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Abstract: During the current era of the COVID-19 pandemic, the dissemination of Mucorales has
been reported globally, with elevated rates of infection in India, and because of the high rate of
mortality and morbidity, designing an effective vaccine against mucormycosis is a major health
priority, especially for immunocompromised patients. In the current study, we studied shared
Mucorales proteins, which have been reported as virulence factors, and after analysis of several
virulent proteins for their antigenicity and subcellular localization, we selected spore coat (CotH)
and serine protease (SP) proteins as the targets of epitope mapping. The current study proposes
a vaccine constructed based on top-ranking cytotoxic T lymphocyte (CTL), helper T lymphocyte
(HTL), and B cell lymphocyte (BCL) epitopes from filtered proteins. In addition to the selected
epitopes, β-defensins adjuvant and PADRE peptide were included in the constructed vaccine to
improve the stimulated immune response. Computational tools were used to estimate the physico-
chemical and immunological features of the proposed vaccine and validate its binding with TLR-2,
where the output data of these assessments potentiate the probability of the constructed vaccine to
stimulate a specific immune response against mucormycosis. Here, we demonstrate the approach
of potential vaccine construction and assessment through computational tools, and to the best of
our knowledge, this is the first study of a proposed vaccine against mucormycosis based on the
immunoinformatics approach.
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1. Introduction

Mucormycosis is an invasive fungal infection caused by a diverse group of fungi
belonging to the order Mucorales [1]. The major ways of infection in humans are through
the inhalation of sporangiospores and the ingestion of contaminated food with Mucorales
spores [2]. After analysis, 11 genera and approximately 27 species in the order Mucorales
were estimated as mucormycosis causative agents to humans, where Rhizopus came at the
top of this list as the most common mucormycosis causative genus around the world [3].

In mucormycosis, various disease manifestations are seen, such as rhinocerebral
mucormycosis, which affects the sinuses and the brain; pulmonary mucormycosis, which
affects the lung and lead to breathing disturbances and cough; cutaneous mucormycosis,
which lead to ulcers and blisters at the site of infection; gastrointestinal mucormycosis,
which is more common in neonates than adults; and finally, disseminated mucormycosis,
that affect more than one organ in the infected person [4]. The overall mortality rate of
mucormycosis was reported to be between 46% and 54% [5].

The traditional risk factors of mucormycosis are diabetes mellitus, hematological
malignancy, chronic kidney disease, and trauma, where the latter is a major risk factor for
cutaneous mucormycosis [6]. Recently, with the outbreak of COVID-19, many cases of
mucormycosis have been reported in people infected with COVID-19 around the world and
especially in India [7]. This correlation was attributed to the excellent environment of high
glucose, low oxygen, and decreased fighting activity of white blood cells in patients infected
with COVID-19, which made it easy for Mucorales spores to germinate [8]. COVID-19
patients who required a ventilator or prolonged hospital admission had a high chance of
fungal co-infection. Moreover, corticosteroid utilization during the COVID-19 course of
treatment would inhibit immune responses, allowing mucormycosis infections that can
manifest through various symptoms, starting from nasal congestion and rhinorrhea and
moving to loss of vision and finally, fatal tissue necrosis. The management of mucormycosis
requires several steps, starting from early diagnosis, the reversal of environmental condi-
tions which facilitate the germination process, the surgical removal of damaged tissues, and
the administration of a suitable antifungal agent [9]. While amphotericin B, posaconazole,
and isavuconazole are categorized as the most active antifungal agents against Mucorales,
their activity remains suboptimal [10]. Before the current time of the COVID-19 pandemic,
which facilitates the spreading of mucormycosis, the United States health care system cost
about $50 million per year for the management of mucormycosis cases, leading to the
question about the economic value of developing a vaccine against mucormycosis, where
analysis and studies proved the requirement of an effective vaccine that will reduce the
infection rate and mortality in a cost-effective manner [11].

Few studies have tried to design an effective vaccine against mucormycosis through
conventional approaches. One of these studies recommended the potential application of
heat-killed Saccharomyces cerevisiae to protect mice from mucormycosis [12]. During the
last twenty years, humanity experienced a massive progression in sequencing techniques,
resulting in tremendous data on the genome and proteome of many organisms. This
progression was accompanied by a development in the computational tools that can handle
and analyze these data [13]. Based on that, the field of vaccine development witnessed
the initiation of the immunoinformatics field as a modern approach that can predict
vaccine candidates against harmful microorganisms [14]. The tools of immunoinformatics
were applied to construct putative epitope vaccines against many microorganisms such
Staphylococcus aureus [15], Moraxella catarrhalis [16], the Zika virus [17], Candida albicans [18],
and Pseudomonas aeruginosa [19]. In addition to that, a biological validation has been
performed for the multitope vaccine against Trichinella spiralis [20] and uropathogenic
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Escherichia coli [21], and the results were promising. The current study aimed to identify the
virulence proteins of mucormycosis-causing fungi for B- and T-cell epitope prediction to
construct a chimeric epitope vaccine against mucormycosis and to analyze the antigenicity
and the reactivity of the final vaccine construct through computational tools.

2. Materials and Methods

A graphical summary of the current study flow of work is demonstrated in Figure 1.
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Figure 1. Graphical representation shows the major steps for constructing a multitope vaccine
against mucormycosis.

2.1. Selection of Proteins

While Rhizopus arrhizus is the most common causative agent around the world and
consequently the basic target of the current study, it has no proteome sequence of a ref-
erence strain deposited on NCBI, and investigation of uploaded proteome sequences
showed that all proteins were named hypothetical protein; therefore, the whole proteome
of Rhizopus microsporus ATCC 52813 reference strain (high-quality, fully authenticated
certified reference material) was retrieved from NCBI with the GenBank assembly ac-
cession number GCA_002708625.1. Based on mentioned common virulent proteins in
mucormycosis-causing fungi [22], we analyzed these proteins based on their antigenic-
ity and subcellular localization. Antigenicity assessment was carried through Vaxigen
v2.0 [23], where proteins with antigenicity score more than 0.5 were considered antigenic.
We planned to select protein candidates to pass to the epitope-mapping stage, and the
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criteria of the passed proteins were the following: they must have an antigenicity score
of more than 0.5 and be presented on the cell wall or secreted to the outer media in order
for them to have direct contact with the infected host, and finally, conserved in various
species of mucormycosis-causing fungi so that the designed chimeric vaccine would have
a cross-reactivity against them and consequently compensate the principle of obtaining
the protein candidates’ sequence from Rhizopus microspores, which is not the most common
mucormycosis-causative fungi.

2.2. Prediction of B and T Cell Epitopes

As a primary step before epitope prediction, selected proteins were analyzed for
the presence of signal peptides through SignalP-5.0 server [24] which estimates the exact
location of signal peptide cleavage sites in submitted proteins. The second step was the sub-
mission of mature proteins to the Immune Epitope Database (IEBD) [25]. This database pro-
vides several approaches for MHC-I assessment, and the current study adopted NetMHC-
pan EL 4.0 as a method for MHC-I peptide prediction, and this was the recommended
one by the server. The reference set of HLA alleles was utilized, along with the men-
tioned assessment method, due to the ability of this list to cover commonly shared binding
specificities, resulting in 97% of population coverage [26]. The second assessment was
for MHC-II epitopes, and this was also run through the recommended server’s method
(2.22 prediction method). To cover a high percentage of the population, the full HLA
reference set was used with the recommended prediction method [27]. Following that,
MHC-II epitopes that obtained high estimation scores were submitted to INF prediction
server to evaluate their ability to induce INF-γ [28]. The last estimation on this server was
the prediction of B-cell epitopes which was performed through bepipred linear epitope
prediction method [29]. In order to confirm the affinity of the selected peptides toward
their respective alleles, each peptide three-dimensional structure was estimated via PEP
FOLD 3 web server [30]; concurrently, three-dimensional structure of HLA-A*11:01 (PDB
ID 6JP3) and HLA-DRB1*04:01 (PDB ID 5JLZ) was obtained from the protein data bank for
MHC-I and MHC-II epitopes, respectively, to act as receptors for single epitope docking
estimation. Docking was analyzed through AutoDock Vina [31]. Peptides that passed
the above-mentioned filtration stages were analyzed for the last time before multitope
assembly for their conservation in multiple mucormycosis-causing fungi to generate a
vaccine with potential cross-reactivity. This analysis was performed through BLASTp.

2.3. Multitope Vaccine Construction

Four basic components were assembled to construct the current study’s predicted
multitope vaccine. First of all, β-defensin adjuvant sequence was added, then the recom-
mended single epitopes from the previous stage of analysis. These epitopes were linked
together with amino acid linkers, which represented the third component of the constructed
vaccine, while the fourth and last component to be added was PADRE sequence [32]. The
complete vaccine construct was analyzed for many properties. The antigenicity was pre-
dicted via VaxiJen v 2.0 [23], while the allergenicity was estimated by AlgPred server [33].
The final assessment was for the toxicity, and we employed ToxinPred web server for this
purpose [34].

2.4. Assessment of Vaccine’s Solubility, Physicochemical Features, and 2ry Structure

Estimation of the constructed vaccine solubility upon overexpression in Escherichia
coli was done via SOLpro online server [35], while the assessment of the physicochemical
characteristics was performed through ProtParam tool [36]. Lastly, the vaccine’s secondary
structure predicted was performed by PSIPRED server [37].

2.5. Vaccine 3D Structure Prediction and Validation

3Dpro online server was employed for the prediction of the vaccine 3D structure [38].
The server applies multiple models to come up with a predicted model having the lowest
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possible energy and a high grade of stability. Following that, the generated 3D model
was refined through uploading on GalaxyRefine server [39]. Lastly, and to evaluate the
generated 3D structure and the refinement process, Ramachandran plot analysis [40] and
ProSA [41] were employed to analyze the original predicted structure and the refined one.

2.6. Vaccine Disulfide Engineering

Modification of the protein structure through the addition of disulfide bonds is impor-
tant as these bonds play a significant role in improving the stability of a protein; to achieve
that, disulfide by design 2.0 [42] was chosen to sign these bonds to the validated vaccine
three-dimensional structure.

2.7. Docking Analysis between Predicted Vaccine 3D Structure and TLR-2

In the field of in silico drug design, docking studies are of great importance as they
predict the possible complexes that may generate from the binding between a ligand and
its respective receptor and the numerical value of the ligand–receptor binding energy
provides an estimation of the affinity between the complex components [43]. Neutrophils
have a vital role in combating mucormycosis and as a result of neutrophil spore interaction,
excessive expression of toll-like receptor (TLR) occurs [44]. Furthermore, Rhizopus hyphae
were found to induce TLR-2 expression [45]; thus, TLR-2 (PDB id: 2Z7X)’s 3D structure
was retrieved from the protein databank and uploaded into the ClusPro 2.0 server to act as
a receptor for the docking study [46], while the ligand of this analysis was the predicted
vaccine 3D structure. This server works by estimating a large number of possible complex
orientations and finally, by providing the conformation with the highest predicted stability.

2.8. Normal Mode Analysis

iMODS server [47] was employed to perform normal mode analysis for the complex
between the designed vaccine 3D structure and TLR-2. The server analyzes the collec-
tive motions of the vaccine-receptor complex using normal mode analysis in internal
coordinates [48].

2.9. Molecular Dynamics Simulation

The multitope vaccine/TLR-2 docked complex was chosen as starting coordinates for
a 50-nanosecond all-atom molecular dynamics (MD) simulation using GROMACS-2019
software package (GNU General Public License http://www.gromacs.org) accessed on
23 September 2021 [49]. The CHARMM36m force field was selected in many studies
that applied MD [50,51]. The docked complex was solvated within a cubic box of the
TIP3P water model under periodic boundary conditions implementation [52]. The MD
simulations were conducted over three conventional stages; one-staged minimization,
double-staged equilibration, and production [53,54]. The production stage involved 50 ns
MD simulation runs under constant pressure (NPT ensemble) while using the Particle
Mesh Ewald (PME) algorithm for computing the long-range electrostatic interactions [55].
All covalent bond lengths, including hydrogens, were modeled under the implemented
linear constraint LINCS method [55]. Both Coulomb’s and van der Waals non-bonded
interactions were truncated at 10 Å using the Verlet cut-off scheme [56].

Computing comparative analysis tools, including RMSD, RMSF, radius of gyration
(Rg), and solvent-accessible surface area (SASA) were performed through analyzing the
MD trajectories using the GROMACS built-in tools. Binding-free energy between the ligand
and protein was estimated via the Molecular Mechanics/Poisson–Boltzmann Surface Area
(MM/PBSA) using GROMACS “g_mmpbsa” module [57]. To represent the ligand-protein
conformational analysis, the Schrödinger-Pymol graphical software was employed.

2.10. Reverse Translation and Codon Adaptation

The final step of the current computational study is the reverse translation and codon
adaptation for the vaccine amino acid sequence to be expressed in E. coli k-12, as an

http://www.gromacs.org
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expression that will be the first step in the wet-lab validation of the currently proposed
vaccine, and for this purpose, JCAT server [58] was employed.

2.11. Immune Simulation of the Chimeric Peptide Vaccine

The stimulated immune response for the designed multitope vaccine was predicted
computationally through C-ImmSim server [59]. We investigated the immune response
after the administration of three multitope vaccine injections in four weeks intervals. This
technique represents a prime-booster-booster approach to achieve a long-lasting immune
response.

3. Results
3.1. Nomination of Two Proteins as Vaccine Candidates

We planned to select protein candidates (from virulent proteins mentioned in [19]) with
antigenicity scores of more than 0.5 and to have direct contact with the human host after
infection. Firstly, virulent proteins were obtained from the proteome of Rhizopus microsporus
ATCC 52813 and analyzed according to selection criteria (Table 1). Serine protease (SP),
spore coat protein (CotH), and calcium/calmodulin-dependent protein kinase passed the
antigenicity score filtration step and analyzed for their subcellular localization, where SP
was found to be a secretory protein and CotH was a surface-exposed protein.

Table 1. Antigenicity and cellular localization of virulent proteins in Rhizopus microsporus.

Protein Name Antigenicity Score Surface Exposed or
Secreted Protein

High-affinity iron permease −0.03 -
Spore coat protein 0.80 Yes

Serine protease 0.86 Yes
Calcium/calmodulin-dependent

protein kinase 0.55 No

3.2. Prediction of B Cell Epitopes

The B-cell epitopes had a threshold value of 0.35 (Figure 2). There were 19 and
23 predicted epitopes for CotH and SP, respectively. This list was downsized by selecting
epitopes sized between 8 and 18 peptides (Table 2), and finally, the top two epitopes,
according to their antigenicity score for each of the protein candidates, were selected to
construct the multitope vaccine.
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Table 2. Predicted B cell epitopes from CotH and SP proteins.

CotH SP
Epitope Start–End Antigenicity Score Epitope Start–End Antigenicity Score

CATDPSYI 38–44 1.14 YAPVEAEAV 36–44 −0.11
VFGNDQPGYKR 109–119 2.04 ETPNFKGYAGR 96–106 2.04
PTVKDYIEPRVN 148–159 1.1 NYDANTAGDG 161–170 1.69

QEYPSKSVSKDHT 166–178 0.54 IAGTKYGVAKKARP 217–230 1.42
LVPANEQKDADNSFK 265–279 −0.09 SNGSGSMSD 238–246 0.12

KDKEQAQTEGKPFKG 260–274 0.84
NTATNTISGTSMASP 364–378 1.5

QSEPGVTPKEI 390–400 0.35
PNELTKIPKDT 410–420 −0.98

3.3. Prediction of MHC-I and MHC-II Epitopes

For MHC-I epitopes, 22,599 and 21,897 epitopes were predicted for CotH and SP,
respectively, and the percentile rank of these predicted epitopes ranged from 0.01 to 100. In
order to shorten the list for epitope selection, only epitopes with a percentile rank lower
than two were analyzed to choose the best candidates between them. The reason for taking
peptides with a percentile rank lower than two is that the smaller the percentile rank,
the more binding affinity with the respective allele. Other factors were considered in the
selection step, such as the antigenicity score and the number of reacting alleles (Table 3).
Regarding MHC-II epitopes, there were 11,151 and 10,800 predictions for CotH and SP,
respectively; again, the percentile rank, antigenicity score, number of reacting alleles, and
the epitope ability to induce interferon gamma were the criteria for the best candidates
selection (Table 4).

Table 3. Filtered MHC-I peptides of CotH and SP proteins.

CotH SP
Epitope Antigenicity Reacting Alleles Number Epitope Antigenicity Reacting Alleles Number

GQNGRFIWL 2.96 7 TAGDGIKVY 4.3 9
RVFGNDQPGY 2.63 11 NDFGGRATW 2.89 7

ARASYVRLF 2.26 6 ISSRKALTL 2.62 6
RLIQIDVQW 2.02 12 ATWGKTIPA 2.6 8
TVNQSLSGF 1.91 7 HNDFGGRATW 2.59 6

YQDPGQNGRF 1.91 14 HVAGLAAYF 2.4 12
VQWDKQLQR 1.68 9 APGLDIQSIW 2.19 6
RIMQDYYDY 1.63 8 SSRKALTLR 1.96 6
HTMAPLVSF 1.35 19 VVLKDHLSM 1.23 11
SQLLQVDEF 1.41 10 KARPVAVKV 1.11 11

Table 4. Filtered MHC-II peptides of CotH and SP proteins.

CotH SP

Epitope Antigenicity IFN
Epitope

Reacting
Alleles Epitope Antigenicity IFN

Epitope
Reacting
Alleles

AVGRLRLGANLGYLG 1.66 Yes 4 EAVRGSYIVVLKDHL 1.77 Yes 9
KIKFSLSGQTSRLFN 1.73 No 6 DGIKVYVIDTGINVS 1.64 Yes 9

VGRLRLGANLGYLGP 1.8 Yes 4 GIKVYVIDTGINVSH 1.39 Yes 8
DQFGLLNNIARRPLV 0.99 Yes 8 LARISSRKALTLRNF 1.02 Yes 7
DYLSTVNQSLSGFVL 1.46 Yes 4 DHAEWISSMVAAKAY 0.71 Yes 13
FGLLNNIARRPLVSQ 1.07 Yes 4 AITVGASTIADERAY 0.69 Yes 5
TDYLSTVNQSLSGFV 1.68 Yes 6 QDHAEWISSMVAAKA 0.68 Yes 10
GRLRLGANLGYLGPT 1.56 Yes 4 HAEWISSMVAAKAYN 0.58 Yes 12
ITDYLSTVNQSLSGF 1.68 Yes 5 GDGIKVYVIDTGINV 2.63 No 9
QFGLLNNIARRPLVS 1.07 Yes 7 GSYIVVLKDHLSMEQ 2.21 No 8
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3.4. Molecular Docking of T Cell Epitopes and Assessment of Selected Epitopes Conservation

Single epitopes were analyzed through a docking study versus a representative allele
that acted as a receptor. Figure 3 demonstrates the docking of filtered MHC-I peptides
in the receptor of HLA-A*11:01. Figure 4 demonstrates this in MHC-II peptides in the
receptor of HLA-DRB1*04:01. The binding energy scores for both types of docking ranged
between −7.4 and −9.0 (Table 5), and to validate these scores, we followed the approach
mentioned in [60]. Each of the mentioned receptors was deposited in the protein databank
with an attached ligand (we employed them to act as a control) that was removed before
the docking study and docked again using the same conditions of predicted epitopes
docking. The docking score for these controls were −6.3 and −7.7 for HLA-A*11:01 and
HLA-DRB1*04:01, respectively. The docking scores of filtered peptides were more negative
than the control; therefore, they were estimated to be good binders. Moreover, a comparison
of the epitopes’ docking score with that of designed epitopes through a similar approach
in studies [61–63] demonstrated a more negative docking score in the current study, which
also supports the current study’s epitopes to be good binders to their respective receptors.

Cells 2021, 10, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 3. Predicted positions of MHC-I peptides (red color) in the 3D structure of HLA-A*11:01 receptor (blue color), 
structures (A–F) are for epitopes number 1,2,3,4,5, and 6, respectively, from Table 5. 

 
Figure 4. Predicted positions of MHC-II peptides (red color) in the 3D structure of HLA-DRB1*04:01 receptor (blue color), 
structures (A–F) are for epitopes number 1,2,3,4,5 and 6, respectively, from Table 5.  

Figure 3. Predicted positions of MHC-I peptides (red color) in the 3D structure of HLA-A*11:01 receptor (blue color),
structures (A–F) are for epitopes number 1,2,3,4,5, and 6, respectively, from Table 5.



Cells 2021, 10, 3014 9 of 25

Cells 2021, 10, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 3. Predicted positions of MHC-I peptides (red color) in the 3D structure of HLA-A*11:01 receptor (blue color), 
structures (A–F) are for epitopes number 1,2,3,4,5, and 6, respectively, from Table 5. 

 
Figure 4. Predicted positions of MHC-II peptides (red color) in the 3D structure of HLA-DRB1*04:01 receptor (blue color), 
structures (A–F) are for epitopes number 1,2,3,4,5 and 6, respectively, from Table 5.  

Figure 4. Predicted positions of MHC-II peptides (red color) in the 3D structure of HLA-DRB1*04:01 receptor (blue color),
structures (A–F) are for epitopes number 1,2,3,4,5 and 6, respectively, from Table 5.

Table 5. Selected epitopes’ binding energies with representative MHC-I and MHC-II alleles.

No. Epitope MHC-I Allele Binding Energy
(kcal/mol) Epitope MHC-II Allele Binding Energy

(kcal/mol)

1 GQNGRFIWL −7.8 AVGRLRLGANLGYLG −8.1
2 RLIQIDVQW −7.4 DQFGLLNNIARRPLV −8.0
3 HTMAPLVSF HLA-A*11:01 −8.3 TDYLSTVNQSLSGFV HLA-DRB1*04:01 −7.6
4 NDFGGRATW −8.8 EAVRGSYIVVLKDHL −7.6
5 ISSRKALTL −8.0 DGIKVYVIDTGINVS −7.7
6 HVAGLAAYF −9.0 DHAEWISSMVAAKAY −8.4

The epitopes that passed all the previous selection criteria, as seen in Table 5, were
analyzed through BLASTp for their conservancy in various mucormycosis-causing fungi
and were found to be conserved in a high percentage (Table 6); therefore, they were selected
to construct the multitope vaccine.

3.5. Assembly of the Multitope Vaccine and Assessment of Its Physicochemical Properties

Filtered single epitopes from CotH and SP were assembled to design the multitope
vaccine. We selected 6 CTL epitopes, 6 HTL epitopes, and 4 BCL epitopes and connected
them with GGGS, GPGPG, and KK amino acids linkers respectively. Following that, the
sequences of PADRE peptide and β-defensin adjuvant were added to generate a multitope
vaccine of 337 amino acids with the following sequence:

“EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAK
AKFVAAWTLKAAAGGGSGQNGRFIWLGGGSRLIQIDVQWGGGSHTMAPLVSFGGGSN
DFGGRATWGGGSISSRKALTLGGGSHVAGLAAYFGPGPGAVGRLRLGANLGYLGGPGP
GDQFGLLNNIARRPLVGPGPGTDYLSTVNQSLSGFVGPGPGEAVRGSYIVVLKDHLGPG
PGDGIKVYVIDTGINVSGPGPGDHAEWISSMVAAKAYKKVFGNDQPGYKRKKPTVKDY
IEPRVNKKETPNFKGYAGRKKNYDANTAGDGKKAKFVAAWTLKAAAGGGS”
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Table 6. Conservancy analysis of top-ranking epitopes in several mucormycosis-causing fungi.

Percentage Identity (%) in

Epitope Sequence Epitope Type Rhizopus
microsporus

Rhizopus
azygosporus Rhizopus oryzae Rhizopus delemar Mucor lusitanicus Apophysomyces

sp. BC1015
Lichtheimia
corymbifera

GQNGRFIWL CTL 100 100 87.5 75 75 83.33 100
RLIQIDVQW CTL 100 100 75 87.5 83.33 100 100
HTMAPLVSF CTL 100 100 100 100 70 100 72.73

NDFGGRATW CTL 100 75 87.5 87.5 87.5 87.5 77.78
ISSRKALTL CTL 100 100 80 88.89 75 75 85.71

HVAGLAAYF CTL 100 88.89 100 88.89 100 100 100
AVGRLRLGANLGYLG HTL 100 100 86.76 86.76 73.33 87.50 88.89
DQFGLLNNIARRPLV HTL 100 100 73.33 73.33 80 100 88.89
TDYLSTVNQSLSGFV HTL 100 93.33 100 100 100 100 80
EAVRGSYIVVLKDHL HTL 100 66.67 86.67 80 86.67 100 71.43
DGIKVYVIDTGINVS HTL 100 78.57 92.86 92.86 85.71 92.86 91.67

DHAEWISSMVAAKAY HTL 100 71.43 73.33 93.73 83.33 75 77.78
VFGNDQPGYKR BCL 100 100 77.78 75 85.71 75 87.5
PTVKDYIEPRVN BCL 100 91.67 69.23 70 75 87.5 80
ETPNFKGYAGR BCL 100 72.73 81.82 81.82 81.82 87.5 87.5
NYDANTAGDG BCL 100 75 80 70 80 87.5 75
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The multitope vaccine sequence started with EAAAK; then, the adjuvant sequence
was followed also by EAAAK, and then the PADRE peptide. Following that, the top CTL
epitopes for each protein then the top HTL epitopes and BCL epitopes were added and
connected with their respective linkers. Finally, a sequence of PADRE peptides was added
again. The constructed vaccine assessments showed that it is non-allergen, non-toxic,
and antigenic, with an antigenicity score of 1.5, and soluble upon overexpression, with a
SOLpro score of 0.95. The vaccine was also analyzed for other physicochemical features, as
shown in Table 7. Lastly, the vaccine secondary structure estimation showed 19.29% helix,
20.77% strand, and 59.94% coil (Figure 5).

Table 7. Scores of the vaccine’s physicochemical characteristics assessment.

Physicochemical
Characteristic

Molecular
Weight TheoreticalpI Extinction

Coefficient GRAVY Instability
Index

Aliphatic
Index

Score 34.78 kDa 10.03 51,255 M−1 cm−1 −0.326 23.82 70.42

Cells 2021, 10, x FOR PEER REVIEW 11 of 26 
 

 

again. The constructed vaccine assessments showed that it is non-allergen, non-toxic, and 
antigenic, with an antigenicity score of 1.5, and soluble upon overexpression, with a 
SOLpro score of 0.95. The vaccine was also analyzed for other physicochemical features, 
as shown in Table 7. Lastly, the vaccine secondary structure estimation showed 19.29% 
helix, 20.77% strand, and 59.94% coil (Figure 5). 

Table 7. Scores of the vaccine’s physicochemical characteristics assessment. 

Physicochemical 
Characteristic 

Molecular 
Weight 

Theoretical 
pI 

Extinction 陈 
Coefficient 

GRAVY 
Instability

陈 
Index 

Aliphatic陈 
Index 

Score 34.78 kDa 10.03 51,255M−1 cm−1 −0.326 23.82 70.42 

 
Figure 5. PESIPRED server output for the multitope vaccine secondary structure estimation. 

3.6. Vaccine’s Predicted 3D Structure and Its Validation 
3Dpro webserver generated a 3D structure for the multitope vaccine from the sub-

mitted sequence. The validation of this primary structure, via Ramachandran plot analysis 
and Z-score, showed 88.5%, 11.1%, and 0.4% of residues located in favored, allowed, and 
outlier regions, respectively, and −2.53 as a Z-score value. Based on these values, we per-
formed structure refinement for that primary structure with the GalaxyRefine server, and 
the refined model (Figure 6A) exhibited an improvement of its Z-score from −2.53 to −3.07 
(Figure 6B). In addition to that, Ramachandran plot analysis also experienced an improve-
ment, where 94.4% and 5.6% of residues were in favored and allowed regions, respectively 
(Figure 6C). 

Figure 5. PESIPRED server output for the multitope vaccine secondary structure estimation.

3.6. Vaccine’s Predicted 3D Structure and Its Validation

3Dpro webserver generated a 3D structure for the multitope vaccine from the submit-
ted sequence. The validation of this primary structure, via Ramachandran plot analysis
and Z-score, showed 88.5%, 11.1%, and 0.4% of residues located in favored, allowed, and
outlier regions, respectively, and −2.53 as a Z-score value. Based on these values, we
performed structure refinement for that primary structure with the GalaxyRefine server,
and the refined model (Figure 6A) exhibited an improvement of its Z-score from −2.53
to −3.07 (Figure 6B). In addition to that, Ramachandran plot analysis also experienced
an improvement, where 94.4% and 5.6% of residues were in favored and allowed regions,
respectively (Figure 6C).

3.7. Vaccine Disulfide Engineering

Disulfide engineering was carried out to generate a protein with better stability. The
results of disulfide engineering demonstrated that 31 pairs of amino acids could make
disulfide bonds. On the other hand, considering the accepted range of energy (less than
2.2) and Chi3 value (between −87: +97) gave us one recommended pair (SER27-ALA53)
for mutating with cysteine.

3.8. Molecular Docking of the Vaccine with TLR2

To analyze the affinity between the designed multitope vaccine and TLR2, the ClusPro
2.0 server was employed for a docking study. The server generates 30 predicted complexes
with an average docking score of −982.3, and model number 3 (Figure 7) demonstrated
the smallest possible binding energy (−1305.7). In order to validate this value, the outer
membrane protein (OmpU) from Vibrio cholera, which acts as an agonist for TLR-2 [64], was
docked with the same server to TLR-2, where 30 predicted complexes were also generated
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with an average docking score of −1294.3, and the complex with the least docking score
was −1471.3. Based on that, the binding energy of the currently designed vaccine on TLR-2
comes between the average and the smallest binding values of an agonist; therefore, a good
binding is predicted for the multitope vaccine.

Cells 2021, 10, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 6. Assessment of the predicted vaccine 3D structure. (A) The proposed vaccine structure after refinement; (B) A 
black point demonstrates the predicted Z-score; (C) Ramachandran plot analysis of the refined vaccine. 

3.7. Vaccine Disulfide Engineering 
Disulfide engineering was carried out to generate a protein with better stability. The 

results of disulfide engineering demonstrated that 31 pairs of amino acids could make 
disulfide bonds. On the other hand, considering the accepted range of energy (less than 
2.2) and Chi3 value (between −87: +97) gave us one recommended pair (SER27-ALA53) 
for mutating with cysteine. 

3.8. Molecular Docking of the Vaccine with TLR2 
To analyze the affinity between the designed multitope vaccine and TLR2, the 

ClusPro 2.0 server was employed for a docking study. The server generates 30 predicted 
complexes with an average docking score of −982.3, and model number 3 (Figure 7) 
demonstrated the smallest possible binding energy (−1305.7). In order to validate this 
value, the outer membrane protein (OmpU) from Vibrio cholera, which acts as an agonist 
for TLR-2 [64], was docked with the same server to TLR-2, where 30 predicted complexes 
were also generated with an average docking score of −1294.3, and the complex with the 
least docking score was −1471.3. Based on that, the binding energy of the currently de-
signed vaccine on TLR-2 comes between the average and the smallest binding values of 
an agonist; therefore, a good binding is predicted for the multitope vaccine. 

Figure 6. Assessment of the predicted vaccine 3D structure. (A) The proposed vaccine structure after refinement; (B) A
black point demonstrates the predicted Z-score; (C) Ramachandran plot analysis of the refined vaccine.

Cells 2021, 10, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 7. The generated complex of the vaccine ligand (red color) and TLR2 receptor (blue color). 

3.9. Inherited Flexibility Analysis Using Normal Mode Analysis within Dihedral Coordinates 
The collective functional motions/flexibility of the designed multitope vaccine/TLR-

2 complex was assessed using the iMODS server. The complex atoms and residues were 
continuously indexed, where the atom numbers 1–8800 and 8801–13,728 represented 
those of TLR-2 (first 1–548 residues) and the vaccine (subsequent 1–337 residues), respec-
tively. The B-factor scores of normal mode analysis in the iMODS server indicate the rel-
ative amplitude of the atomic displacements around the equilibrium conformation. The 
values were higher for the vaccine, particularly at the C-terminus, as compared to those 
of the TLR-2 (Figure 8A). Similarly, the deformability of the complex recapitulates the B-
factor findings, where the individual distortion of each vaccine residue was higher than 
TLR-2, particularly at the C-terminal end (Figure 8B). The estimated eigenvalue of the 
complex was found to be 9.65 × 10−07, while an inverse relationship was found between 
the eigenvalue and the variance related to each normal mode, predicting significant mo-
bility for the vaccine/TLR-2 complex across collective functional motions (Figure 8C,D). 
The covariance matrix explained the coupling between pairs of residues, where different 
pairs demonstrated correlated (red), anti-correlated (blue), or uncorrelated (white) mo-
tions. Higher correlated residue–pair motions were assigned for the TLR-2, while more 
anticorrelated motions were predicted for those of the vaccine protein (Figure 8E). The 
elastic network model further described the differential flexibility pattern between the 
TLR-2 and the vaccine (Figure 8F). Continuous dark gray bands were assigned to the TLR-
2 residues around the normal distribution stiffer strings, whereas the vaccine residues de-
pict scattered discontinuous gray bands around the normal string of immobility. 

Figure 7. The generated complex of the vaccine ligand (red color) and TLR2 receptor (blue color).

3.9. Inherited Flexibility Analysis Using Normal Mode Analysis within Dihedral Coordinates

The collective functional motions/flexibility of the designed multitope vaccine/TLR-2
complex was assessed using the iMODS server. The complex atoms and residues were
continuously indexed, where the atom numbers 1–8800 and 8801–13,728 represented those
of TLR-2 (first 1–548 residues) and the vaccine (subsequent 1–337 residues), respectively.
The B-factor scores of normal mode analysis in the iMODS server indicate the relative
amplitude of the atomic displacements around the equilibrium conformation. The values
were higher for the vaccine, particularly at the C-terminus, as compared to those of the
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TLR-2 (Figure 8A). Similarly, the deformability of the complex recapitulates the B-factor
findings, where the individual distortion of each vaccine residue was higher than TLR-2,
particularly at the C-terminal end (Figure 8B). The estimated eigenvalue of the complex
was found to be 9.65 × 10−7, while an inverse relationship was found between the eigen-
value and the variance related to each normal mode, predicting significant mobility for the
vaccine/TLR-2 complex across collective functional motions (Figure 8C,D). The covariance
matrix explained the coupling between pairs of residues, where different pairs demon-
strated correlated (red), anti-correlated (blue), or uncorrelated (white) motions. Higher
correlated residue–pair motions were assigned for the TLR-2, while more anticorrelated
motions were predicted for those of the vaccine protein (Figure 8E). The elastic network
model further described the differential flexibility pattern between the TLR-2 and the
vaccine (Figure 8F). Continuous dark gray bands were assigned to the TLR-2 residues
around the normal distribution stiffer strings, whereas the vaccine residues depict scattered
discontinuous gray bands around the normal string of immobility.
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3.10. Molecular Dynamics Simulations

The estimated RMSD deviations for each protein, in reference to its respective alpha-
carbon (Cα), depicted an overall typical behavior for MD simulations (Figure 9A). Over the
initial frames, the protein’s RMSD tones increased as a result of the constraint release at the
beginning of MD simulation runs. Following the first 20 ns of the MD runs, steady protein’s
RMSD trajectories were obtained for more than half of the simulation run time (>25 ns).
Notably, the multitope vaccine leveled off at higher RMSD trajectories (23.37 ± 0.41 Å) as
compared to the TLR-3 (7.67 ± 0.49 Å) across each respective trajectory plateau and until
the end of the MD simulation courses. The RMSD fluctuations were monitored for the
combined ligand–receptor complex in reference to the protein backbone’s initial frame,
illustrating the Cα-RMSD plateau (15.29 ± 0.32 Å) around 20 ns and until the end of the
MD simulation (Figure 9A).
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The global stability of the ligand–protein ternary structures was further investigated
through monitoring both the Rg and SASA trajectories of the complex entities across the
entire MD simulation timeframes. In this study, the steadiest Rg trajectories were assigned
for the TLR-2 receptor, showing an average value of 29.84 ± 0.39 Å (Figure 9B). Concerning
the multitope vaccine, the protein seemed to be expanding at the initial MD simulation
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frames, showing the highest Rg tones (max values 46.15 Å). However, the ligand–protein
achieved respective compactness and a significant contraction following the 10 ns and until
the end of the MD simulation time courses, with average Rg values of 36.90 ± 0.93 Å. On
the other hand, the calculated SASA tones for TLR-2 receptor exhibited steady and lower
values, 260.42 ± 2.95 nm2 (Figure 9C). The vaccine’s SASA trajectories recapitulated the Rg
findings. Following the 20 ns MD timeframe, the protein experienced higher fluctuations
across the MD simulation run. Nevertheless, almost steady SASA tones were achieved
around the 30 ns and until the end of the MD simulation, which was at values slightly
higher than those of TRL-2 (268.85 ± 3.77 nm2 versus 260.00 ± 2.40 nm2).

The fluctuation of each protein’s residues was analyzed by predicting the RMSF stabil-
ity validation parameter, being able to highlight the residue-wise contribution within the
ligand–receptor protein stability. Since investigating the RMSF trajectories for a trajectory
region were considered to be stable and the above protein’s RMSD analysis showed signifi-
cant conformational stability along the 50 ns MD simulations, the Cα-RMSF calculations
were reasoned to be estimated across the whole MD simulation trajectories. Notable, the
free terminals’ residues of the TLR-2 receptor showed a higher fluctuation pattern (high
RMSFs) in comparison to those for the core residues, which is typical for a well-behaved
MD simulation. Only two core residue regions; 240–249 and 294–305, showed max RMSF
values of 3.09 Å and 3.23 Å, respectively, which correspond to β-loops at the TLR-2′s convex
surface (Figure 9D). On the other hand, the vaccine RMSF showed higher values, with
more fluctuating tones for its constituting residues (4.29 ± 1.59 Å). Interestingly, higher
mobility patterns were depicted for the vaccine’s residues at and vicinal to the C-terminus
(high residue ID numbers) as compared to those located near the amine end.

Analysis of key conformational alterations for the MD-simulated vaccine and TLR-2
was performed by examining the ligand–protein models at the trajectories in the start and
final MD simulation timeframes. Frames at 0 and 50 ns for each ligand–protein model were
extracted and minimized to a 0.001 Kcal/mol.A2 gradient using MOE (Molecular Operating
Environment) system preparation package. A stable binding profile was assigned for the
vaccine, showing more compacted anchoring towards the TLR-2 pocket at the end of
the MD simulation (Figure 10). Minimal conformational changes were assigned for the
TLR-2 protein structure, whereas the vaccine exhibited dramatic alterations regarding its
conformation/orientation at the binding site. The C-terminus of the vaccine showed a
significant shift from being extended to exhibit closer orientation near the TLR-2 lateral side,
where the latter has been reported relevant as the dimerization interface between TLR-2
and the crystallized TLR-1 mediating heterodimerization through major hydrophobic and
relevant polar binding interactions.

The multitope vaccine exhibited total free-binding energy towards the TLR-2 binding
site. The dissected energy contributions of the van der Waal and electrostatic binding
potentials as well as the solvation and SASA energy terms were provided and calculated as
kJ/mol ± SD within Table 8. The SASA-only model of the free-binding energy calculation
(∆GTotal = ∆GMolecular Mechanics + ∆GPolar + ∆GApolar) was adopted across the 50 ns MD sim-
ulation time course, as the complex Cα-RMSDs rapidly attained equilibration/convergence
following the few initial MD frames. The decomposition of ∆GTotal binding on a per-residue
basis identified amino acid residues favoring the vaccine’s binding towards the TLR-2
pocket, where the more negative is the better (Figure 11).



Cells 2021, 10, 3014 16 of 25

Cells 2021, 10, x FOR PEER REVIEW 16 of 26 
 

 

behaved MD simulation. Only two core residue regions; 240–249 and 294–305, showed 
max RMSF values of 3.09 Å and 3.23 Å, respectively, which correspond to β-loops at the 
TLR-2′s convex surface (Figure 9D). On the other hand, the vaccine RMSF showed higher 
values, with more fluctuating tones for its constituting residues (4.29 ± 1.59 Å). Interest-
ingly, higher mobility patterns were depicted for the vaccine’s residues at and vicinal to 
the C-terminus (high residue ID numbers) as compared to those located near the amine 
end. 

Analysis of key conformational alterations for the MD-simulated vaccine and TLR-2 
was performed by examining the ligand–protein models at the trajectories in the start and 
final MD simulation timeframes. Frames at 0 and 50 ns for each ligand–protein model 
were extracted and minimized to a 0.001 Kcal/mol.A2 gradient using MOE (Molecular Op-
erating Environment) system preparation package. A stable binding profile was assigned 
for the vaccine, showing more compacted anchoring towards the TLR-2 pocket at the end 
of the MD simulation (Figure 10). Minimal conformational changes were assigned for the 
TLR-2 protein structure, whereas the vaccine exhibited dramatic alterations regarding its 
conformation/orientation at the binding site. The C-terminus of the vaccine showed a sig-
nificant shift from being extended to exhibit closer orientation near the TLR-2 lateral side, 
where the latter has been reported relevant as the dimerization interface between TLR-2 
and the crystallized TLR-1 mediating heterodimerization through major hydrophobic and 
relevant polar binding interactions. 

 
Figure 10. Conformational analysis of MD-simulated multitope vaccine/TLR-2 complex. Overlaid 
snapshots of the ligand–protein complex at 0 ns and 50 ns of the MD simulation runs. The vaccine 
and TLR-2 proteins are represented in red and blue cartoon 3D-representation, respectively, where 
the initial and last extracted frames are obtained at 0 ns (dark colors) and 100 ns (light colors). 

The multitope vaccine exhibited total free-binding energy towards the TLR-2 binding 
site. The dissected energy contributions of the van der Waal and electrostatic binding po-
tentials as well as the solvation and SASA energy terms were provided and calculated as 
kJ/mol ± SD within Table 8. The SASA-only model of the free-binding energy calculation 
(ΔGTotal = ΔGMolecular Mechanics + ΔGPolar + ΔGApolar) was adopted across the 50 ns MD simulation 
time course, as the complex Cα-RMSDs rapidly attained equilibration/convergence fol-
lowing the few initial MD frames. The decomposition of ΔGTotal binding on a per-residue basis 
identified amino acid residues favoring the vaccine’s binding towards the TLR-2 pocket, 
where the more negative is the better (Figure 11). 
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Table 8. Total binding-free energies and individual energy term (∆GTotal binding ± SD) concerning the
designed multitope vaccine at TLR-2 protein binding site.

Energy
(kJ/mol ± SD) Ligand–Receptor Complex

∆Gvan der Waal −880.969 +/− 125.941
∆GElectrostatic −2732.441 +/− 151.150
∆GSolvation; Polar 2019.511 +/− 137.941
∆GSolvation; SASA −119.052 +/− 9.876
∆GTotal binding −1712.950 +/− 160.827

3.11. Vaccine Reverse Translation and Codon Optimization

The JCat server was employed for reverse translation and codon optimization for the
designed vaccine. The server measured GC content, which was 53.5% (the accepted range
is between 30% and 70%). The server also calculated the Codon Adaptation Index (CAI),
which was 0.96 (the accepted range is between 0.8 and 1), providing a high probability of
protein expression in wet-lab experiments.

3.12. Immune Simulation of the Designed Vaccine

The immune response regarding antibody titer, cytokines level, and B and T cell
population is shown in Figure 12. The multitope vaccine induced the production of high
levels of IgM + IgG, and these levels increased with successive injections. Moving to the
generated cytokines, several ones were stimulated where INF-γ showed the highest level
of induced cytokine. Finally, both B and T cell populations showed a high increase with
successive vaccine doses, where the highest level of active B and T cells were shown after
the second booster dose injection.
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Figure 11. Binding-free energy/residue decomposition illustrating the protein residue contribution
at ligand–protein complex ∆GTotal binding calculation. (A) Cartoon 3D representation for regions of
the vaccine/TLR-2 complex favoring binding chemistry. Protein regions are colored in spectrum
from dark blue (highly favored with high attractive forces as negative ∆G kJ/mol values) down to
dark red (most unfavored with high repulsive forces as positive ∆G kJ/mol values); (B) Residue-wise
free-binding energy contribution for vaccine (upper panel) and TLR-2 (lower panel) in terms of
residues’ sequence numbers.



Cells 2021, 10, 3014 18 of 25

Cells 2021, 10, x FOR PEER REVIEW 18 of 26 
 

 

Figure 11. Binding-free energy/residue decomposition illustrating the protein residue contribution 
at ligand–protein complex ΔGTotal binding calculation. (A) Cartoon 3D representation for regions of the 
vaccine/TLR-2 complex favoring binding chemistry. Protein regions are colored in spectrum from 
dark blue (highly favored with high attractive forces as negative ΔG kJ/mol values) down to dark 
red (most unfavored with high repulsive forces as positive ΔG kJ/mol values); (B) Residue-wise free-
binding energy contribution for vaccine (upper panel) and TLR-2 (lower panel) in terms of residues’ 
sequence numbers. 

3.11. Vaccine Reverse Translation and Codon Optimization 
The JCat server was employed for reverse translation and codon optimization for the 

designed vaccine. The server measured GC content, which was 53.5% (the accepted range 
is between 30% and 70%). The server also calculated the Codon Adaptation Index (CAI), 
which was 0.96 (the accepted range is between 0.8 and 1), providing a high probability of 
protein expression in wet-lab experiments. 

3.12. Immune Simulation of the Designed Vaccine 
The immune response regarding antibody titer, cytokines level, and B and T cell pop-

ulation is shown in Figure 12. The multitope vaccine induced the production of high levels 
of IgM+IgG, and these levels increased with successive injections. Moving to the gener-
ated cytokines, several ones were stimulated where INF-γ showed the highest level of 
induced cytokine. Finally, both B and T cell populations showed a high increase with suc-
cessive vaccine doses, where the highest level of active B and T cells were shown after the 
second booster dose injection. 

 
Figure 12. Immune response predicted through ImmSim server after the injection of the designed multitope vaccine.
(A) Levels of the produced antibodies. (B) Cytokines level, (C,D) demonstrate the B and T cell population respectively.

4. Discussion

Recently, there has been a revolution in the field of vaccine development as a result
of the great progression in bioinformatics, structural biology, and computational tools
that have aided largely in the process of handling and analyzing the genomic data of
several microorganisms [65]. The approach of predicting and designing vaccines through
in silico studies has improved massively in the last few years, where its applications have
extended to involve bacteria, viruses, fungi, and even cancer [66]. The current days of the
COVID-19 pandemic stressed our need to develop effective management approaches to
control opportunistic infections and protect immunocompromised patients [67], Therefore
developing an effective vaccine against mucormycosis is a major health priority. The
usage of in silico approaches in designing and validating vaccines computationally can
save both time and cost. This can be explained by considering the microorganisms that
are difficult to be cultivated or infections that are caused by a group of microorganisms,
such as mucormycosis; computational tools can save time and analyze the proteome of
these types of microorganisms and detect potential vaccine candidates. In addition to
this, mapping the epitopes of these candidates and performing a docking analysis with
their respective receptors can give an overview of the behavior of these epitopes when
they encounter human immune receptors. Therefore, computational tools can make a
primary validation before moving to the costly lab experiments, which is certainly an
economic approach. Due to these advantages, the approaches of reverse vaccinology and
immunoinformatics, based on computational vaccine designing and analysis, have been
applied in many studies during the last few years and have shown promising results, which
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provides a practical validation of computational prediction methods when the studies
applied wet-lab experiments on the designed vaccine [15,21,68–70].

The current study started by analyzing the virulent proteins of major mucormycosis-
causing fungi. The selection of these proteins to be our primary vaccine candidates for the
multitope design relied on major factors. Firstly, the protein must contribute to the fungal
virulence; hence, the primary list was created after studying mucormycosis virulent protein
in the literature [19]. The second factor was the antigenicity score of filtered proteins as
the protein candidate must be antigenic. The third factor was the subcellular localization
of the selected proteins, where adhesins that have a role in binding to the infected host
tissue [71] and secreted proteins that have a role in tissue penetration and fungal nutrient
acquisition [72] are considered potential targets for designing an effective vaccine against
invasive fungi.

After applying the major filtration factors, we came up with serine protease (SP) and
spore coat protein (CotH) to be the vaccine candidates of the current study. Serine proteases
are essential hydrolytic enzymes that use catalytic serine residue for breaking peptide
bonds in proteins. Fungi use this type of enzyme for nutrient breakdown and acquisition
from protein-rich sources [73]. In addition to this, serine protease can be utilized for the
protection of the fungal cell from the host’s immune system by degrading chitinases that
target the fungal cell wall [74]. CotH protein is universally present in Mucorales and
has a significant role in binding to and invading host epithelial cells [75]. The potential
selection of CotH as a vaccine candidate against Mucorales was estimated in [76], and
it was found that specific antibodies for glucose-regulated protein 78/CotH interactions
decrease the injury of endothelial cells as a result of Mucorales infection and protect mice
from mucormycosis.

Protein extraction through wet-lab methods, in growing fungi and validating these
proteins as vaccine candidates, is considered a costly time-consuming process; thus, the
application of immunoinformatics tools that can recommend potential candidates, before
wet-lab experimental validation, will save costs and time. Furthermore, epitope mapping
via immunoinformatics tools will exclude the non-antigenic regions of protein candidates,
where only epitopes that stimulate B and T cells would be selected for the vaccine design,
which would give a more potent immune response [77]. The approach of designing
and validating a vaccine through a computational approach has been applied against
many fungi such as Aspergillus fumigatus [78], Candida auris [79], and Candida albicans [18].
This approach had been validated with wet-lab experiments, and immunized mice were
protected from fatal candidiasis [80]. To the best of our knowledge, this is the first study
that designed and validated a vaccine against mucormycosis based on immunoinformatics
and computational tools.

In the current study, we mapped B- and T-cell epitopes for SP and CotH proteins,
and the generated epitopes were filtered according to the percentile rank, antigenicity
score, the number of reacting alleles, and the binding energy with a respective receptor.
Top-ranked epitopes, beta-defensin adjuvant, and PADRE peptide were assembled to
constitute a multitope vaccine with specific activity against mucormycosis-causing fungi
and reduced HLA polymorphism in the population [81]. Generally, multitope vaccines
have the advantage of being more efficient than single epitopes [63]. As we mentioned,
mucormycosis is caused by various types of fungi, and it would be too difficult to find a
single epitope with high conservation in those fungi; therefore, the multitope construct
offers a putative solution by combining several epitopes, each of them with a high conser-
vation percentage, in some of the mucormycosis-causing fungi. After investigation of the
conservancy of every single epitope that constructs the current study’s multitope vaccine,
in seven major mucormycosis-causing fungi, we found that at least two single epitopes
were 100% conserved in each fungus, which recommends the current study’s multitope
vaccine as a general vaccine against mucormycosis. A molecular docking study between
the designed vaccine and TLR2, which is involved in the recognition of Mucorales [82],
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was performed, and the stability of the docked complex was assessed through molecular
dynamics simulation.

Throughout the 50 ns all-atom MD runs, the multitope vaccine illustrated significant
global stability within the target’s canonical binding site, confirmed through the monitored
RMSD trajectories. The estimated Cα-RMSD deviations for each protein illustrated con-
ventional thermodynamic behaviors across the MD simulation runs. Leveling off over
more than 25 ns indicated the successful convergence of both proteins across the desig-
nated MD simulation timeframe. Monitoring the RMSD fluctuations for the combined
ligand–receptor complex in reference to the protein backbone initial frame ensured the
ligand’s confinement within the TLR-2 canonical binding site across the MD run. The latter
came in great concordance with several reported multitope proteinaceous vaccines against
the TLRs of different microorganisms, where their respective MD simulation studies il-
lustrated preferential vaccine stability at the receptor’s binding sites over 10-nanosecond
or 20-nanosecond timeframes [83–85]. Notably, the vaccine–receptor complex described
within the presented study showed significant stability over a longer timeframe of a
50-nanosecond MD simulation run.

The higher RMSD for the vaccine suggested dramatic conformational changes for
the vaccine structure until reaching an equilibration stage and convergence following
the 20-nanosecond window. This was confirmed through the latter Rg and SASA tra-
jectory analysis, where these parameters provided great insights regarding the global
stability of the ligand–protein ternary structures. Typically, the estimated radii of gyra-
tion of the investigated complexes permitted the exploration of the complex rigidity and
compactness, where this stability parameter accounts for the complex’s mass-weighted
root-mean-square distance relative to its common mass center. In these regards, low Rg
values achieving a plateau around an average value would be correlated to the sustained
stability/compactness of an investigated complex [86]. On a similar basis, decreased SASA
tones imply relative structural shrinkage for the ligand–protein complexes under the im-
pact of the solvent surface charges, yielding more compact and stable conformations. The
latter has been correlated to the SASA calculation, which estimates the molecular surface
area being assessable to solvent molecules, providing a quantitative measurement of the
complex–solvent interaction [87]. The higher Rg and SASA tones at the initial frames were
correlated to the expanded and more extended vaccine conformation at the beginning
of the MD simulation run. However, significant compactness as well as favored inter-
or intra-molecular interactions between the vaccine and TRL-2 was suggested, since the
vaccine finally attained lower steady tones in the final run. Additionally, the relatively
small SASA differences for both the vaccine and the receptor conferred preferential ligand
confinement within the TLR-2 binding site, since ligand–receptor binding is considered a
solvent-substitution process.

The above vaccine’s initial higher fluctuating dynamic behavior was generally ex-
pected and significantly rationalized to the inherited folding/packing of its tertiary protein
structure. Exhibiting extended α-helices with long connecting flexible β-loops at the
beginning of the MD simulation run suggested significant protein relaxation and final
convergence into a more compacted and stabilized conformation. In comparison to much
lower RMSD, Rg, and SASA values, the TLR-2 receptor maintained its highly compacted
shoe-like architecture of highly ordered parallel β-sheets from the beginning until the end
of the MD simulation run. The latter comparative flexibility was also depicted through
the obtained inherited flexibility analysis using normal mode analysis within dihedral
coordinates, where higher mobility, deformability, and B-factors were assigned for the
vaccine as compared to TLR-2. Stiffness and immobility profiles across the TLR-2 residues
that were obtained from the covariance of residue index and elastic network analysis
showed uniform bands towards the normal stiffness strings, which was not the same
for those of the vaccine. The latter suggested greater inherited flexibility for the vaccine
protein. Further insights regarding this vaccine/TLR-2 comparative conformational evolu-
tion across the MD simulation were illustrated through the estimated RMSF trajectories
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across the 50-nanosecond runs and conformational analysis for the initial and final MD
simulation frames. Having low RMSF tones across most of the TLR-2 residue regions
conferred the significant influence of the vaccine’s binding upon the stability of TLR-2, or
in other terms, the pivotal role of these TLR-2 residue ranges for the stability of vaccine
within its respective binding site [88]. These findings were also consistent with the above-
reported studies investigating the potential binding affinity of peptide-based vaccines
towards microorganism TLRs [83–85]. The higher RMSF values for the vaccine further
highlight the lower comparative intramolecular interactions among its respective residues
compared to TLR-2, based on their protein folding/packing. The high immobility profiles
for the vaccine’s C-terminal residues confer significant conformational changes for this
protein side for attaining more stable and final compact architecture, which was clearly
illustrated through the performed conformational analysis. Having the C-terminus of the
vaccine binding with a close orientation at the TLR-2 lateral side can suggest the potential
impact of the vaccine for hampering the reported TLR-2/TLR-1 heterodimerization, which
is significant and essential for recognizing bacterial lipoproteins and lipopeptides [89]. The
latter further ensures the capability of the vaccine in not only blocking the TLR-2 pocket
against bacterial lipoproteins/lipopeptides anchoring but also in further interfering with
the association between TLR-2 and TLR-1, suggesting a synergistic effect for minimizing
cellular responsiveness against bacterial antigens.

The MM/PBSA calculation was implemented for a binding-free energy estimation [57].
To our delight, the multitope vaccine depicted significant free-binding and affinity towards
the TLR-2 binding’s pocket. Dissecting the obtained binding-free energy into its contribut-
ing energy terms showed a dominant energy contribution of the electrostatic interactions
over the van der Waal potentials within the free-binding energy calculation. However, the
total non-polar interactions (∆Gvan der Waal plus ∆GSASA) confer a large surface area of the
TLR-2 pocket, as well as being reasonably satisfactory to counterbalance the predicted elec-
trostatic penalties and solvation energies during ligand binding. The latter was rationalized
since the reported data within the current literature have considered the TLR-2 pocket to be
more hydrophobic in nature [89–91]. Finally, the high solvation energies, which represent
significant repulsive forces against the ligand binding, were suggested to be related to the
extended vaccine surface being exposed to the solvent front. These large repulsive forces
were mediated majorly by the TLR-2 residues rather than by the vaccine amino acids as
being depicted within the residue-wise energy contribution, which could be related to the
high ordered water molecules at the hydrophobic surface of the TLR-2 ligand-binding site.

5. Conclusions

The current study shows the advantages of bioinformatics tools in designing a poten-
tial vaccine against mucormycosis-causing fungi. The proteome investigation process came
up with two protein candidates that were shared between several mucormycosis-causing
fungi. Epitope mapping generated a pool of B- and T-cell epitopes that were assembled to
constitute a multitope vaccine. This vaccine showed promising immunological and physic-
ochemical characteristics. The multitope vaccine-receptor docking study with a detailed
investigation of the docked complex through molecular dynamics simulation in addition
to the computationally predicted immune response for the injected vaccine recommended
that the current study design vaccine as a putative solution against mucormycosis. Wet lab
validation is required in future studies to validate our findings.
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