
RESEARCH ARTICLE Open Access
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CT for assessment of treatment response to
neoadjuvant chemotherapy in breast
cancer: a systematic review and meta-
analysis
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Abstract

Background: We performed a systematic review and meta-analysis to evaluate the prognostic significance of 18F-
FDG PET and PET/CT for evaluation of responses to neoadjuvant chemotherapy (NAC) in breast cancer patients.

Methods: We searched PubMed, Embase, and the Cochrane Library databases until June 2020 to identify studies
that assessed the prognostic value of 18F-FDG PET scans during or after NAC with regard to overall (OS) and
disease-free survival (DFS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) were pooled meta-analytically
using a random-effects model.

Results: Twenty-one studies consisting of 1630 patients were included in the qualitative synthesis. Twelve studies
investigated the use of PET scans for interim response evaluation (during NAC) and 10 studies assessed post-
treatment PET evaluation (after NAC). The most widely evaluated parameter distinguishing metabolic responders
from poor responders on interim or post-treatment PET scans was %ΔSUVmax, defined as the percent reduction of
SUVmax compared to baseline PET, followed by SUVmax and complete metabolic response (CMR). For the 17
studies included in the meta-analysis, the pooled HR of metabolic responses on DFS was 0.21 (95% confidence
interval [CI], 0.14–0.32) for interim PET scans and 0.31 (95% CI, 0.21–0.46) for post-treatment PET scans. Regarding
the influence of metabolic responses on OS, the pooled HRs for interim and post-treatment PET scans were 0.20
(95% CI, 0.09–0.44) and 0.26 (95% CI, 0.14–0.51), respectively.

Conclusions: The currently available literature suggests that the use of 18F-FDG PET or PET/CT for evaluation of
response to NAC provides significant predictive value for disease recurrence and survival in breast cancer patients
and might allow risk stratification and guide rational management.

Keywords: Breast neoplasms, Fluorodeoxyglucose F18, Positron emission tomography, Neoadjuvant therapy,
Prognosis
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Introduction
Neoadjuvant chemotherapy (NAC) is the initial therapy
for patients with inoperable or locally advanced breast
cancer [1] and enables more patients with operable but
large primary tumours to be treated with breast-
conserving surgery [2]. Given a non-negligible propor-
tion of patients treated with NAC cannot achieve an op-
timal response or have subsequent disease progression,
accurate assessment of the therapeutic response is im-
portant to reduce toxicity from ineffective chemotherapy
and guide selection of an alternative treatment option.
Changes in tumour morphology and size on breast mag-
netic resonance imaging (MRI) after several cycles of
NAC are widely used markers for assessment of the
treatment response and prediction of patient outcome
[3]. However, MRI studies have different predictive
values across the various breast cancer subtypes [4, 5],
and there is a limited evidence for their prognostic value.
In addition, MRI techniques do not allow evaluation of
newly developing distant metastasis during NAC.
Decreased glucose metabolism within breast cancer

tissue on 18F-fluorodeoxyglucose positron emission tom-
ography/computed tomography (18F-FDG PET/CT) is a
useful indicator to assess the effectiveness of NAC [6].
Several meta-analyses have reported that 18F-FDG PET/
CT scans performed during or after NAC could predict
the final pathological response after completion of NAC
[7–10]. A meta-analysis directly comparing PET/CT and
breast MRI reported that PET/CT has a higher sensitiv-
ity and specificity for assessment of pathological re-
sponse than conventional MRI when performed before
3 cycles of NAC [11]. More recently, accumulating evi-
dence has suggested that assessment of the metabolic re-
sponse using 18F-FDG PET or PET/CT has prognostic
significance in breast cancer patients who underwent
NAC [12–32].
The use of 18F-FDG PET or PET/CT for response

evaluation is not yet established in clinical practice [1],
in part due to lack of evidence supporting changes in
treatment plans based on the results of PET scans per-
formed to evaluate treatment responses and whether this
strategy improves clinical outcomes [33]. However, prior
to designing clinical trials evaluating the use of PET for
response-adaptive treatment, a thorough review of the
currently available data regarding the correlations be-
tween metabolic responses evaluated using PET or PET/
CT scans and disease recurrence or survival, and of asso-
ciated risk stratification of breast cancer patients during
or after NAC, is warranted. In addition, differences in
the timing of PET scans, response criteria and their
threshold values across the available studies and their
potential effects on survival also need to be assessed.
Therefore, we performed a systematic review and meta-
analysis of the currently available literature on the

prognostic value of 18F-FDG PET or PET/CT for treat-
ment response evaluation in breast cancer patients who
underwent NAC.

Materials and methods
This meta-analysis adhered to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [34]. The protocol was registered in the International
Prospective Register of Systematic Reviews (PROSPERO)
network (registration no.CRD42020188979).

Literature search and data extraction
The PubMed, Embase, and the Cochrane Library data-
bases were searched from inception to June 4, 2020.
Search queries included the related terms ‘breast cancer’,
18F-FDG PET’, ‘neoadjuvant therapy’, and ‘prognosis’,
which are described in the Additional File 1. There was
no language restriction for the electronic searches. The
references of the extracted articles were also examined
to identify additional relevant articles.
The inclusion criteria were based upon the Patient/

Intervention/Comparator/Outcome/Study design
(PICOS) criteria as follows [34]: (1) female ‘patients’ with
breast cancer; (2) 18F-FDG PET, PET/CT, or PET/MRI
during or after NAC as ‘intervention’; (3) no ‘compara-
tor’ for the study; (4) overall (OS) and disease-free sur-
vival (DFS) as ‘outcome’; and (5) prospective or
retrospective studies published as original articles as
‘study design’. The exclusion criteria were as follows: (1)
small sample size (< 10 patients); (2) other publication
types including conference abstracts, review articles, edi-
torials, and letters; (3) papers irrelevant to the research
question; (4) insufficient information regarding survival
analysis provided for the study; and (5) overlapping
study populations. When the study populations may
have overlapped, we selected the publication with the
largest population.

Data extraction and quality assessment
The outcomes, study, and patient characteristics of the
included studies were extracted using a standardised
form. The methodological quality was appraised using
the Quality in Prognostic Studies (QUIPS) tool based on
key questions of prompting items and considerations for
six bias domains which consist of study participation,
study attrition, prognostic factor measurement, outcome
measurement, study confounding, statistical analysis,
and reporting [35]. Study selection, data extraction, and
quality assessment were performed by two independent
reviewers (S.H. and J.Y.C) with any discrepancy resolved
through discussion.
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Statistical analyses
Results from the survival analyses within individual arti-
cles, including survival rates, univariate and multivariate
hazard ratios (HRs), and p values from log-rank tests were
extracted. When the Kaplan-Meier curves were provided
without corresponding HRs, survival probability at each
time point was extracted by means of Engauge Digitizer
software (version 10.4, http://markummitchell.github.io/
engauge-digitizer/) and individual patient data were re-
constructed using the methodology proposed by Guyot
et al. [36]. Then, Cox regression analyses were performed
to derive HRs and their 95% confidence intervals (CIs); if
no events were observed in one arm, Cox regression with
Firth’s penalised likelihood was used.
The HRs and their 95% CIs from the univariate Cox

regression analyses comparing metabolic responders and
poor responders on PET scans were pooled meta-
analytically using the DerSimonian-Liard method for cal-
culating weights. If multiple HRs for a single PET par-
ameter were provided in an individual study due to
different cut-offs or regions of interest, we selected the
HR with the best prognostic value for the meta-analyses.
Of note, the terms ‘interim PET’ and ‘post-treatment
PET’ were defined as PET studies conducted during (i.e.,
after one, two, or three cycles) and after NAC, respect-
ively. Higgins I2 statistics were used to assess heterogen-
eity [37]. Funnel plots with Egger’s test were drawn to
identify the presence of publication bias [38]. The
‘survHE’, ‘coxphf’, ‘meta’, and ‘metafor’ packages in R (R

Foundation for Statistical Computing, version 3.6.0)
were used for the statistical analyses.

Results
Study characteristics
The PRISMA study selection process is described in
Fig. 1. The initial literature search yielded 1682 articles.
After removing 437 duplicates, screening of the
remaining 1245 titles and abstracts yielded 37 potentially
eligible papers. We excluded 16 of the 37 articles for the
following reasons: palliative chemotherapy (n = 2), neo-
adjuvant endocrine therapy only (n = 1), no survival ana-
lysis (n = 3), overlapping patient populations (n = 8), PET
for baseline assessment (n = 1), and only kinetic analyses
of dynamic PET scans (n = 1). Thus, 21 studies with
1630 patients were included in the qualitative synthesis
[12–32]. Eleven studies were prospectively conducted,
where ten were retrospective studies. For the quantita-
tive synthesis, we included only studies where HRs for
metabolic responses assessed by PET scans either during
or after NAC were available. A total of 17 studies (1279
patients) were included in the quantitative synthesis [12,
16–21, 23–32]. Of note, there was one study in which
Kaplan-Meier curves were separately plotted according
to the therapeutic regimen [19]; these patients were in-
corporated into the meta-analysis as separate cohorts.
Tables 1 and 2 summarise the patient and study
characteristics.

Records identified through databases searching (n = 1682):
PubMed (n = 780), Embase (n = 761), Cochrane Library (n = 141)

Removed duplicate articles (n = 437)

Records screened based on title and 
abstract (n = 1245)

Full-text articles assessed for eligibility 
(n = 37)

Studies included in qualitative synthesis 
(n = 21)

Studies included in quantitative 
synthesis (n = 17)

Records excluded (n = 1208):
-Not in the field of interest (930)
-Review/Guideline/Consensus statement (214)
-Case reports/series (50)
-Editorial/abstract/book chapter (14)

Records excluded (n = 16):
-Palliative chemotherapy (2)
-Neoadjuvant endocrine therapy only (1) 
-No survival analysis (3)
-Overlapping study population (8)
-PET for initial staging (1)
-Only kinetic analysis of PET (1)
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Fig. 1 PRISMA flow chart showing the study selection process
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Quality assessment
The quality assessment performed using the QUIPS tool
is illustrated in Fig. 2. The specific number of studies at
risk of bias and reasons were as follows: Five studies pre-
sented a moderate risk in selection of participants be-
cause of the retrospective study designs, lack of clarity
regarding whether the patients were enrolled in a con-
secutive manner, and/or the unclear inclusion and exclu-
sion criteria [12, 23, 25, 26, 32]. All studies were rated as
having a low risk of attrition bias. For prognostic factor
measurement, nine studies had a high risk of bias due to
the use of data-dependent cut-off values [12–14, 18, 20,
24, 27, 31, 32]. Regarding outcome measurements,

fifteen studies had a moderate risk of bias because the
definition or methods for measuring disease recurrence
were unclear [12–16, 22–24, 26–32]. Six studies pre-
sented a moderate risk of confounding bias as no adjust-
ment for potential confounders was performed [12, 18,
20, 21, 24, 28]. With regard to statistical analysis do-
mains, five studies had a moderate risk of bias as it was
unclear which variables were incorporated into the
multivariate analyses, or too many variables were in-
cluded in the multivariate analyses considering the
number of patients in the study population [13, 15,
17, 19, 30]. One study had a high risk of bias in the
statistical analyses due to possible selective reporting,

Fig. 2 Quality assessment using the QUIPS tool
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Table 3 Summary of outcomes in the included studies

Author PET timing Parameter DFS OS

Akimoto [12] After completion %ΔSUVmax > 80 N/S for TN or HER2+ NR

SUVmax ≤ 1.3 P = 0.026 for TN or HER2+ NR

Champion [13] After 3 cycles %ΔSUVmax N/S N/S

After completion %ΔSUVmax > 72 P = 0.05*
Adjusted P = 0.01*

N/S

Chen [14] During or after Mid- or post-SUVmax† HR = 1.13 (1.06–1.21)
Adjusted HR = 1.09 (1.01–1.17)

HR = 1.16 (1.08–1.24)
Adjusted HR = 1.14 (1.06–1.23)

Mid- or post-SUVmax < 2.5 HR = 0.28 (0.13–0.62) HR = 0.25 (0.11–0.60)

%ΔSUVmax† N/S N/S

Dunnwald [15] At mid-therapy Log2(SUVpeak)† N/S HR = 1.96 (1.14–3.34)
Adjusted HR = N/S

Δ%SUVpeak† N/S HR = 0.72 (0.54–0.96)
Adjusted HR = N/S

Emmering [16] After completion CMR HR = 0.24 (0.08–0.79)
Adjusted HR = 0.28 (0.08–0.96)

N/S

Garcia Vicente [17] After 2 cycles CMR-tumour N/S N/S

%Δtumour-SUVmax ≥ 62 N/S N/S

CMR-lymph node N/S N/S

After completion CMR-tumour N/S N/S

CMR-lymph node P = 0.003
Adjusted P = N/S

P = 0.016
Adjusted P = N/S

Tumour-SUVmax < 1.05: HR = 0.06 (0.01–0.47) < 1.15: N/S

Lymph node-SUVmax < 1.30: N/S < 0.40: N/S

%Δtumour-SUVmax ≥ 74: N/S ≥ 84: N/S

Groheux [18] After 2 cycles SUVmax < 7.4 P = 0.011 NR

%ΔSUVmax ≥ 12 P = 0.033 NR

TLG < 30.5 P = 0.017 NR

%ΔTLG ≥ 51 P < 0.001 NR

Groheux [19] After 2 cycles %ΔSUVmax† HR = 0.86 (0.78–0.94)
Adjusted P = 0.004

NR

%ΔSUVmax P = 0.021 and P = 0.028‡ NR

Humbert [20] After 1 cycle %ΔSUVmax ≥ 16 HR = 0.19 (0.06–0.64) HR = 0.09 (0.02–0.54)

Humbert [21] After 1 cycle %ΔSUVmax ≥ 50% N/S N/S

Hyun [22] After completion Log2(SUVmax)† HR = 1.86 (1.38–2.51)
Adjusted HR = 1.51 (1.04–2.19)

NR

%ΔSUVmax† HR = 0.98 (0.97–0.99)
Adjusted HR = 0.99 (0.98–1.00)

NR

Log2(MTV)† HR = 1.26 (1.15–1.38)
Adjusted HR = 1.14 (1.01–1.27)

NR

%ΔMTV† HR = 0.99 (0.99–1.00)
Adjusted HR = 1.00 (0.99–1.00)

NR

Ishiba [23] After completion SUVmax ≤ 1.7 P = 0.004
Adjusted P = 0.014

P = 0.01
Adjusted P = 0.029

Jung [24] After completion Δ%SUVpeak ≥ 84.8 P = 0.04
Adjusted P = N/S

NR

Kim [25] After completion SUVmax† HR = 1.20 (1.12–1.28) NR

MTV† HR = 1.02 (1.01–1.03) NR

TLG† HR = 1.00 (0.99–1.00) NR

%ΔSUVmax† HR = 0.99 (0.98–0.99) NR
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as the results of survival analysis were provided for
only a subset of the study population, and not the
whole population [12].

Qualitative synthesis
The outcomes of the included articles are summarised
in Table 3. PET scanning for evaluation of the patients’
response to NAC was performed during (interim PET)
or after treatment (post-treatment PET) in 12 and 10
studies, respectively. The most widely evaluated PET
parameter was the percent reduction of maximum stan-
dardised uptake value (SUVmax) compared to baseline
SUVmax (%ΔSUVmax), followed by SUVmax and
complete metabolic response (CMR) on interim or post-
treatment PET scans. Of note, %ΔSUVmax is defined as
(SUVmax at baseline PET − SUVmax at interim or post-
treatment PET) / SUVmax at baseline PET × 100%. The
CMR in the included studies was defined as negative
FDG uptake [21], or according to the European Organ-
isation for Research and Treatment of Cancer (EORTC)
or Positron Emission Tomography Response Criteria in
Solid Tumours (PERCIST) criteria [17, 26, 30]. Regard-
ing the timing of interim assessment, PET or PET/CT
were performed after two cycles of NAC in five studies
[17–19, 30, 32], one cycle in four [20, 21, 28, 31], and
three cycles in two studies [13, 29]. Specifically, higher
%ΔSUVmax at interim evaluation was significantly asso-
ciated with longer DFS in seven of ten studies [13, 17–
21, 28, 29, 31, 32], and longer OS in two of six studies

[13, 17, 20, 21, 28, 29]. In addition, CMR and lower
SUVmax on interim PET scan was significantly associ-
ated with longer DFS in one of two studies [17, 30], and
one study [18], respectively. Regarding post-treatment
PET scans, %ΔSUVmax was a significant prognostic factor
for DFS in four of six studies [12, 13, 17, 22, 25, 27]. Lower
SUVmax was significantly associated with longer DFS in
all five studies [12, 17, 22, 23, 25]. CMR was correlated
with better DFS in three studies [16, 17, 26]; however,
CMR was no longer statistically significant after comple-
tion of multivariate analyses of the data from two of them
[17, 26]. Two studies reported that metabolic tumour vol-
ume and total lesion glycolysis and their reduction rates
on post-treatment PET scans were significant predictors
for better DFS [22, 25].
The five studies exclusively included specific hormonal

subtype of either TN or HR+/HER2−. Of two studies for
HR+/HER2− subtype [18, 20], higher %ΔSUVmax on in-
terim PET assessment was significantly associated with
better DFS and OS. Likewise in three studies for TN
subtype [19, 21, 27], higher %ΔSUVmax on interim PET
scans or post-treatment PET scans was a significant pre-
dictor for longer DFS.

Quantitative synthesis
Meta-analytical pooling of HRs for interim and post-
treatment PET analyses on DFS and OS was per-
formed. With regard to the influence of metabolic re-
sponses on DFS, the pooled HR for interim PET

Table 3 Summary of outcomes in the included studies (Continued)

Author PET timing Parameter DFS OS

%ΔMTV† HR = 1.00 (0.99–1.00)
Adjusted HR = 0.99 (0.98–1.00)

NR

%ΔMTV > 90.7 HR = 0.39 (0.19–0.79) NR

%ΔTLG† HR = 0.99 (0.99–1.00) NR

Kitajima [26] After completion CMR HR = 0.15 (0.02–0.70)
Adjusted HR = N/S

NR

Kiyoto [27] After completion %ΔSUVmax > 15.9 HR = 0.18 (0.05–0.88) NR

Kolesnikov-Gauthier [28] After 1 cycle %ΔSUVmax > 15 4-year DFS: 85% vs. 44%, P = 0.008 N/S

Lee [29] After 3 cycles %ΔSUVmax > 66.4 P < 0.001 P = 0.009

%ΔSUVmax† HR = 0.97 (0.95–0.98)
Adjusted HR = 0.97 (0.95–0.99)

HR = 0.98 (0.96–0.99)
Adjusted HR = 0.97 (0.95–0.99)

Lian [30] After 2 cycles CMR HR = 0.17 (0.04–0.73)
Adjusted HR = 0.04 (0.00–0.42)

NR

Lim [31] After 1 cycle %ΔSUVmax > 41 P < 0.001
Adjusted HR = 0.13 (0.03–0.49)

NR

Zucchini [32] After 2 cycles %ΔSUVmax > 50 N/S for all
P = 0.049 for ER+/HER2−

NR

*Distant metastasis-free survival
†As continuous variables
‡For two cohorts with different NAC regimens
%ΔSUVmax was defined as (SUVmax at baseline PET − SUVmax at interim or post-treatment PET)/SUVmax at baseline PET × 100%
CMR complete response, DFS disease-free survival, ER oestrogen receptor, HER2 human epidermal growth factor receptor 2, HR hazard ratio, MTV metabolic
tumour volume, NR not reported, N/S not significant, OS overall survival, SUV standardised uptake value, TLG total lesion glycolysis, TN triple-negative
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Fig. 4 Funnel plots of studies assessing the PET response on interim (a) and post-treatment (b) 18F-FDG PET scans for disease-free survival

Fig. 3 Forest plots showing the pooled HRs of the PET response on interim (a) and post-treatment (b) 18F-FDG PET scans for disease-free survival
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scans was 0.21 (95% CI, 0.14–0.32; Fig. 3a) with no
heterogeneity (I2 = 0%). No publication bias was
shown in the funnel plot and Egger’s test (P = 0.8654;
Fig. 4a). PET response analyses performed after one,
two, and three cycles of NAC showed comparable
prognostic values for DFS with pooled HRs of 0.18
(95% CI, 0.09–0.35), 0.25 (95% CI, 0.14–0.45), and
0.22 (95% CI, 0.09–0.51), respectively (P for subgroup
difference = 0.7661). The pooled HR for metabolic re-
sponses on post-treatment PET/CT was 0.31 (95% CI,
0.21–0.46; Fig. 3b). No heterogeneity was found (I2 =
0%), and no publication bias was present (P = 0.3199;
Fig. 4b). No statistical difference was found between

the pooled HRs of interim and post-treatment PET
response analyses (P = 0.1942). For studies using com-
bined PET/CT, the pooled HRs for interim and post-
treatment PET/CT were 0.23 (95% CI, 0.15–0.37) and
0.30 (95% CI, 0.20–0.43), respectively. The results of
subgroup analyses according to PET response parame-
ters are provided in Table 4.
Among nine studies assessing the prognostic value

of %ΔSUVmax for DFS on interim PET scans, six
studies included patients with initial clinical stage
II–III cancers; %ΔSUVmax was a significant pre-
dictor of DFS in Stage II–III breast cancer with a
pooled HR of 0.21 (95% CI, 0.13–0.34;

Fig. 5 Forest plots showing the pooled HRs of the PET response on interim (a) and post-treatment (b) 18F-FDG PET scans for overall survival

Table 4 Subgroup analysis according to PET timing and parameters

Outcomes PET timing PET parameter Studies (n) Pooled hazard ratios 95% confidence interval I2 (%) P for subgroup
difference

Disease-free survival Interim %ΔSUVmax 9 0.20 0.13–0.31 0 0.8539

SUVmax 1 0.24 0.07–0.82 NA

CMR 2 0.31 0.07–1.37 32

Post-treatment %ΔSUVmax 2 0.16 0.05–0.48 0 0.5821

%ΔSUVpeak 1 0.16 0.02–1.28 NA

%ΔMTV 1 0.39 0.19–0.79 NA

ΔSUVmax 2 0.38 0.19–0.78 0

CMR 3 0.25 0.12–0.50 0

Overall survival Interim %ΔSUVmax 3 0.20 0.09–0.44 0 0.7303

CMR 1 0.34 0.02–6.64 NA

Post-treatment SUVmax 1 0.30 0.11–0.81 NA 0.7373

CMR 2 0.24 0.10–0.59 0

CMR complete response, MTV metabolic tumour volume, NA not applicable, SUV standardised uptake value
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Additional file 2: Fig. S1). Of these, there were four
studies which included either ER+/HER2− or triple-
negative breast cancer population; %ΔSUVmax was
also a significant prognostic factor in stage II–III
ER+/HER2− or triple-negative breast cancer (pooled
HRs = 0.20 [95% CI, 0.08–0.47] and 0.26 [95% CI,
0.11–0.61], respectively). Meta-regression analyses
were performed according to clinical variables (in-
cluding age, stage, histologic type and grade, recep-
tors, subtypes, and pathological complete response)
for these nine studies, and no variable was found to
significantly influence the HRs (Additional file 3:
Table S1).
With regard to the influence of metabolic response on

OS, the pooled HR for the interim PET scans was 0.20
(95% CI, 0.09–0.44; Fig. 5a), and no heterogeneity was
present (I2 = 0%). The pooled HRs for the metabolic re-
sponse on post-treatment PET scans was 0.26 (95% CI,
0.14–0.51; Fig. 5b). No heterogeneity was found (I2 =
0%). No statistical difference was found between the
pooled HRs of interim and post-treatment PET response
analyses (P = 0.6137). Publication bias could not be eval-
uated because of the limited number of included studies.
No statistical difference was found upon subgroup ana-
lyses in accordance with PET parameters (Table 4), al-
though the paucity of studies limited the statistical
power. For studies using combined PET/CT, the pooled
HRs for interim and post-treatment PET/CT were 0.33
(95% CI, 0.08–1.37) and 0.24 (95% CI, 0.11–0.51),
respectively.

Discussion
In this meta-analysis, we assessed the prognostic value
of 18F-FDG PET or PET/CT for evaluation of the re-
sponse to treatment in breast cancer patients. Our major
findings were as follows; (1) PET metabolic response
during and after NAC is a significant predictor of disease
recurrence and death; (2) more evidence is available re-
garding PET scans for prediction of DFS than OS (18
and 7 studies included in meta-analyses for DFS and
OS, respectively); (3) %ΔSUVmax was the most fre-
quently evaluated response parameter in both interim
and post-treatment PET scans; (4) no differences were
found between the prognostic values of interim and
post-treatment PET scans in term of both DFS and
OS; (5) regarding the timing of the interim assess-
ment, PET is mostly commonly performed after 2 cy-
cles (followed by PET after 1 cycle) and yielded
significant prognostic values; and (6) in more than
half of the included studies, the cut-off values for
each PET parameter were data-dependent and there-
fore differed greatly across studies.
Notably, a metabolic response identified on PET scans

is significantly associated with the pathological response

in surgical specimens after NAC [7–9], a well-
established predictor of patient outcomes [39]. In
addition, in clinical practice, it is plausible that 18F-FDG
PET or PET/CT is highly likely to have an incremental
prognostic value on pathological response of breast can-
cer given (1) PET scans enable early assessment of pa-
tient responses to NAC, which may support decisions to
cease ineffective treatment and select alternative treat-
ment options, whereas pathological response can only be
assessed after completion of surgical resection; (2) twelve
of 15 included studies in which either multivariate Cox
regression analyses or subgroup analyses were per-
formed reported the metabolic response as having inde-
pendent prognostic significance to pathological response
[13–17, 19, 22–29, 31]. We could not pool HRs from
multivariate Cox regression in the meta-analysis because
variables included in the models differed widely across
the studies that would directly affect the values of HR;
(3) the results of our meta-regression indicated the
pathological complete response did not influence the
pooled HR, which may indirectly support the independ-
ent prognostic role of the metabolic response.
Upon thorough inspection of the clinical characteris-

tics of the included studies, our study population mainly
consisted of Stage II–III breast cancer patients, which
was consistent with the types of patients who typically
receive NAC [33]. We also found higher proportions of
patients with HER2+ and triple-negative subtypes in the
included studies (HER2+ regardless of hormonal recep-
tor status: 26 [402/1558]; and TN: 28 [374/1357]) com-
pared to general breast cancer population referred to
cancer statistics published by the US National Cancer
Institute: the prevalence of the HER2+ and triple-
negative subtypes was 14% and 10%, respectively [40].
HER2+ or triple-negative subtypes are aggressive sub-
types, with patients typically presenting with higher FDG
uptake at baseline. Therefore, these subtypes of breast
cancer are promising targets for evaluation of the meta-
bolic response using 18F-FDG PET or PET/CT [33]. In
addition, our analyses indicated that a metabolic re-
sponse on interim PET also has prognostic significance
in the ER+/HER2− group [18, 20], a subtype in which
MRI is of limited utility for evaluation of patient re-
sponses to NAC [4, 5].
The studies included in our qualitative synthesis varied

widely in terms of PET timing, and PET criteria for de-
fining a metabolic response. %ΔSUVmax, the percent re-
duction of SUVmax between the baseline and interim or
post-treatment PET scans, is the most frequently evalu-
ated parameter and is associated with disease recurrence
and survival. This ‘ratio’ has the advantage that it may
offset the potential effect of noise, reconstruction, image
sampling, and smoothing on SUVmax, as long as the
PET scans at baseline and during or after NAC are
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performed using the same machine and protocols; other-
wise, it may limit the applicability of results across PET
facilities [41].
There were a comparable number of studies and prog-

nostic significance regarding interim vs. post-treatment
PET. As it can allow early response evaluation and sub-
sequent modification in treatment, interim PET scans
may have better clinical values than post-treatment PET.
Regarding specific timing of interim PET, there were no
apparent differences between the prognostic values of
interim PET assessments performed at different times
during NAC; however, the number of studies was insuf-
ficient to assess statistical significance. We found that in
the majority of studies addressing interim PET scans the
response was assessed after 1–2 cycles of NAC, and evi-
dence of their prognostic value was found. Moreover,
the better predictive values for pathological response
when performing PET scans after 1–2 cycles of NAC
(compared to after 3 cycles of NAC) were reported in
previous meta-analyses [7, 10]. Given early assessment
of response to NAC is important for timely modification
of the therapeutic strategy, it might be advisable for in-
terim PET to be performed after 1–2 cycles.
There were several limitations of our study. First, a

substantial portion of the included studies were per-
formed retrospectively. Second, there was considerable
heterogeneity of hormonal subtype of tumour, PET scan
timing, and response parameters among the studies.
Therefore, caution is required when considering the ap-
plicability of our pooled estimates. Third, approximately
half of the included studies used data-dependent cut-off
values for the assessment of PET parameters (i.e., opti-
mal cut-off on receiver operating characteristics analysis
for predicting pathological response) which may over-
estimate the prognostic values of 18F-FDG PET or PET/
CT. Fourth, the number of studies included for meta-
analysis of OS was small, though the pooled HR was sta-
tistically significant. However, DFS was regarded as a
valid surrogate for OS which requires long-term follow-
up for the assessment of efficacy [42].

Conclusions
A metabolic response to NAC as detected by 18F-FDG
PET or PET/CT is a significant prognostic factor in
terms of DFS and OS. Meta-analytically pooled HRs for
DFS nor OS were not significantly different for interim
or post-treatment PET scans. %ΔSUVmax, defined as
the percent reduction of SUVmax compared with that
obtained from the baseline PET, is the most widely eval-
uated PET response parameter. For the interim assess-
ment of patient responses to NAC, PET scans were
commonly performed after 1–2 cycles of NAC and pro-
vided significant prognostic values. Evaluation of the
metabolic response to NAC may be helpful not only in

HER2+ or triple-negative subtypes which are known to
be FDG-avid, but also in hormone receptor-positive tu-
mours. These results suggest that 18F-FDG PET or PET/
CT may provide accurate risk stratification of breast
cancer patients and support risk-adapted therapeutic
management based on metabolic response in clinical
practice or trials.
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