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Abstract
Background and aim  Evidences suggest that androgen deficiency is associated with sudden cardiac death (SCD). Our purpose 
was to analyse some electrocardiographic (ECG) markers of repolarization phase in hypogonadal patients either at baseline 
or after testosterone replacement therapy (TRT).
Patients and Methods  Baseline and after 6 months of testosterone replacement therapy, 14 hypogonadal patients and 10 
age-matched controls underwent a short-term ECG recordings at rest and immediately after a maximal exercise test. The 
following ECG parameters have been collected: QTe (the interval between the q wave the end of T wave), QTp (the interval 
between the q wave and the peak of T wave), and Te (the interval between the peak and the end of T wave).
Results  At baseline, in the hypogonadal patients, corrected QTe and QTp values were longer at rest than in the controls 
at rest (p < 0.05), whereas, during the recovery phase, only the QTp remained significantly longer (p < 0.05). After TRT, 
hypogonadal patients showed an improvement only in Te (p < 0.05). Conversely, any difference between hypogonadal 
patients and control subjects was found with respect to the markers of temporal dispersion of repolarization phases, except 
for a worse QTp → Te coherence (p = 0.001) obtained during the recovery phase.
Conclusions  In conclusion, at rest, hypogonadal patients suffer from a stable increase in the myocardial repolarization phase 
without an increase in its temporal dispersion and, hence, the SCD risk seems to be low.
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Introduction

Male hypogonadism is characterized by the presence of clin-
ical symptoms of androgen deficiency (e.g. erectile dysfunc-
tion, delayed puberty, etc.) associated with low testosterone 
levels (< 12 nmol/L) [1]. This condition affects 6–12% of 
men aged between 40 and 69 years and it is strongly associ-
ated with cardiovascular disorders. Uncertain data are avail-
able about the effects of testosterone replacement therapy 
(TRT) on cardiovascular risk. The RHYME study clearly 
concludes that hypogonadal men receiving TRT did not 
show an increased cardiovascular risk [2]. Moreover, Corona 
et al. in a systematic review and misanalysis did not find 
a causal role between TRT and cardiovascular events [3]. 
Recently, it has been reported that low level of testosterone 
is associated with higher risk of sudden cardiac death (SCD) 
most likely due to a worsening in the myocardial repolari-
zation phase [1, 4]. Supporting the hypothesis, gender- and 
hormone-related differences in myocardial repolarization 
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phase length have been described and, hence, in the ECG-
surface-derived QT interval. Indeed, in healthy condition, 
adult female subjects show a QT interval corrected for the 
heart rate significantly longer than male, this difference 
being absent before the puberty with a progressive QT inter-
val shortening from 9 to 50 years old in male [5–10]. The 
abovementioned trend is thought to be related to progressive 
androgen level increase and, consistently, the opposite trend 
(i.e. QT interval increase) is detectable after the 60 years old 
[6–8]. Furthermore, the males after orchiectomy show QT 
interval longer than healthy age-matched male subjects and, 
even, the masculinized females have QT interval shorter than 
the normal ones. Moreover, the abuse of androgenic steroid 
in athletes is known to be related to the sudden cardiac death 
[11]. In this context, the analysis of temporal dispersion 
of myocardial repolarization might help in understanding 
some mechanisms underlying the impact of testosterone on 
arrhythmia propensity. Indeed, the myocardial repolarization 
phase, non-invasively studied on the surface electrocardio-
gram (ECG) by means of different QT segments measure-
ment, short-term QT segment variability [12], QT/RR slope 
and QT-RR spectral coherence [12–17], yet imposed itself 
as a non-invasive marker of sudden cardiac death (SCD) risk 
in several cardiovascular and not cardiovascular conditions 
[12, 13, 18–21].

Therefore, the present experimental study sought to inves-
tigate non-invasively the myocardial repolarization phase 
and its temporal dispersion in a series of hypogonadal male 
patients either at baseline or after testosterone replacement 
therapy. All the ECG-derived parameters were studied both 
at rest and immediately after a maximal exercise test. Par-
ticularly, the evaluation of the ECG-derived parameters in 
the post-exercise phase aimed to study the repolarization 
in the absence of excessive muscle interferences, yet dur-
ing intense autonomic nervous system imbalance [22–24] 
characterized by high vagal and sympathetic activity due to 
recovery from intense exercise.

Methods

Patients and protocol

To test the hypothesis of the testosterone influence on the 
left ventricular repolarization, we planned a single-center 
pilot prospective study. The diagnosis of hypogonadism 
was based on the presence of clinical symptoms related 
to this condition (e.g. reduced libido or erectile dysfunc-
tion) and on the results of standard hormonal exams (total 
testosterone < 12 nmol/L). After 6 months of enrollment 
time, we selected 14 subjects with hypogonadism candi-
dates to testosterone replacement therapy (TRT) and 10 
eugonadal age-matched controls. Particularly, nine patients 

had post-surgical hypogonadotropic hypogonadism (nine 
pituitary adenomas), one post-surgical hypogonadism (tes-
ticular cancer), two patients had idiopathic congenital hypo-
gonadotropic hypogonadism and two had naïve Kallmann 
syndrome (hypogonadotropic hypogonadism and anosmia). 
Patients with hypogonadism and controls underwent a com-
plete myocardial repolarization phase non-invasive study at 
baseline and after 6 months from the first administration 
of testosterone undecanoate injectable (1000 mg i.m injec-
tion repeated time 0 and after 6 weeks as indicated by prod-
uct indication schedule). Blood samples were collected at 
baseline: the testosterone level was measured before the 
repolarization studies and at the end of study observation 
period, after 6 months of follow-up (total of three injec-
tions). All blood samples were collected by venipuncture in 
fasting patients; serum concentrations of testosterone were 
measured by chemiluminescence.

The clinical assessment included physical examination, 
echocardiogram, 5 min of single-lead (D II) ECG recording 
at rest in supine position and 10 min of single-lead ECG 
recordings during the post-exercise recovery phase in sitting 
position on the bike. All subjects underwent Bruce protocol 
stress testing; patients with typical angina were excluded 
from the study as well as those with a ECG responses char-
acterized by 1 mm or more horizontal or downsloping ST 
segment depression, measured at 80 ms sec after the J point. 
Tests were considered valid only if the subject reached at 
least 85% of the maximal age-corrected heart rate. All ECG 
registrations were collected baseline, and after 6 months 
from commencement of TRT.

Data processing

We used a custom-designed card (National Instruments 
USB-6008; National Instruments, Austin, TX, USA) to 
acquire and digitalize the ECG signals; the sampling fre-
quency was 500  Hz. Points used for the ECG segment 
analysis were detected automatically by a classic adaptive 
derivative/threshold algorithm. We designed and produced 
a software for data acquisition, storage, and analysis with 
the LabView program (National Instruments). After a lin-
ear interpolation, an expert cardiologist (GP) checked the 
different points and, when needed, manually corrected the 
mistakes with an interactive software [15, 16, 22, 25–27]. 
All ECG data were analyzed in a single-blind fashion.

Beat-to-beat ECG intervals obtained at rest and during 
exercise recovery were: RR, QTe (the interval between the 
q wave the end of T wave), QTp (the interval between the q 
wave and the peak of T wave), and Te (the interval between 
the peak and the end of T wave) [15, 16, 22, 25–28] (Fig. 1). 
We, therefore, calculated mean and variance values for each 
of these intervals and then we used the original formula 
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proposed by Berger et al. [29] to calculate three different 
QT variability indexes [15, 16, 22, 25–27] (Figs. 2, 3):

Fig. 1   Representative example of RR, QTe, QTp, and Te interval measurements from a single-lead ECG at rest, during the peak, the first and the 
10th min of exercise recovery

Fig. 2   Representative example 
of a 5-min ECG recording and 
derived variables on RR, QTe, 
QTp, and Te intervals at rest
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The same ECG intervals were also used for power spec-
tral (autoregressive algorithm) and cross-spectral analysis 

(Fig. 4). Cross-spectral analysis indicated the influences on 
the different oscillations (coherence function) between RR, 
QTe, QTp and Te [12–16, 22, 25–27] (Fig. 4). Coherence 

expresses an index (from 0 to 1) of a linear association 
between the two signals [12–16, 22, 25–27] (Fig. 4).
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Fig. 3   Representative example 
of a 10-min ECG recording and 
derived variables on RR, QTe, 
QTp, and Te intervals during 
recovery exercise

Fig. 4   Representative example of a 5-min ECG recording power spectral analysis (left panels) and related coherence (right panels) at rest
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Linear regression was used to calculate QTe-RR, QTp-
RR and Te-RR slopes (Fig. 5) [14, 30–33]. This analysis 
was conducted only during exercise recovery because in rest 
the number of QT was not sufficient for significant linear 
regression [30].

From the ECG segments, the QTe, QTp, and Te 
intervals were corrected by the Bazett (QTe/RR0.5; 
QTp/RR0.5; Te/RR0.5), Fridericia (QTe/RR0.33; QTp/
RR0.33; Te/RR0.33), Lilly (QTe/RR0.4; QTp/RR0.4; Te/
RR0.4), and Framingham (QTe + [0.154 × {1000 − RR}]; 
QTp + [0.154 × {1000 − RR}]; Te + [0.154 × {1000 − RR}]) 
[15, 33] formulas. We calculated the repolarization corrected 
variables on the ECG overall length recordings at rest and 
during the recovery phase both at baseline and after testos-
terone replacement therapy. Moreover, we calculated manu-
ally the instantaneous corrected repolarization variables on 
three consecutive RR and on the following QRS-T (QTe, 
QTp and Te) intervals during the first minute at rest, at the 
exercise peak and, also, at the 1st, 3rd, 5th, 7th, 9th minutes 
during exercise recovery [24] with tangential method and 
using the ECG II lead. In particular, we measured the QTe 
interval as the time between QRS onset and the point at 
which the isoelectric line intersected a tangential line drawn 
at the maximal downslope of the positive T wave; instead the 
QTp was obtained measuring the interval from q and peak 
of T wave; finally Te interval was the difference between 
QTe and QTp. On the contrary, the QTe, QTp and Te data, 
obtained on baseline and after exercise recovery, were 

collected during the two whole recordings with the previ-
ous described and cited software. Finally, due the change of 
position (during supine or cycle) of patients could affect the 
amplitude and consequently the end of T wave, we checked 
possible variation of voltage of T wave [12].

Statistical analysis

We reported data as mean ± SD or as interquartile range, 
respectively, for normal and skewed distribution data. We 
used Student’s t test to compare data for the normally dis-
tributed variables; on the contrary, we used Mann–Whitney 
to compare non-normally distributed variables (as evaluated 
by Kolgomorov–Smirnov test). We used the paired t test, for 
the normally distributed variables, and Wilcoxon test, for 
non-normally distributed variables, to compare data during 
baseline and replacement therapy. We considered statisti-
cally significant p values < 0.05. For statistical analysis, we 
used SPSS-PC + [SPSS-PC + Inc, Chicago, Illinois].

Results

During TRT one patient interrupted the therapy for dysuria.
At baseline, general characteristics and echocardio-

graphic data were similar between hypogonadal patients and 
normal subjects (Table 1). Furthermore, no difference was 
found regarding exercise data or voltage of T wave (Table 1). 

Fig. 5   Representative example 
of QTe-RR slope during exer-
cise recovery in baseline and 
after replacement therapy



1056	 Journal of Endocrinological Investigation (2019) 42:1051–1065

1 3

Naturally, testosterone levels were significant lower in the 
hypogonadal patients. Significant changes in PSA, hemato-
crit and waist circumference were reported in patients after 
6 months testosterone undecanoate treatment (p < 0.05, 
data not shown) according to our previously published data 
obtained in hypogonadal men [34].

QTe and QTp were significantly longer in hypogonadal 
patients at rest (Table 2). QTe, but not QTeBazett (for an over-
estimation of Bazett’s formula during exercise), showed 
similar behavior during the recovery phase exercise recov-
ery (Table 2). As regards, the instantaneous repolarization 
variables, the corrected and raw QTe measurements were 
significantly longer in hypogonadal patients only at rest 
at the 5th minute of the recovery phase (Table 3, Fig. 6a). 
Instead, QTp was often significantly longer, regardless the 
heart rate. In fact at rest, during the 3rd, 5th and 9th min-
utes QTp were longer in the hypogonadal patients (Table 3, 
Fig. 6a) than controls, but this behavior was not reported at 
the exercise peak and during the 1st minute when the heart 
rate was the highest.

No significant differences were found with respect to the 
myocardial repolarization dispersion variables (Table 4), 
except for the QTp → Te coherence during the recovery 
phase (Table 4, Fig. 7a), where this parameter was lower in 
the hypogonadal subjects (p < 0.001).

After the TRT, the serum testosterone level was signifi-
cant higher than baseline (from 3.86 ± 4.10 to 13.12 nmol/L, 
p < 0.001). Other general data (BMI, LVEF, LVMI, heart 
rate, blood pressure) at rest and during exercise (heart rate 
peak, systolic blood pressure peak, peak workload, exer-
cise duration and rate pressure product) did not change. 
As far as this period, at rest and during the recovery phase 
most of the repolarization data were not significantly 

different. Conversely, non-corrected QTe (p < 0.05) and 
QTp (p < 0.05) at rest, Te with all corrections (p < 0.05) 
at the heart rate peak (Fig. 6b; Table 5) and Te-RR slope 
(p < 0.05) during recovery (Fig. 7b; Table 6) were signifi-
cantly reduced with respect the baseline. We have found no 
difference between control group and hypogonadal subjects 
during TRT in ECG data. Finally, for a better understanding 
of the reported data, the instantaneous QRS-T data showed 
in the Tables 3 and 5 and Fig. 6 are obtained manually; on 
the contrary, data reported in the Tables 2, 4 and 6 and Fig. 7 
are obtained automatically with the previous cited custom 
software.

Discussion

The present study primarily confirms that corrected QTe and 
QTp at rest are longer in the hypogonadal subjects than age-
matched normal controls. This finding confirms many other 
previous studies where it has been stated that the reduction 
or absence of testosterone levels prolongs the repolariza-
tion phases with a possible proarrhythmic effect [35–38]. 
Interestingly, in hypogonadals patients, we found that during 
the post-exercise recovery phase the QTe interval, corrected 
for the heart rate using all the available formulas except of 
the Bazett one [39–41], was longer and, contextually, there 
was significantly lower QTp → Te coherence. In fact, it has 
been previously demonstrated that the cubic root equation 
(Fridericia’s) might be more accurate than the square root 
(Bazett’s) or several complex formulas for correcting meas-
ured QT intervals for cardiac cycle length in middle-aged 
men [41]. Furthermore, the instantaneous QTp, obtained by 
the standard method (i.e. measuring three consecutive RR 

Table 1   General characteristic 
of the two study groups

BMI body mass index, LVEF left ventricular ejection fraction, LVMI left ventricular mass index, HR hear 
ratio, SBP systolic blood pressure

Variables Hypogonadal subjects
N = 14

Control subjects
N = 10

P values
t test

Age (years) 54 ± 16 48 ± 13 Ns
BMI (kg/m2) 28 ± 3.5 27 ± 3.9 Ns
Waist circ. (cm) 98 ± 1.3 97 ± 1.7 Ns
LVEF (%) 61 ± 6 62 ± 5 Ns
LVMI (g/m2) 97 ± 11 89 ± 12 Ns
HR peak (b/m) 122 ± 34 130 ± 28 Ns
SBP peak (mm Hg) 173 ± 17 167 ± 21 Ns
Peak workload (W) 121 ± 34 130 ± 28 Ns
Exercise duration (min) 15 ± 4 16 ± 4 Ns
Rate pressure product 24,910 ± 5248 26,373 ± 5255 Ns
Testosterone (nmol/L) 3.97 ± 3.26 17.73 ± 3.89 < 0.001
PSA (ng/dL) 0.91 ± 0.26 2.73 ± 0.79 < 0.001
Hematocrit 42.7 ± 0.3 43.9 ± 0.9 Ns
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and the following QRS-T intervals), was longer at rest and 
in three over the six measurements of the recovery phase 
(3rd, 5th, 9th minute) regardless of the heart rate. Finally, 
since any differences of corrected Te both at rest or dur-
ing the recovery phase was found, it is reasonable that the 
longer QTe was caused by an abnormal first part of the repo-
larization (i.e. QTp). Thus, our data suggest that the whole 
repolarization phase was altered by an abnormal duration 
of first part of QT at low level of heart rate and sympa-
thetic activity. In this context, it might be possible to find a 

similarity between the effect of low level of testosterone and 
the congenital long QT type 3 syndromes (due to Na channel 
SN5) [42] where the arrhythmic events usually occur dur-
ing the night at lower sympathetic activity and heart rate. 
Leptin increases sympathetic nerve activity in humans [43]; 
even if we did not evaluate leptin variations upon TRT, the 
maintenance of stable BP in our patients might have been 
explained by leptin reduction and amelioration of insulin 
sensitivity that usually occurs after short-term TRT in severe 
hypogonadal patients with metabolic syndrome [34, 44].

Indeed, the action potential duration of cardiac cells, cor-
responding to the surface QTe interval, is maintained by the 
perfect temporal activation and inactivation of the sodium, 
calcium and potassium current by means of specific ionic 
channels. Testosterone is able to shorten the action poten-
tial duration and, namely the QTe, especially influencing 
the L-type calcium channel (ICaL) and slow delayed rectifier 
K+ channel (IKs). Accordingly, testosterone could be able 
to reduce the QTe length throughout an inhibition of the 
ICaL and an increase of the IKs activities [42, 45–48], thus 
decreasing the calcium entry and increasing the potassium 
efflux. Consequently, we hypothesized that the absence of 
androgens in the hypogonadal subjects induces an increase 
of QTe by means of an increase of calcium influx and a 
lower action on specific ion channels [49].

Most of the myocardial temporal dispersion variables 
were similar between controls and hypogonadal patients 
both at rest and during the recovery phase. A possible expla-
nation could be that these QT dynamic data are important to 
explain severe cardiac events [12] but they were not enough 
sensitive in subjects with almost normal cardiac function 
and, hence, a low relative risk of malignant ventricular 
arrhythmias. Thus, we hypothesize that, in case of further 
repolarization reserve reduction (myocardial ischemia, 
hypertrophy, heart failure, hypokalemia, genetic polymor-
phism of ionic channel etc.…) [49–51] also in a hypogo-
nadal patient, these ECG parameters could be useful in dis-
closing an increased SCD risk.

The QTp → Te coherence during the recovery phase was 
the only myocardial temporal dispersion variable found to be 
different in hypogonadal patients with respect to the controls. 
The coherence between two oscillatory components expresses 
a strong linear coupling between QTp-Te interval fluctua-
tion and the ability of two signals to have similar behavior 
in the time. We previously observed that, at rest, a reduction 
of QTp → Te coherence was associated with sustained ven-
tricular tachycardia in patients with low ejection fraction and 
chronic heart failure [25]. In the present study, this parameter 
was altered (i.e. reduced) solely during the recovery phase, 
condition characterized by an autonomic nervous system 
imbalance with still high sympathetic activity. The underlying 
mechanisms for altering QTp → Te coherence are unknown 
and controversial [52–54]. Undoubtedly, QTp and Te have 

Table 2   QTe, QTp and Te data at baseline and after exercise

These data are detected automatically with a custom software
HR heart ratio, QTe QT end, QTp QT peak, Te T end

Variables Hypogonadal 
subjects
N = 14

Control subjects
N = 10

P values

Rest
 HR (beats/min) 67 ± 11 72 ± 15 Ns
 QTe (ms) 410 ± 32 371 ± 27 0.004
 QTeBazett (ms) 430 ± 33 402 ± 25 0.032
 QTeFridericia (ms) 421 ± 27 391 ± 15 0.002
 QTeLilly (ms) 426 ± 29 395 ± 18 0.007
 QTeFramingham (ms) 422 ± 28 391 ± 17 0.005
 QTp (ms) 314 ± 23 276 ± 23 0.001
 QTpBazett (ms) 323 ± 20 299 ± 16 0.003
 QTpFridericia (ms) 322 ± 20 291 ± 13 0.000
 QTpLilly (ms) 325 ± 21 294 ± 12 0.000
 QTpFramingham (ms) 325 ± 26 296 ± 16 0.005
 Te (ms) 97 ± 14 94 ± 11 Ns
 TeBazett (ms) 102 ± 14 103 ± 15 Ns
 TeFridericia (ms) 99 ± 13 100 ± 13 Ns
 TeLilly (ms) 101 ± 14 101 ± 13 Ns
 TeFramingham (ms) 108 ± 28 115 ± 30 Ns

10 min exercise recovery
 HR (beats/min) 96 ± 19 109 ± 20 Ns
 QTe (ms)s 306 ± 36 273 ± 27 0.022
 QTeBazett (ms) 382 ± 21 366 ± 25 Ns
 QTeFridericia (ms) 354 ± 23 332 ± 22 0.023
 QTeLilly (ms) 365 ± 21 344 ± 23 0.035
 QTeFramingham (ms) 360 ± 21 340 ± 19 0.026
 QTp (ms) 227 ± 30 204 ± 24 Ns
 QTpBazett (ms) 283 ± 19 273 ± 23 Ns
 QTpFridericia (ms) 263 ± 21 248 ± 22 Ns
 QTpLilly (ms) 271 ± 20 258 ± 22 Ns
 QTpFramingham (ms) 281 ± 17 271 ± 18 Ns
 Te (ms) 79 ± 10 70 ± 12 Ns
 TeBazett (ms) 99 ± 11 94 ± 17 Ns
 TeFridericia (ms) 92 ± 10 85 ± 15 Ns
 TeLilly (ms) 94 ± 10 87 ± 16 Ns
 TeFramingham (ms) 132 ± 18 137 ± 19 Ns
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two different electrophysiological meanings. In some stud-
ies, QTp could be referred to action potential duration of the 
epicardial layer [55, 56]; on the contrary, Te predominantly 
is influenced by the M-cell layer repolarization and this last 
layer also showed the longer depolarization duration. Thus, 
these authors consider the Te reflecting the maximum dif-
ference in repolarization between the myocardial layers. For 
this reason, they have suggested it as a non-invasive marker 

of transmural dispersion of repolarization [54, 55]. Therefore, 
Te depends on IKr, IKs and IK1 function, whereas the QTp rea-
sonably is influenced by the depolarization phase, so by Na 
currents, and by the early repolarization phase, both, mainly 
under the Ito control and by the sarcoplasmic reticulum Ca 
uptake (up) currents [17, 56, 57]. Definitely, the dysfunction 
of these ion channels’ network could alter one of these two QT 
segments, reducing their coherence and probably, increasing 

Table 3   QTe, QTp and Te data at rest, at exercise peak and during 1, 3, 5, 7 and 9 min of recovery

These data are detected manually with tangential method. *p < 0.05 or **p < 0.001: hypogonadal patients vs controls
RR RR interval, QTe QT end, QTp QT peak, Te T end

Rest Exercise peak 1 min 3 min 5 min 7 min 9 min

Hypogonadal subjects
 RR (ms) 929 ± 204 467 ± 83 581 ± 120 670 ± 176 679 ± 128 687 ± 151 694 ± 44
 QTe (ms) 401 ± 33* 297 ± 50 315 ± 41* 332 ± 47 346 ± 38* 351 ± 52* 339 ± 42*
 QTeBazett (ms) 430 ± 33* 436 ± 57 416 ± 47 410 ± 44 422 ± 29* 425 ± 44 411 ± 41
 QTeFridericia (ms) 423 ± 27* 383 ± 52 378 ± 41 381 ± 40 395 ± 29* 398 ± 44 385 ± 37
 QTeLilly (ms) 426 ± 29* 404 ± 54 393 ± 42 392 ± 41 405 ± 28* 409 ± 44 395 ± 38
 QTeFramingham (ms) 422 ± 28* 379 ± 44 379 ± 32* 383 ± 37 396 ± 26* 399 ± 41 387 ± 33

Control subjects
 RR (ms) 869 ± 203 407 ± 50 506 ± 100 574 ± 110 605 ± 126 604 ± 106 603 ± 158
 QTe (ms) 371 ± 27* 263 ± 47 278 ± 30* 303 ± 30 306 ± 28* 313 ± 23* 297 ± 53*
 QTeBazett (ms) 402 ± 25* 411 ± 62 392 ± 28 402 ± 23 396 ± 16* 404 ± 17 384 ± 39
 QTeFridericia (ms) 391 ± 15* 354 ± 56 349 ± 26 365 ± 21 363 ± 15* 371 ± 14 352 ± 43
 QTeLilly (ms) 395 ± 18* 376 ± 58 366 ± 26 379 ± 21 376 ± 14* 384 ± 14 364 ± 42
 QTeFramingham (ms) 391 ± 17* 354 ± 43 354 ± 20* 368 ± 18 367 ± 13* 374 ± 12 358 ± 34

Hypogonadal subjects
 QTp (ms) 314 ± 23* 214 ± 23 214 ± 23 258 ± 34* 269 ± 33* 270 ± 45 273 ± 27*
 QTpBazett (ms) 323 ± 20* 314 ± 16 283 ± 17 318 ± 22* 328 ± 28* 326 ± 34 331 ± 24*
 QTpFridericia (ms) 322 ± 20** 276 ± 17 257 ± 16 296 ± 23* 307 ± 27* 306 ± 36 310 ± 20*
 QTpLilly (ms) 325 ± 21** 291 ± 16 257 ± 16 304 ± 22* 315 ± 27* 314 ± 35 319 ± 21*
 QTpFramingham (ms) 325 ± 26* 296 ± 13 278 ± 13 309 ± 20* 744 ± 105 318 ± 30 321 ± 19*

Control subjects
 QTp (ms) 276 ± 23* 202 ± 32 202 ± 33 220 ± 25* 230 ± 30* 243 ± 25 233 ± 41*
 QTpBazett (ms) 299 ± 16* 316 ± 41 285 ± 39 292 ± 22* 297 ± 30* 315 ± 29 301 ± 27*
 QTpFridericia (ms) 291 ± 13* 272 ± 37 254 ± 35 266 ± 20* 272 ± 27* 289 ± 25 276 ± 32*
 QTpLilly (ms) 294 ± 12* 289 ± 39 266 ± 37 276 ± 21* 282 ± 28* 299 ± 26 286 ± 30*
 QTpFramingham (ms) 296 ± 16** 293 ± 28 278 ± 27 286 ± 16* 279 ± 27* 304 ± 20 294 ± 22*

Hypogonadal subjects
 Te (ms) 79 ± 10 76 ± 17 88 ± 27 83 ± 10 75 ± 15 78 ± 10 78 ± 20
 TeBazett (ms) 99 ± 11 112 ± 25 117 ± 42 103 ± 12 92 ± 17 94 ± 11 96 ± 28
 TeFridericia (ms) 92 ± 10 98 ± 21 106 ± 35 95 ± 10 86 ± 16 88 ± 10 90 ± 25
 TeLilly (ms) 94 ± 10 103 ± 23 110 ± 38 98 ± 11 88 ± 16 90 ± 10 92 ± 27
 TeFramingham (ms) 132 ± 18 158 ± 18 152 ± 32 133 ± 24 125 ± 19 126 ± 22 126 ± 33

Control subjects
 Te (ms) 70 ± 12 65 ± 16 76 ± 14 102 ± 65 96 ± 71 96 ± 73 96 ± 76
 TeBazett (ms) 94 ± 17 102 ± 22 107 ± 18 137 ± 93 126 ± 98 124 ± 98 124 ± 100
 TeFridericia (ms) 85 ± 15 88 ± 20 95 ± 16 124 ± 82 85 ± 16 114 ± 88 114 ± 91
 TeLilly (ms) 87 ± 16 93 ± 21 100 ± 17 129 ± 86 119 ± 92 119 ± 92 118 ± 95
 TeFramingham (ms) 137 ± 19 157 ± 13 152 ± 18 167 ± 69 157 ± 75 157 ± 75 157 ± 79
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the ventricular arrhythmias risk’s [17, 57], especially during 
sympathetic stress. Given the abovementioned mechanisms, 
albeit merely speculative, the sympathetic stress might have 

increased the sensitivity of QTp → Te coherence so that low 
level of this parameter could be indicative of an intermediate 
risk of malignant ventricular arrhythmias.

Fig. 6   a QTe, QTp, and Te with Fridericia correction and RR inter-
vals at rest, during the peak, the first and the 10th minute of exercise 
recovery in hypogonadal (red) and control subjects (green). *p < 0.05 
or **p < 0.001: hypogonadal patients vs controls. b QTe, QTp, and Te 
with Fridericia correction and RR intervals at rest, during the peak, 

the first and the 10th minute of exercise recovery in hypogonadal 
(baseline) and during replacement therapy (blue) in hypogonadal sub-
jects. *p < 0.05 baseline vs control. These data are detected manually 
with tangential method
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The TRT in hypogonadal subjects seemed to have a weak 
effect on the duration and on the dynamic of repolariza-
tion phases. Indeed, after 6 months of therapy we did not 

have any difference of corrected QT in baseline and during 
exercise recovery. Although, in vitro, some of our previous 
studies reported a reduction of action potential duration in 

Table 4   QTe, QTp and Te 
Variabilities and Coherence 
Data

These data are detected automatically with a custom software. Values are expressed as mean ± SD or 
median [interquartile range 75th percentile–25th percentile]
QTe QT end, QTp QT peak, Te T end

Variables Hypogonadal subjects
N = 14

Control subjects
N = 10

P values

Rest
 QTe mean (ms) 371 ± 36 336 ± 22 0.016
 QTe variance (ms)2 47 [29] 38 [30] Ns
 QTe standard deviation 7 ± 1 6 ± 1 Ns
 RR (ms) 924 ± 201 854 ± 187 Ns
 RR variance (ms2) 766 [1975] 915 [1280] Ns
 RR standard deviation 37 ± 22 30 ± 11 Ns
 QTeVI − 0.57 [0.75] − 0.72 [0.63] Ns
 RR → QTe, coherence 0.199 ± 0.029 0.214 ± 0.030 Ns
 QTp mean (ms) 274 ± 27 242 ± 20 0.04
 QTp variance (ms2) 30 [25] 21 [15] Ns
 QTp standard deviation (ms2) 5 ± 1 5 ± 1 Ns
 QTpVI − 1.20 [1.03] − 1.33 [0.54] Ns
 RR → QTp, coherence 0.223 ± 0.028 0.209 ± 0.026 Ns
 Te (ms) 97 ± 14 95 ± 11 Ns
 Te variance (ms) 71 [52] 59 [42] Ns
 Te standard deviation 8 ± 2 7 ± 2 Ns
 TeVI − 0.004 [0.86] − 0.186 [0.60] Ns
 RR → Te, coherence 0.212 ± 0.036 0.195 ± 0.025 Ns
 QTp → Te, coherence 0.479 ± 0.049 0.462 ± 0.095 Ns

10 min exercise recovery
 QTe mean (ms) 306 ± 36 273 ± 27 0.022
 QTe variance (ms2) 337 [571] 252 [261] Ns
 QTe standard deviation 25 ± 18 19 ± 6 Ns
 RR (ms) 651 ± 141 565 ± 11 Ns
 RR variance (ms2) 2456 [3000] 2716 [3875] Ns
 RR standard deviation 62 ± 39 57 ± 25 Ns
 QTeVI − 0.23 [0.57] − 0.51 [0.57] Ns
 RR → QTe, coherence 0.226 ± 0.054 0.246 ± 0.060 Ns
 QTe-RR slope, 0.27 [0.14] 0.25 [0.21] Ns
 QTp mean (ms) 227 ± 30 204 ± 24 Ns
 QTp variance (ms2) 329 [380] 263 [817] Ns
 QTp standard deviation (ms2) 19 ± 6 16 ± 6 Ns
 QTpVI − 0.07 [0.41] − 0.27 [0.73] Ns
 QTp-RR slope 0.29 [0.13] 0.21 [0.32] Ns
 RR → QTp, coherence 0.225 ± 0.042 0.226 ± 0.049 Ns
 Te (ms) 79 ± 10 70 ± 12 Ns
 Te variance (ms) 113 [82] 89 [82] Ns
 Te standard deviation 12 ± 5 10 ± 3 Ns
 TeVI 0.50 [0.82] 0.06 [0.88] Ns
 RR → Te, coherence 0.208 ± 40 0.217 ± 0.038 Ns
 QTp → Te, coherence 0.442 ± 0.083 0.569 ± 0.070 0.001
 Te-RR slope, 0.041 [0.11] 0.036 [0.07] Ns
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cardiac cells, few data existed on QT in the hypogonadal 
patients. In regard to the corrected QT, Charbit et al. found 
a reduction of 13.6 ± 2.8 ms between low and high levels 
of serum testosterone (low versus high testosterone level 
medians: 6 versus 52.6  nmol/L) [58]. On the contrary, 
Pecori Giraldi et al. did not find a reduction of corrected QT 
except for a small percentage with an abnormal corrected 
QT (> 440 ms) [36–38]. In our study, the level of testos-
terone reached was less than half of the Charbit study and 
none of our hypogonadal subjects had a corrected QT at rest 
higher of 440 ms; thus, we cannot make a definitive com-
parison with the previous cited studies. However, although 
our patients were older than the Pecori Giraldi study (for 
these reasons, we reported lower testosterone serum lev-
els), we obtained the similar results with a corrected QT at 
rest unmodified by the TRT. On the contrary, other authors 
reported an improvement of QTpVI in hypogonadal sub-
jects with spinal cord injury during TRT [59, 60]. Prob-
ably, the study is incomparable because our hypogonadal 
subjects were 20 years older than the previous patients of 
abovementioned study. Only corrected Te and Te-RR slopes 
(resulted from Te/RR relation) were significantly reduced 
after the TRT, the first one at the peak and the second during 
whole recovery phase. The reduction of corrected Te was 
consistent with the possible reduction malignant arrhythmias 
risk. The decrease of the Te-RR slope indicates a reduction 
of steepness of the regression line obtained for these two 
variables. Given that, a high steepness represents a major 
risk of sudden death in heart failure [14, 30–33]; therefore, 

the observed decrease of Te-RR slope might hypothetically 
support a possible reduction of the SCD risk.

One important study limitation consists in the operator-
dependent evaluation of single patient EKGs may be con-
sidered weak; indeed, in our prior experience, this single-
operator in-deep analysis led us to identify any important 
variation related to myocardial dispersion and repolarization 
to better predict QT variations [41]. Another limitation is 
represented by the limited number of subjects studied; we 
acknowledge the great ethical difficulties to maintain any 
hypogonadal subject without TRT and also for this reason 
we did not enrol a placebo-controlled treated group that 
was not permitted by our Ethical Committee. We tried to 
overcome this bias by using a control group in whom no 
treatment for hypogonadism was indicated. Finally, we 
recognize that expected changes in symptoms and signs of 
hypogonadism as well as in hormonal and body composition 
patterns are not presented since they were not in the aim and 
scope of the present study; they had been already reported 
in previous studies [34, 61].

In conclusion, an increase of QT duration not heart-rate 
related in hypogonadal patients has been observed, but most 
of the dynamic markers of myocardial temporal dispersion 
of repolarization were not altered neither at rest or during 
the post-exercise recovery phase. Therefore, it is likely that 
hypogonadism per se does not increase the risk of malignant 
ventricular arrhythmias. Nevertheless, some subtle modifica-
tions in the repolarization phase either at rest (stable QT pro-
longation) or during autonomic nervous system unbalance 
(reduced QTp → Te coherence during the recovery phase), 

Fig. 7   a QTp → Te during exercise recovery in hypogonadal and con-
trol subjects. In the box plots, the central line represents the median 
distribution. Each box spans from 25th to 75th percentile points, 
and error bars extend from 10th to 90th percentile points. b Te-RR 
slope during exercise recovery at baseline and replacement therapy 

in hypogonadal subjects. In the box plots, the central line represents 
the median distribution. Each box spans from 25th to 75th percen-
tile points, and error bars extend from 10th to 90th percentile points. 
These data are detected automatically with a custom software
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as well as the improvement of some ECG variables after 
TRT (Te, Te/RR slope) might support the idea of a leading 
tendency to ventricular arrhythmias in hypogonadal patients 
and, hence, it claims for a close control of possible other 
conditions able to further reduce the repolarization reserve. 
Hypogonadal patients are generally considered at increased 
risk of major adverse cardiovascular events and sudden car-
diac death. When considering the results of our EKG study, 

it seems appropriate to treat severe hypogonadism with TRT 
independently of age and comorbidities, preceding it by a 
thorough cardiologic counselling to avoid possible ventricu-
lar adverse event (QT) related to testosterone action on the 
repolarization phase.

Table 5   QTe, QTp and Te 
Data at rest, at exercise peak 
and during 1,3,5,7 and 9 min 
of recovery after testosterone 
therapy

These data are detected manually with tangential method. **p < 0.001 or *p < 0.05 baseline versus testos-
terone
RR RR interval, QTe QT end, QTp QT peak, Te T end

Rest Exercise peak 1 min 3 min 5 min 7 min 9 min

Baseline
 RR (ms) 887 ± 2 402 ± 57 498 ± 97 582 ± 168 607 ± 115 621 ± 142 625 ± 160
 QTe (ms) 402 ± 36* 280 ± 27 294 ± 39 313 ± 27 321 ± 23 322 ± 26 324 ± 34
 QTeBazett (ms) 431 ± 40 444 ± 40 421 ± 62 416 ± 28 414 ± 29 411 ± 25 414 ± 43
 QTeFridericia (ms) 421 ± 34 380 ± 33 373 ± 51 378 ± 20 380 ± 23 379 ± 20 381 ± 36
 QTeLilly (ms) 425 ± 36 405 ± 36 392 ± 55 393 ± 22 393 ± 25 391 ± 21 394 ± 38
 QTeFramingham (ms) 419 ± 33 372 ± 25 372 ± 38 378 ± 17 381 ± 18 380 ± 17 381 ± 30

Testosterone
 RR (ms) 888 ± 97 416 ± 54 524 ± 86 592 ± 78 625 ± 89 637 ± 87 655 ± 90
 QTe (ms) 378 ± 29* 248 ± 28 285 ± 18 308 ± 21 320 ± 21 323 ± 21 320 ± 20
 QTeBazett (ms) 402 ± 29 405 ± 17 396 ± 17 401 ± 15 406 ± 25 407 ± 27 396 ± 20
 QTeFridericia (ms) 394 ± 27 332 ± 31 355 ± 12 367 ± 15 375 ± 21 377 ± 21 369 ± 17
 QTeLilly (ms) 397 ± 27 352 ± 32 371 ± 13 380 ± 14 387 ± 22 389 ± 23 379 ± 17
 QTeFramingham (ms) 395 ± 26 332 ± 31 320 ± 13 371 ± 13 378 ± 18 379 ± 18 373 ± 15

Baseline
 QTp (ms) 309 ± 26** 201 ± 18 201 ± 18 236 ± 25 251 ± 25 245 ± 35 258 ± 24
 QTpBazett (ms) 332 ± 31 317 ± 14 286 ± 13 312 ± 20 324 ± 31 311 ± 28 329 ± 27
 QTpFridericia (ms) 324 ± 25 272 ± 14 254 ± 12 284 ± 17 297 ± 26 287 ± 29 303 ± 22
 QTpLilly (ms) 327 ± 27 290 ± 14 266 ± 11 295 ± 17 307 ± 28 301 ± 24 313 ± 23
 QTpFramingham (ms) 327 ± 30 293 ± 11 278 ± 8 300 ± 15 311 ± 21 303 ± 22 316 ± 20

Testosterone
 QTp (ms) 194 ± 22** 194 ± 22 211 ± 20 237 ± 16 251 ± 17 251 ± 26 257 ± 17
 QTpBazett (ms) 312 ± 20 302 ± 26 293 ± 26 310 ± 20 319 ± 25 316 ± 25 319 ± 18
 QTpFridericia (ms) 306 ± 20 260 ± 24 262 ± 21 283 ± 17 294 ± 20 292 ± 24 296 ± 15
 QTpLilly (ms) 308 ± 20 276 ± 25 274 ± 23 294 ± 18 304 ± 21 301 ± 24 305 ± 16
 QTpFramingham (ms) 311 ± 19 284 ± 18 284 ± 17 300 ± 15 308 ± 17 307 ± 20 310 ± 13

Baseline
 Te (ms) 93 ± 14** 72 ± 15 86 ± 35 77 ± 7 68 ± 14 72 ± 8 76 ± 22
 TeBazett (ms) 99 ± 15 114 ± 27* 125 ± 56 103 ± 13 87 ± 17 92 ± 12 98 ± 29
 TeFridericia (ms) 97 ± 14 98 ± 22* 110 ± 48 93 ± 9 80 ± 16 85 ± 9 90 ± 26
 TeLilly (ms) 98 ± 14 105 ± 24* 116 ± 51 97 ± 11 83 ± 16 87 ± 11 93 ± 27
 TeFramingham (ms) 110 ± 29 164 ± 19* 164 ± 42 141 ± 25 128 ± 19 130 ± 23 134 ± 32

Testosterone
 Te (ms) 52 ± 12** 52 ± 12 71 ± 9 71 ± 13 72 ± 11 72 ± 12 64 ± 12
 TeBazett (ms) 110 ± 78 81 ± 17* 98 ± 15 93 ± 15 92 ± 15 90 ± 20 80 ± 14
 TeFridericia (ms) 108 ± 76 70 ± 15* 88 ± 12 85 ± 14 85 ± 14 85 ± 10 74 ± 13
 TeLilly (ms) 109 ± 77 74 ± 16* 92 ± 13 88 ± 14 88 ± 14 86 ± 18 76 ± 13
 TeFramingham (ms) 121 ± 75 142 ± 11* 144 ± 15 135 ± 12 135 ± 16 127 ± 21 117 ± 13
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Table 6   QTe, QTp and Te 
Variability and Coherence Data 
after testosterone therapy

These data are detected automatically with a custom software. Values are expressed as mean ± SD or 
median [interquartile range 75th percentile–25th percentile]

Variables Baseline subjects
N = 13

Testosterone subjects
N = 13

P values

Rest
 QTe mean (ms) 358 ± 33 349 ± 30 Ns
 QTe variance (ms2) 44 [30] 48 [47] Ns
 QTe standard deviation 7 ± 2 7 ± 1 Ns
 RR (ms) 878 ± 207 925 ± 177 Ns
 RR variance (ms2) 1090 [1950] 788 [1663] Ns
 RR standard deviation 37 ± 21 39 ± 22 Ns
 QTeVI − 0.75 [0.77] − 0.52 [0.62] Ns
 RR → QTe, coherence 0.206 ± 0.034 0.215 ± 0.029 Ns
 QTp mean (ms) 265 ± 23 253 ± 25 Ns
 QTp variance (ms2) 27 [26] 27 [16] Ns
 QTp standard deviation (ms2) 5 ± 1 5 ± 1 Ns
 QTpVI − 0.77 [0.55] − 0.50 [0.79] Ns
 RR → QTp, coherence 0.236 ± 0.036 0.212 ± 0.034 Ns
 Te (ms) 94 ± 14 96 ± 9 Ns
 Te variance (ms) 42 [46] 74 [40] Ns
 Te standard deviation 8 ± 2 8 ± 1 Ns
 TeVI 0.60 [0.43] 0.71 [0.47] Ns
 RR → Te, coherence 0.220 ± 0.038 0.208 ± 0.042 Ns
 QTp → Te, coherence 0.471 ± 0.061 0.453 ± 0.068 Ns

10 min exercise recovery
 QTe mean (ms) 283 ± 27 285 ± 18 Ns
 QTe variance (ms2) 324 [448] 369 [319] Ns
 QTe standard deviation 23 ± 7 19 ± 6 Ns
 RR (ms) 562 ± 130 583 ± 71 Ns
 RR variance (ms2) 2612 [2859] 3431 [4834] Ns
 RR standard deviation 65 ± 41 64 ± 24 Ns
 QTeVI − 0.28 [0.54] − 0.36 [0.26] Ns
 RR → QTe, coherence 0.235 ± 0.055 0.219 ± 0.025 Ns
 QTe-RR slope 0.35 [0.23] 0.34 [0.12] Ns
 QTp mean (ms) 206 ± 20 213 ± 20 Ns
 QTp variance (ms2) 291 [311] 293 [549] Ns
 QTp standard deviation (ms2) 19 ± 6 20 ± 7 Ns
 QTpVI − 0.12 [0.44] − 0.20 [0.24] Ns
 RR → QTp, coherence 0.218 ± 0.031 0.216 ± 0.024 Ns
 QTp-RR slope 0.30 [0.13] 0.31 [0.11] Ns
 Te (ms) 76 ± 10 75 ± 9 Ns
 Te variance (ms) 106 [95] 82 [87] Ns
 Te standard deviation 11 ± 2 10 ± 3 Ns
 TeVI 0.22 [0.79] 0.16 [0.87] Ns
 RR → Te, coherence 0.208 ± 0.048 0.200 ± 0.016 Ns
 QTp → Te, coherence 0.417 ± 0.037 0.447 ± 0.095 Ns
 Te-RR slope 0.077 [0.09] 0.002 [0.102] 0.028
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