ally relevant [38, 39]. PheWAS has been proven as an
effective approach in identifying already known associations
as well as novel associations. We identified three novel
associations along with replicating an already known associ-
ation between a variant in LPL gene (rs328) and pure
hyperglycedemia [33].

As mentioned above, we calculated associations by
performing both standardized as well as penalized logis-
tic regression in both discovery and replication dataset
separately using PLATO after adjusting the models for
sex, site, platform and the first 3 principal components.
The reason behind conducting analyses by two methods
is that none of the models from standardized regression
converged. Non-convergence is an issue in logistic
regression that occurs when likelihood maximization
algorithm fails and the estimates from such regression
are questionable [40]. The cause of non-convergence is
due to certain data patterns leading to complete or
quasi-complete separation [40] i.e. when the outcome

-log10(p value) beta
S3MRIIRTIT3 2RE888583818
rs1137617 244: Acquired hypothyroidism <4< Aok oof b SN
All Adults rs12060879 996:Complications peculiar to certain specified procedures TS .
rs328 272:Disorders of lipoid metabolism < < -
rs12240276 272: Disorders of lipoid metabolism < .
rs1811890 789: Other symptoms involving abdomen and pelvis -« o o
rs1861050 733: Osteoporosis <« .
eaony | rs1861050 782: Symptoms involving skin and other integumentary tissue < < -
rs2270416 780: General symptoms << o
rs328 272: Disorders of lipoid metabolism < <« . .
rs5219 368: Visual disturbances >» " ee
B Replication
H Discovery
Fig. 2 Synthesis-view plot for all replicating results based on 3 digit ICD-9 code category defined conditions from adults and EA for all adults
tested and for European American (EA) adults analysis. Labels on the y-axis are SNP-ICD9 code category —Description of ICD9 code. This plot
shows p-value in both datasets (discovery dataset in blue and replicating dataset in red) and the direction of triangle represents the direction
of genetic effect of the association
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variable completely separates the predictor variable. As
described, the merged imputed data consisted of multiple
sites and platforms. Therefore, we adjusted our regression
model by site and platform to account for any confound-
ing biases. Upon further investigation, we found that many
ICD-9 codes had either “0” cases or “0” controls for one
or more categories (site and platform), causing quasi-
complete separation. A penalized maximum likelihood es-
timation approach proposed by David Firth allows solving
separation problem and provides converged model [41].
Thus, we implemented Firth regression into PLATO and
repeated the association testing with this new-method.

For our novel results meeting our criteria for replica-
tion across the two datasets with a match on ICD-9
codes category, we identified a novel association between
KCNH2 SNP rs1137617 and acquired hypothyroidism
(ICD-9 code 244). The KCNH2 gene is known to be as-
sociated with long QT syndrome. Prolonged QT inter-
vals are also known to be affected due to thyroid
stimulating hormone and it has also been observed that
patients with hypothyroidism show higher QT disper-
sions [42, 43]. Thus, this association between KCNH2
and hypothyroidism is of potential interest.

In European Americans we identified seven associa-
tions that replicated. Among these, replicating results,
we found potentially pleiotropic associations for SNP
rs1861050 in CC2D2A gene and the diagnoses of osteo-
porosis and edema.

Another interesting association was between KCNJII
gene and visual disturbances. KC/NII gene is critical in
regulation of insulin and is known to be associated with
type 2 diabetes mellitus [44, 45]. Genome-wide association
studies have found polymorphism in KCNJI1I (rs5219) to
be associated with diabetic retinopathy [46] which may be
related to the visual disturbances association identified in
the current study.

PheWAS is a method to generate hypotheses by testing
a selected set of SNPs and many phenotypes and thus
there remains the challenge of correcting for multiple
testing. One way to correct for multiple tests is by using
Bonferroni correction; however, this is often not appropri-
ate in PheWAS due to the non-independence of the SNPs
as well as the phenotypes being tested. In order to address
the challenge of multiple testing corrections without using
a Bonferroni correction, we instead sought replication of
associations by dividing the data into two independent
dataset to identify consistent and replicating associations.
A limitation of this study was the selection of only 25 null
variants. An additional limitation is the selection of only
ICD-9 codes. It is possible that with richer, more robust
phenotypes, many novel associations would be identified.

Even with these shortcomings, this study design and ana-
lysis strategy may provide a more comprehensive explor-
ation of the clinical relevance of known “functional”
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elements in the genome. Future work should include a sub-
stantial expansion of functional variants of interest, based
on both protein coding and gene regulation relevance.

Additional files

Additional file 1: Table S1. Distribution of samples across the two
datasets. (XLSX 44 kb)

Additional file 2: Table S2. Annotation of 20 variants
(excluding 5 proof of principle variants) from different prediction tools.
(XLSX 55 kb)

Additional file 3: Table S3. Dataset 1 results at p-value significance of
0.01. (XLSX 67 kb)

Additional file 4: Table S4. Dataset 2 results at p-value significance of
0.01. (XLSX 58 kb)
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