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Wheat-germ cell-free protein synthesis (WG-CFPS) is a potent platform for the high-

yield production of proteins. It is especially of interest for difficult-to-express eukaryotic

proteins, such as toxic and transmembrane proteins, and presents an important tool in

high-throughput protein screening. Until recently, an assumed drawback of WG-CFPS

was a reduced capacity for post-translational modifications. Meanwhile, phosphorylation

has been observed in WG-CFPS; yet, authenticity of the respective phosphorylation sites

remained unclear. Here we show that a viral membrane protein, the duck hepatitis B virus

(DHBV) large envelope protein (DHBs L), produced by WG-CFPS, is phosphorylated

upon translation at the same sites as DHBs L produced during DHBV infection of

primary hepatocytes. Furthermore, we show that alternative translation initiation of the

L protein, previously identified in virus-producing hepatic cells, occurs on WG-CFPS as

well. Together, these findings further strengthen the high potential of WG-CFPS to include

the reproduction of specific modifications proteins experience in vivo.

Keywords: cell-free protein synthesis (CFPS), wheat-germ, phosporylation, alternative translation initiation,

HBsAg—surface antigen of hepatitis B virus

INTRODUCTION

Wheat germ cell-free protein synthesis (WG-CFPS) is an alternative method to cell-based protein
expression. Exploiting the high translation efficiency of the plant ribosome, protein yields are
often higher than in most other eukaryotic cell-free extracts, such as rabbit reticulocyte lysate
(RRL) (Schweet et al., 1958), human-derived cells (Weber et al., 1975), or insect cells (Smith
et al., 1983) (for a recent review, see Zemella et al., 2015). However, reduced or even lacking post-
translational modifications have long been considered a drawback of WG-CFPS compared to other
systems, as small cofactors required for the activity of certain enzymes might be eliminated during
extract preparation. Nonetheless, most kinases do not need cofactors, and a proteomics study on
wheat germs from Triticum aestivum has highlighted the presence of at least 12 different kinases
which do not require cofactors for activity, including several serine/threonine kinases (Mak et al.,
2006). Thus, even though the exact enzyme content of cell-free extracts from wheat germ remains
to be determined, altogether these data suggest that phosphorylation can in principle occur.
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Indeed, background phosphorylation in WG-CFPS has been
mentioned since (Harbers, 2014), and first solid evidence for
extensive phosphorylation on WG-CFPS has been provided
recently for the hepatitis C virus NS5A protein (Badillo et al.,
2017). Still, it remained unclear if the observed phosphorylation
patterns were identical to those produced in authentic
replication models, also because the precise authentic NS5A
phosphorylation sites remain enigmatic (Badillo et al., 2017).

We here investigated the large envelope protein (DHBs L)
from duck hepatitis B virus (DHBV). DHBV has been extensively
studied as a model for the human HBV (Schultz et al., 2004), and
remains a valuable subject in recent evolutionary and therapeutic
studies (Noordeen et al., 2015; Zheng et al., 2017). The two
viruses bear some differences, notably concerning the envelope
proteins that occur in three forms in HBV, but only in two in
DHBV: the small DHBs S and the large DHBs L proteins, that
differ from each other by the addition of the DpreS domain at
the N-terminal of the S protein. DHBs S is predicted to possess
3 or 4 transmembrane domains (Stirk et al., 1992; Schultz et al.,
2004), and shares 30% sequence homology with the human virus
small envelope protein HBs S. DpreS is involved in a variety
of interactions in the viral life cycle, and its counterpart in
the human virus has been described as predominantly natively
unstructured (Chi et al., 2007; Jürgens et al., 2013). In both HBV
and DHBV, the N-terminal part of the L protein is myristoylated
in vivo to allow for preS anchorage to the membrane (Macrae
et al., 1991).

DHBs L has been described to be phosphorylated: on SDS-
PAGE and Western Blots (WBs), the protein generally appears
at an approximate size of 35.5 kDa, with a second band
migrating around 36 kDa, and in some cases even a third
band appearing at 37 kDa (Grgacic and Anderson, 1994).
These three forms, which have been called, respectively, p35,
p36, and p37, have been shown to originate from different
phosphorylation states of the protein by in cellulo studies using
site-directed mutagenesis (Grgacic et al., 1998). These studies
defined the main phosphorylation sites, showing that 64% of
all incorporated phosphate groups were located on S118, which
would correspond to the p36 form, and 17% on T79, T89,
S117, and T155, which together with phosphorylation on S118
would induce the p37 form. The investigated sites all exhibit
the minimal consensus target sequence for mitogen-activated-
protein (MAP) kinases, Ser/Thr-Pro, with S118 even showing the
optimal sequence Pro-X-Ser/Thr-Pro (Davis, 1993), explaining
the prevalence of this site for phosphorylation. DHBs L protein
phosphorylation is not required for infectivity (Grgacic et al.,
1998), but phosphorylation of S118 possibly plays a role in
modulation of viral replication via gene transactivation of the
host cell (Rothmann et al., 1998).

Additional lower molecular weight bands have been identified
previously for the DHBs envelope proteins (Schlicht et al., 1987;
Fernholz et al., 1993; Grgacic and Anderson, 1994) which could
not be accounted for by post-translational modifications. These
minor proteins of 35, 33, and 30 kDa have been ascribed to
alternative translation products, starting from internal initiation
codons (respectively M9, M28, and M53) and thus lacking the
respective upstream parts of DHBs L. Anothermajor form of∼28

kDa was shown to result from proteolysis rather than alternative
initiation (Fernholz et al., 1993).

We here show that DHBs L synthesized via WG-CFPS is
phosphorylated on the same sites as previously pinpointed by
mutagenesis in animal cells (Grgacic et al., 1998) as well as on
two additional sites which have not been identified before, as
previous work focused only onMAP kinase consensus sequences.
In addition, protein forms from alternative translation initiation
were also detected upon WG-CFPS. Both observations highlight
the high potential of this system to produce proteins with similar
modifications as those observed in complex cellular systems.

MATERIALS AND METHODS

Plasmids
cDNA of DHBs L (DHBV Strain United States; UniProt accession
number P03145/ENA X12798) was amplified by PCR and
cloned into pEU-E01-MCS vector (CellFree Sciences, Japan). The
resulting plasmid was transformed into E. coli competent cells
(TOP10, Life Technologies). DNAwasmade using a NucleoBond
Xtra Maxi kit (Macherey-Nagel, France). Plasmids were purified
using phenol/chloroform extraction, as described by CellFree
Sciences (Yokohama, Japan).

Wheat Germ Cell-Free Protein Synthesis
Wheat germ extract were home-made and prepared using
untreated durum wheat seeds (Semences du Sud, France)
(Takai et al., 2010; Fogeron et al., 2017). Cell-free synthesis
was performed with uncoupled transcription and translation.
Transcription was performed using 100 ng/µl plasmid,
2.5mM NTP mix (Promega, France), 1U/µl RNase inhibitor
(CellFreeSciences, Japan) and 1U/µl SP6 RNA polymerase
(CellFreeSciences, Japan) in a buffer containing 80mM Hepes-
KOH pH 7.6, 16mM magnesium acetate, 10mM DTT and
2mM spermidine (CellFree Sciences, Japan). The solution was
incubated for 6–7 h at 37◦C, then the produced mRNA was used
for translation. For the small-scale expression test, translation
was done in 96-well plates while for the affinity purification,
translation was performed in 6-well plates, in order to obtain
higher amounts of protein. In both cases, translation was done
using the so-called bilayer method (Takai et al., 2010; Fogeron
et al., 2015a; David et al., 2018). The feeding buffer composition
was 30mM HEPES-KOH pH 7.8, 4mM DTT, 0.25mM GTP,
1.2mM ATP, 0.4mM spermidine, 16mM creatine phosphate,
2.7mM magnesium acetate, 100mM potassium acetate, 25mM
amino acid mix, and 0.1% (w/v) Maltyl-Neopentyl Glycol
(MNG-3). The translation mix, containing mRNA, wheat germ
extract (20 µl for the 96-well plate reaction, 250 µl for the 6-well
plate reaction), 6mM amino acid mix, 4µg/ml creatine kinase
and the corresponding detergent was then deposited under
the feeding buffer at the bottom of the well, allowing for the
formation of a bilayer, the WGE having a higher density than the
buffer. The plate was incubated for 16 h at 22◦C without shaking.

Affinity Chromatography Purification
The resulting solution after synthesis in 1-well of a 6-well plate in
presence of 0.1% MNG-3 was incubated with 2 U/µl benzonase
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for 30min on a rolling wheel at RT. Afterwards, the total fraction
from the cell-free synthesis was centrifuged at 20 000 g, 4◦C
for 30min. The supernatant was loaded on 1-mL Strep-Tactin©

Superflow© gravity flow columns (IBA Lifesciences, Germany).
Purification was done as described in the manual, with all
buffers containing 0.1% (w/v) DDM, as described previously
(Fogeron et al., 2015b, 2016). The protein of interest was eluted
in 100mMTris-HCl pH 8.0, 150mMNaCl, 1mMEDTA, 2.5mM
D-desthiobiotin and 0.1% DDM.

SDS-PAGE and Western Blotting Analysis
Experiments were evaluated using 15% polyacrylamide SDS-
PAGE gels as described in Fogeron et al. (2015a). Samples were
resuspended in a loading buffer containing 62.5mM Tris-HCl
pH 6.8, 10% glycerol (v/v), 2% SDS (w/v), 5% β-mercaptoethanol
(v/v) and 0.01% bromophenol blue (w/v), and incubated for
15min before loading. Western blotting of DHBs L was carried
out by protein transfer onto a nitrocellulose membrane through
iBlot2© gel transfer. The nitrocellulose membrane was then
blocked with 5% non-fat milk powder in PBS-T buffer, which
contains 12mM sodium phosphate pH 7.4, 137mM NaCl,
2.7mM KCl, 0.05% Tween© 20 (v/v). The membrane was then
incubated with a rabbit anti-DHBs primary antibody for 1 h and
incubated with an anti-rabbit IgG HRP conjugated secondary
antibody (Promega, France) for 1 h. Epitope-containing bands
were observed using a Amersham ECL Prime Western Blotting
Detection Reagent kit (GE Healthcare, France). All incubations
were carried out at room temperature.

In-gel Digestion for Mass Spectrometry
(MS)
Protein sample in gel was excised from SDS-PAGE and in-gel
reduction, alkylation and digestion was applied. The gel band
was reduced with 10mM DTT in 100mM NH4HCO3 (Sigma
Aldrich) for 1 h at 57◦C and alkylated for 1 h in the dark with
55mM iodoacetamide in 100mM NH4HCO3 (Sigma Aldrich),
washed in 25mM NH4HCO3, dehydrated with acetonitrile and
dried in a speed-vac. Then the gel pieces were rehydrated
with 20 µl trypsin solution 12.5 ng/µl in 50mM NH4HCO3

(trypsin porcine, PROMEGA) for 1 h on ice and incubated
in 50mM NH4HCO3 overnight at 37◦C. The peptides were
extracted twice with 50 µl of acetonitrile/water/formic acid-
45/45/10 (v/v/v) followed by a final extraction with 50 µl of
acetonitrile/formic acid (FA)-95/05 (v/v). Peptides were dried in
a speed-vac before nanoLC-MS/MS analysis and then suspended
in 10 µl 0.1% HCOOH.

NanoLC-MS/MS Analysis
Samples analysis used an Ultimate 3000 nano-RSLC (Thermo
Scientific, San Jose California) coupled (on line) with a Q
ExactiveHFmass spectrometer by a nano-electrospray ionization
source (Thermo Scientific, San Jose California). Three microliter
of peptide mixtures were added on a C18 Acclaim PepMap100
trap-column (75µm ID × 2 cm, 3µm, 100 Å, Thermo Fisher
Scientific) with 2% ACN, 0.05% TFA in H2O at 5 µl/min for

3.0min and separated on a C18 Acclaim Pepmap100 nano-
column, 50 cm × 75µm i.d, 2µm, 100 Å (Thermo Scientific).
A linear 60min gradient (3.2% to 40% buffer B) (A: 0.1% FA in
H2O, B: 0.1% FA in ACN) followed by a 2min gradient (40–76%
of B) was used, was hold for 10min and then returned to the
initial conditions within 1min, for 14min. This was done for a
total duration of 90min, at a flow rate of 300 nl/min. The oven
temperature was 40◦C.

The results were analyzed with the TOP20 HCD method. The
scans were acquired in a data dependent strategy selecting the
fragmentation events, that were based on the 20 most abundant
precursor ions in the survey scan (375–1,600 Th). The survey
scan had a resolution of 60,000 at m/z 200 Th. Survey scans had
Ion Target Values of 3E6 and 1E5, respectively, for the Orbitrap
for the MS2 mode. The maximum injection time was to 60ms for
both. Acquisition parameters for HCD MS/MS spectra were the
following: collision energy, 27; isolation width, 2 m/z. Precursors
with unknown charge state, or a unit charge state were excluded.
Peptides selected for MS/MS acquisition were then put on an
exclusion list (for 20 s) via the dynamic exclusion mode in order
to limit spectra duplication.

Mass Spectrometry Data Analysis
Proteins identification was done using database searching
through Sequest HT (Eng et al., 1994) and MS Amanda
(Dorfer et al., 2014), and using the Proteome Discoverer
2.2 software (Thermo Scientific) against the Swissprot DHBV
sequence. The precursor mass tolerance was 10 ppm, and
fragment mass tolerance was 0.02 Da. Up to 2 missed
cleavages were allowed. Variable modification were oxidation
(M), acetylation (Protein N-terminus) and Phosphorylation (S,
T, Y). Carbamidomethylation (C) was set as fixed modification.
Peptides were filtered with a fixed value PSM validator and rank
1. Manual validation of phosphorylation sites was then done.

RESULTS AND DISCUSSION

Alternative Translation Initiation Is
Observed on DHBs L WG-CFPS
We have recently reported WG-CFPS of DHBs S, which
autoassembles during expression in structures called subviral
particles (SVPs) (David et al., 2018). SVPs are produced in large
amounts in vivo, and are there constituted by about 70% DHBs S
and 30%DHBs L (m/m) (Schultz et al., 2004). Because expression
of DHBs L alone does not lead to formation of SVPs, we here
aimed at expressing it in a detergent-solubilized form. WG-CFPS
of DHBs L was thus carried out using the bilayer method (Takai
et al., 2010) in the presence of 0.1% (w/v) MNG-3 (Chae et al.,
2010; Fogeron et al., 2015a). Two constructs of DHBs L were
used, carrying either a StrepTag II (Schmidt and Skerra, 2007)
on the N-terminal or on the C-terminal end of the protein. We
produced the protein in 1-well of a 6-well plate reaction, yielding
0.11mg of protein, which corresponds to 0.44mg DHBs L per
ml of WGE. The presence of the detergent MNG-3 allowed to
produce DHBs L in a solubilized form, as presented in Figure 1

where the SDS-PAGE and western blots of the total, pellet,
and supernatant fractions are shown for both constructs. The
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FIGURE 1 | StrepTactin© affinity purification of DHBs L with a StrepTag on (A) the C-terminal end or on (B) the N-terminal end. Coomassie blue gel and western blot

using an anti-DHBs S antibody are shown. Purification was performed in the presence of 0.1% DDM. M, molecular weight marker; TF, total fraction; P, pellet; SN,

supernatant; FT, column flow-through; E1-E7, elution fractions. Comparable volumes were loaded on the gel for all fractions. Bands marked with a star were cut out

from the gel for mass spectrometry analysis.

elution fractions from affinity purification of DHBs L using
the StrepTag on the C-terminal or N-terminal end are shown
as well in Figure 1. It can be seen that for DHBs L with the
StrepTag at the C-terminal end, two separate bands are observed
for all DHBs L-containing fractions, which show comparable
intensities. Interestingly, for the construct with the N-terminal
StrepTag (Figure 1B), under the same conditions, only the upper
band could be purified, while the lower band was located in the
flow through fraction. This suggests that the lower band results
from alternative translation initiation, which has previously been
described to result in two additional DHBs L bands, p33 and
p30 (Fernholz et al., 1993). This hypothesis is supported by the
lack of recognition of the lower band by an antibody targeting a
linear epitope within amino acids 2–26 (Figure S1). Alternative
initiation could start at M9, M28, or M53, yielding proteins
that are, respectively 837, 2,960, or 5,764 Da smaller than the
full-length protein. Leaky scanning of ribosomes could be at
the origin of this alternative translation mechanism, as such
a model has already been proposed to explain production of
the three envelope proteins (Zajakina et al., 2004) and the
polymerase (Fouillot et al., 1993; Chen et al., 2014) of HBV.
Another possibility is ribosomal shunting (Fütterer et al., 1993),
during which ribosomes bind to the 5′ end of the messenger
RNA and skip during the scan parts of the message, a mechanism
proposed for translation of different viral proteins, including the
DHBV polymerase (Sen et al., 2004). Proteolytic degradation is
not formally excluded but rather implausible considering that
no other degradation products are detected and that the main
processing product described in the literature produces a band
of± 28 kDa (Fernholz et al., 1993), which is not observed here.

Phosphorylation of Specific Sites Is
Observed on DHBs L WG-CFPS
Phosphorylation of DHBs L protein in primary duck hepatocyte
cultures has been shown using western blotting and radiolabeling
(Grgacic and Anderson, 1994). Since migration on gels as
multiple bands can as well be an indication of different
phosphorylation patterns (Ubersax et al., 2003), we evaluated
this possibility by subjecting the two main bands of the E3
fraction (Figure 1A, red and orange stars) to analysis by mass
spectrometry. The bands were cut from the gel, reduced,
alkylated, digested and analyzed using a nanoRSLC-Q Orbitrap
(Q Exactive HF, Thermo Scientific) mass spectrometer. We
assessed phosphorylation using the PD2.2 software in association
with the two search engines MS Amanda and Sequest HT.
The analysis revealed the presence of DHBs L (P03145, strain
United States) in both bands, and showed a total sequence
coverage of 48% for the upper band and 36% for the lower
one, with peptide fragments stemming mainly from the DpreS
part of the protein (amino acids 1–161) and only a very small
part from the C-terminal S domain (amino acids 185–191). The
reason of the poor sequence coverage in the S domain likely lies
in its hydrophobic nature and resulting protection by detergent
molecules. For the upper band (Figure 2A, only the sequence
of DpreS is shown), the MS data validated 6 phosphorylation
sites: S8, S76, T79, T89, S118, T155 (for individual spectra, see
Figure S2). A possible additional site is proposed on S117. For the
lower band (Figure 2B), phosphorylation sites are identified as
well and validated for 5 residues (S76, T79, T89, S118, T155), with
an additional possibility on S117. These results show that both
bands actually correspond to phosphorylated DHBs L. Moreover,
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FIGURE 2 | Identification by mass spectrometry of phosphorylation sites shown on the DpreS domains from DHBs L. Analyses have been performed on the upper (A)

and lower (B) bands of the E3 fraction resulting from the purification of DHBs L (Figure 1A). Black bars represent analyzed peptides devoid of phosphorylation as

identified by mass spectrometry. The detailed information about the identified peptides bearing a phosphorylation are available in Figure S2. Pink bars represent

peptides where one or more phosphorylation sites have been confirmed; the residues in black correspond to the phosphorylation sites formally identified (in bold red

in the sequence), while the ones in gray correspond to possible phosphorylation sites with a lower degree of confidence (in red in the sequence). MS/MS spectra for

each identified phosphorylation sites of the upper band (A) can be found in Figure S2.

while the coverage starts at residue G2 for the upper band, it
only starts at R13 for the lower band. This observation supports
the alternative translation from M9 as origin of the lower band
(Fernholz et al., 1993), which would match with the difference of
837 Da observed on the SDS-PAGE.

The phosphorylation sites observed are consistent with those
identified previously (Grgacic et al., 1998), which highlighted
S118 as major (64 %), and T79, T89, S117, and T155 as
minor (17%) phosphorylation sites, accounting for 81% of total
phosphorylation altogether.

While mass spectrometry experiments do not allow to directly
quantify, the number of peptide-spectrummatches (PSM) shown
in Figure S2G for the different peptides corresponding to the
different phosphorylations gives a rough estimate. From a total
of 53 PSMs, 35 are observed for S118, 9 in total for T79,T89,
and T155, and 9 for S8 and S76. This corresponds to 66, 17, and
17% of total PSM, which matches quite well with the percentages
determined in cells. The newly identified phosphorylation sites
S8 and S76 might therefore account for the 19% unassigned
phosphorylation events from this previous study (Grgacic et al.,

1998). Indeed, analysis of these sites was omitted in the study by
Grgacic et al., since these residues do not show the consensus
sequence for MAP kinases (Ser/Thr-P), and the authors therefore
did not test constructs showing these point mutations to
investigate resulting phosphorylation patterns. All previously
investigated sites were shown as nonessential for infectivity;
however, a potential role for S8 and S76 phosphorylation remains
to be investigated, as these residues were not addressed before.

CONCLUSION

While protein phosphorylation as such in the wheat-germ cell-
free system has recently been described (Harbers, 2014; Badillo
et al., 2017), we here showed that the phosphorylation sites,
obtained on WG-CFPS of the DHBV HBs L envelope protein,
match the same five sites pinpointed in a prior in cellulo analysis
(Grgacic et al., 1998) that focused on MAP kinases target sites.
In addition, we identified two new previously unnoted sites. The
observed phosphorylation of the DHBV HBs L protein confirms
that active kinases, likely from the MAP family, are present in
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the wheat germ extract. We moreover showed that alternative
translation initiation, enabling eukaryotic cells to access different
isoforms using the same mRNA (Kochetov et al., 2005; Bazykin
and Kochetov, 2011; Hopkins et al., 2013), is not restricted to
rabbit reticulocyte lysate, as previously described (Liang et al.,
1996), but also takes place in the wheat-germ cell-free system.
Our work adds new potential to the already diverse panel of
possibilities given by protein synthesis in the wheat-germ cell-
free system, and shall broaden its applications in the context
not only of functional, but also structural studies of proteins
carrying modifications.
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