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A novel role of actomyosin bundles in ERK signaling
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Intracellular and extracellular mechani-
cal environments have a significant
impact on survival and proliferation of
cells. While the extracellular signal-regu-
lated kinase (ERK) subfamily of MAP
kinases plays critical roles in regulations
of these cellular behaviors, activation of
ERK is affected by mechanical conditions
of cells. We have recently found that
ERK is activated on contractile actomyo-
sin bundles. ERK activation on actomyo-
sin bundles depends on tension in the
bundles, which is generated by either
myosin II activity of external forces. In
this Addendum, we discuss a novel,
potential role of actomyosin bundles in
ERK signaling and mechanical regulation
of cell survival and proliferation.

A growing body of research shows
that cell survival and proliferation are
regulated not only by soluble chemical
factors such as growth factors and cyto-
kines but also by intracellular and
extracellular mechanical environments.
Adherent types of cells including fibro-
blasts, endothelial and epithelial cells
adhere to extracellular matrix (ECM)
substrates  through integrin-mediated
adhesion complexes. When ECM sub-
strates are compliant, cell cycle progres-
sion and cell proliferation are inhibited,
and the apoptosis rate is increased.'”
At the same time, cells on softer sub-
strates generate smaller actomyosin-
based contractile force, resulting in
development of less mechanical tension
in the actin cytosl(eleton.4 Therefore,
potential involvement of cytoskeletal
tension in the regulation of cell survival
and proliferation has been discussed.’
Consistent with this hypothesis, when
the tension is reduced by disrupting the

actin cytoskeleton or by inhibiting the
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RhoA-Rho kinase-myosin Il cascade,
cell cycle progression is hampered.®”
ERK is a crucial regulator of cell sur-
vival and proliferation, and its activation
(phosphorylation in the activation loop)
is closely related to the level of cytoskele-
tal tension. Actomyosin activity® and stiff
ECM substrates’ are required for ERK
activation. Mechanical stretching of cells
upregulates ERK activity, which depends
on the intact actin cytoskeleton.'® Fur-
thermore, ERK association with the actin
cytoskeleton and activation of actin-asso-
ciated ERK have been reported."
Finally, we have recently found that ERK
is activated on actomyosin bundles in a
tension-dependent manner.'> ERK local-
izes to the actin cytoskeleton indepen-
dently of myosin II activity. However,
the actin-associated ERK is phosphory-
lated exclusively on actomyosin bundles
called stress fibers, but not at lamellipo-
dial or cortical F-actin accumulations, in
a myosin II-dependent manner. Mechan-
ical stretching of myosin Il-inhibited
cells restores ERK phosphorylation on
stress fibers, strongly suggesting a crucial
role of tension in ERK activation. Impor-
tantly, when quantified myosin II- or
stretch-mediated tensile force in stress
fibers, ERK phosphorylation was found
to increase with tensile force on the
fibers. This positive correlation between
ERK phosphorylation and tensile force is
observed in each stress fiber, indicating
ERK phosphorylation is locally regulated
on individual stress fibers. Thus, individ-
ual stress fibers are likely to work as a ten-
sion sensor and a platform for ERK
activation. The myosin Il-dependent
ERK phosphorylation occurs not only on
conventional stress fibers but also on
actomyosin bundles connecting E-cad-
herin  clusters in a  keratinocyte
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monolayer, suggesting a general role of
actomyosin bundles in tension-depen-
dent ERK activation.

ERK translocates to the nucleus upon
phosphorylation and activates various
transcription factors."> Nuclear localiza-
tion of ERK is dependent on myosin II
activity.'*"> Furthermore, RSK, a major
downstream effector of ERK, is phosphor-
ylated in a myosin II-dependent manner,
and mechanical stretching of myosin II-
inhibited cells upregulates RSK phosphor-
ylation."” However, disruption of stress

fibers abolishes stretch-induced phosphor-
ylation of RSK.'? These results suggest
that tension-dependent ERK activation on
actomyosin bundles is involved in activat-
ing downstream signal cascades.
Sustained, basal ERK activity is neces-
sary for survival of cells."® ERK phosphor-
ylation on actomyosin bundles can be
observed under the normal, static cell cul-
ture condition in the presence of serum.'?
Therefore, endogenous tension in actomy-
osin bundles under the static condition
would contribute to cell survival through

- bundle
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or
stretch of the cell
Tensile Stress
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tion would ensure cell survival and proliferation.

Figure 1. Hypothetical role of actomyosin bundles in tension-dependent ERK signaling. ERK local-
izes actomyosin bundles in a myosin ll-independent manner. Once myosin Il is activated, or cells
are mechanically stretched, mechanical tension in actomyosin bundles is developed between adhe-
sion complexes (focal adhesions or adherens junctions), which induces activation (phosphorylation)
of ERK on the bundles. Through activating downstream signaling, tension-dependent ERK activa-
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maintaining basal ERK activity. Consis-
tent with this idea, disruption of the actin
cyoskeleton, myosin II inhibition or soft
ECM substrates, all of which decrease
mechanical tension in actomyosin bundles
and diminish ERK activity, induces apo-
ptotic cell death.”'” Even in the context
of multicellular systems such as epithelial
cell monolayers, tension-dependent ERK
activation is likely to contribute to cell
survival. For example, keratinocytes die
due to apoptosis within 24 h after inhibi-
tion of cell adhesion to ECM (the phe-
called  “anoikis™).'®'” By
contrast, keritinocytes in a tensed cell
sheet suspended over the ECM-devoid
region, where cells are held together by
actomyosin  bundles  interconnected
through  E-cadherin-mediated
junctions, are viable for > 40 h and even
proliferate.”* ERK activation on tensed

nomenon

cell-cell

actomyosin bundles in the suspended cell
sheet may avert the cells from apoptosis.
Actomyosin bundles are major contrac-
tile force generators in cells. The bundles
are linked to integrin-mediated (focal
adhesion) or cadherin-mediated (adherens
junction) cell adhesion complexes, and
exert forces to these complexes. The
transmitted forces drive various mechano-
transduction events at the adhesion com-
plexes.*  Therefore,  actomyosin
bundles have been recognized as a critical
mediator of mechanotransduction at focal
adhesions and adherens junctions.”**> By
contrast, above considerations reveal a
novel role of actomyosin bundles; actomy-
osin bundles per se act as a mechanotrans-
activate ERK

duction platform  to

signaling (Fig. 1).
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