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SUMMARY

Hematopoietic stem cells (HSCs) regenerate blood cells upon hematopoietic injuries. During 

homeostasis, HSCs are maintained in a low reactive oxygen species (ROS) state to prevent 

exhaustion. However, the role of nitric oxide (NO) in controlling HSC regeneration is still 

unclear. Here, we find increased NO during HSC regeneration with an accumulation of 

protein aggregation. S-nitrosoglutathione reductase (GSNOR)-deleted HSCs exhibit a reduced 

reconstitution capacity and loss of self-renewal after chemotherapeutic injury, which is resolved 

by inhibition of NO synthesis. Deletion of GSNOR enhances protein S-nitrosylation, resulting 

in an accumulation of protein aggregation and activation of unfolded protein response (UPR). 

Treatment of taurocholic acid (TCA), a chemical chaperone, rescues the regeneration defect of 

Gsnor−/− HSCs after 5-fluorouracil (5-FU) treatment. Deletion of C/EBP homologous protein 

(Chop) restores the reconstitution capacity of Gsnor−/− HSCs. These findings establish a link 

between S-nitrosylation and protein aggregation in HSC in the context of blood regeneration.

In brief

Yi et al. reveal a role of NO-induced protein S-nitrosylation in HSC regeneration. Deficiency of 

GSNOR, a denitrosylase, causes HSC reconstitution decrease, which is restored by NO inhibition, 

TCA treatment, or Chop deletion. The findings link S-nitrosylation, protein aggregation, and 

cellular viability in HSC during blood regeneration.
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INTRODUCTION

Hematopoietic stem cells (HSCs) have the ability to self-renew and differentiate to generate 

all types of mature blood cells through the production of a series of committed progenitor 

cells (Orkin and Zon, 2008). The regenerative capacity of HSC is essential for the 

replenishment of the hematopoietic system upon various hematopoietic stresses, including 

bone marrow (BM) transplantation of the lethally irradiated recipients and chemotherapy-

induced myeloablation (Mohrin et al., 2010; Yahata et al., 2011). At homeostasis condition, 

HSCs are maintained in a protective dormant state in order to limit the oxidative stress-

induced damage. Increased reactive oxygen species (ROS) impairs HSC self-renewal 

capacity (Ito et al., 2004). Although the importance of ROS in HSC biology has been 

extensively studied, the significance of reactive nitrogen species (RNS) in the function and 

maintenance of HSC remains rather obscure.

Nitric oxide (NO) and its derivatives are the major source of RNS in cells. NO over-

production by the increased NO synthase (NOS) leads to cellular nitrosative stress and 

aberrantly enhanced S-nitrosylation contributing to cellular damage and diseases (Li et 

al., 2017; Rizza and Filomeni, 2017; Yang et al., 2015). NO exerts its biological activity 

through S-nitrosylating (SNO) protein cysteine residues (Benhar et al., 2009), which are 

involved in a wide range of biological processes (Hess and Stamler, 2012; Nakamura et al., 

2013; Wang et al., 2009; Zhang et al., 2017). S-nitrosoglutathione reductase (GSNOR), as a 

major denitrosylase, reverts S-nitrosylation of SNO proteins. Although GSNOR expression 
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is dispensable for the tissue maintenance during steady state, experimental evidence showed 

that GSNOR-deficient mice exhibited an increased mortality correlated with elevations of 

SNO under lipopolysaccharide (LPS)-induced endotoxic shock (Liu et al., 2004).

In hematopoietic system, NO is required for HSC emerging during the embryogenesis 

(North et al., 2009). Experimental induction of NO leads to an activated mobilization 

of hematopoietic stem and progenitor cells (HSPCs) (Gur-Cohen et al., 2015; Xu et 

al., 2021), enhanced proliferation of HSC, and an inclination of HSC to myeloid 

differentiation (Nogueira-Pedro et al., 2014). However, as a downstream response of 

NO, SNO and its turnover in controlling NO-associated bioactivity in adult stem cells, 

especially in HSCs, has been largely unknown. Previous study reported GSNOR function 

as a formaldehyde dehydrogenase in HSCs in the context of DNA damage response 

(DDR) (Pontel et al., 2015), but the function of GSNOR, as a denitrosylase, in HSCs 

regeneration remains to be delineated. Here, we showed that hematopoietic stress strongly 

increased NO level in HSCs. Gsnor−/− HSCs exhibited an increased level of NO and failure 

to regenerate the blood system after transplantation and 5-fluorouracil (5-FU)-induced 

myeloablation. These changes were associated with an enhanced protein S-nitrosylation, 

which promoted cell death via protein-aggregation-mediated apoptosis in Gsnor−/− HSCs. 

Chemical chaperone taurocholic acid (TCA) treatment or Chop deletion attenuated the 

Gsnor−/− HSCs protein aggregation and restored their regenerative capacity. NO synthesis 

inhibitor, L-NG-nitroarginine methyl ester (L-NAME), reduced the protein S-nitrosylation 

level and restored the repopulating defect of Gsnor−/− HSCs. Taken together, our study 

discovers a previously unknown mechanism of NO-induced and GSNOR-mediated protein 

aggregation in regulating HSC regeneration.

RESULTS

Increase of NO level and protein aggregation in regenerating HSCs

To assess the role of NO in the hematopoietic system, we first examined the levels 

of NO in hematopoietic cells from wild-type (WT) mice (2 months old) using 

the NO-sensitive fluorescent dye 3-amino, 4-aminomethyl-2’,7’-difluorescein diacetate 

(DAF-FM DA). We found the NO level was lower in long-term HSCs (LT-HSCs) 

(CD150+CD48−Lineage−Sca1+cKit+ cells) compared with LSK (Lineage−Sca1+cKit+), Lin− 

(Lineage−) cells, and Lin+ (Lineage+) cells (Figure 1A), suggesting a lower oxidative stress 

in HSC at steady state. To further examine the levels of NO in hematopoietic cells under 

hematopoietic stress, we treated the WT mice with a single-dose of 5-FU (150 mg/kg), and 

the levels of NO in BM were checked at day 9 post-treatment. In line with the previous 

finding, we also found that 5-FU strongly induced HSC proliferation (Figure 1B), which 

led to an increased absolute number of HSCs (Figure S1A). The ratio of LT-HSCs in BM 

was increased, and a trend of increased ratio of granulocyte-macrophage progenitor (GMP), 

common myeloid progenitor (CMP), and megakaryocyte-erythrocyte progenitor (MEP) was 

detected in BM of the mice after 5-FU treatment (Figure S1B). Interestingly, the levels of 

NO were significantly elevated in HSPCs, with the highest increase in LT-HSCs (Figure 1C). 

As NO exerts its role by S-nitrosylating protein cysteine residues, we therefore detected the 

protein S-nitrosylation in Lin− BM cells at day 9 post-5-FU treatment using a biotin switch 
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method (Zhang et al., 2017). As expected, we observed a significant increased level of 

protein S-nitrosylation in the Lin− cells of WT mice treated with 5-FU compared with Lin− 

cells from control mice (Figure 1D). Taken together, these data indicate a specific role of 

NO, which contributes to the increased protein S-nitrosylation in HSCs during regeneration.

Recent study showed that the level of aggregated protein was quickly increased in 

proliferating fetal liver HSCs, indicating an important role of protein homeostasis 

(proteostasis) in HSC regeneration (Sigurdsson et al., 2016). Considering 5-FU treatment 

strongly stimulates HSC proliferation, we hypothesize that there would be an accumulation 

of protein aggregation in HSCs. We then performed protein aggregation assay in LT-HSCs 

at day 9 post-5-FU treatment using ProteoStat staining, a specific fluorescent dye sensitive 

for detecting protein aggregation. As compared with LT-HSCs from untreated mice, a 

significantly higher level of protein aggregation was detected in LT-HSCs from 5-FU-treated 

mice (Figure 1E). Considering the increased level of NO and protein aggregation in HSCs 

after 5-FU treatment, we believe that NO and its induced protein S-nitrosylation plays a 

unique role in HSC regeneration, which might be involved in the regulation of protein 

homeostasis.

To verify the source of NO in HSCs after 5-FU treatment, we checked the expression of NO 

synthases (iNOS [inducible NOS], eNOS [endothelial NOS], and nNOS [neuronal NOS]) 

in HSCs at day 9 post-5-FU treatment. The expression levels of nNOS and iNOS were 

too low to be detected in LT-HSCs, and the expression level of eNOS was not increased 

in LT-HSCs after 5-FU treatment (Figure S1C). These results suggest that the increased 

level of NO in HSCs was not due to cell-autonomous production. Previous studies showed 

that genotoxic stresses promote NO production in CD11b+ myeloid BM cells via inducing 

iNOS expression (Gorbunov et al., 2000; Punjabi et al., 1994). Because CD11b+ BM cells 

are well known as HSC niche components (Winkler et al., 2010), we hypothesis that 5-FU 

treatment may promote iNOS expression in CD11b+ myeloid cells, leading to NO induction 

in HSC niches, and subsequently caused the increased level of NO in HSCs due to the 

permeability of NO. Indeed, the result showed that 5-FU treatment strongly induced iNOS 

expression in CD11b+ BM cells (Figure 1F), which led to a dramatic induction of NO 

(Figure 1G). In order to further confirm these conclusions, we also examined the level of 

NO in cultured HSPCs when the exogenous NO supply is limited. Lin− cells from WT mice 

were cultured for 24 h, and protein S-nitrosylation was checked afterward. We found that, 

compared with freshly isolated Lin− cells, cultured Lin− cells did not show an induction of 

protein S-nitrosylation (Figure S1D). This result further supports the idea that the increased 

NO level in HSCs after 5-FU treatment was not due to cell-autonomous generation.

Gsnor−/− mice show normal HSPC phenotypes under homeostatic condition

Considering that NO induction led to increased protein S-nitrosylation in HPSCs, we then 

examined the expression of GSNOR, thioredoxin (TRX1), thioredoxin reductase (TRXR), 

and thioredoxin interacting protein (TXNIP), which are required for reducing the protein 

S-nitrosylation. We found that the expressions of GSNOR, TRX1, TRXR, and TXNIP were 

increased in Lin− cells from WT mice 9 days after 5-FU treatment. Of note, GSNOR 

was the most upregulated denitrosylase, suggesting GSNOR maybe the main denitrosylase 
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in response to the 5-FU-induced HSC regeneration (Figure 2A). We then took advantage 

of a genetically manipulated mouse model lacking GSNOR to examine its effect on the 

maintenance of hematopoiesis. We analyzed the BM cells in Gsnor+/+ and Gsnor−/− mice 

and found that there was no change in the absolute number of both LSK cells and LT-

HSCs (Figures S2A–S2D). After further analysis of the progenitor cells, including CMP, 

GMP, MEP, and common lymphoid progenitor (CLP), we also did not find any significant 

differences between Gsnor+/+ and Gsnor−/− mice (Figures S2E–S2H). Meanwhile, there 

was no significant difference of the NO level between the Gsnor+/+ and Gsnor−/− LSK 

cells (Figure S2I). These data suggest that GSNOR is dispensable for the homeostatic 

maintenance of HSPCs at steady state.

GSNOR deficiency impairs HSC regeneration after 5-FU treatment

To investigate the role of GSNOR in HSCs regeneration, we treated the Gsnor+/+ and 

Gsnor−/− mice with 5-FU and recorded the survival status afterward. Notably, Gsnor−/− mice 

died significantly earlier than Gsnor+/+ mice after two times of 5-FU treatment, suggesting 

that GSNOR-deficient mice are more sensitive to 5-FU treatment (Figure 2B). To further 

verify the effect of 5-FU treatment on HSC regeneration, we treated Gsnor+/+ and Gsnor−/− 

mice with a single dose of 5-FU and assessed the number of HSCs. We found that the 

absolute number of LT-HSCs and side population (SP)-HSCs were less in Gsnor−/− mice 

compared to Gsnor+/+ mice at day 3 following 5-FU treatment (Figure S3A). At day 

9 post-5-FU treatment, a significant reduction in the absolute number of LT-HSCs was 

detected in Gsnor−/− mice compared with Gsnor+/+ mice, which was associated with a 

higher level of NO in Gsnor−/− LSK cells compared with Gsnor+/+ LSK cells (Figures 2C 

and 2D). Importantly, the level of protein aggregation was significantly higher in Gsnor−/− 

LT-HSCs than Gsnor+/+ LT-HSCs at day 9 after 5-FU treatment (Figure 2E). Taken together, 

the above data showed that GSNOR deficiency results in loss of HSC regeneration capacity 

under a highly regenerative stress associated with NO and protein aggregation induction.

To understand the cause of decreased HSC number in the Gsnor−/− mice post-5-FU 

treatment, we examined the proliferation and apoptosis rate in HSCs. Ki67 staining and 

5-bromo-2-deoxyuridine (BrdU) labeling analyses showed no significant difference between 

Gsnor+/+ and Gsnor−/− LT-HSCs at day 9 after 5-FU treatment (Figures S3B and S3C). 

Interestingly, annexin V staining analysis indicated a significant increase of apoptosis rate in 

Gsnor−/− LT-HSC compared to Gsnor+/+ LT-HSC (Figure 2F), which was further confirmed 

by the enhanced caspase-3/7 activity detected in the Gsnor−/− LT-HSC compared with 

Gsnor+/+ LT-HSC (Figure 2G). GSNOR also functions as a formaldehyde dehydrogenase, 

which has been reported to protect DNA damage caused by formaldehyde in FANCD2 

(Fanconi anemia complementation group D2) -deficient mice (Pontel et al., 2015). We 

therefore speculate that the increased apoptosis in Gsnor−/− HSCs might attribute to the 

DDR in regenerating HSCs after 5-FU treatment. However, the gamma-H2AX staining 

analysis revealed a comparable level of DDR in LT-HSCs between Gsnor+/+ and Gsnor−/− 

mice (Figure S3D), indicating that GSNOR deficiency was unlikely through its function as 

a formaldehyde dehydrogenase to impair HSCs regeneration after 5-FU treatment. Taken 

together, these data indicate that increase in apoptosis accounts for the impaired HSC 

recovery in Gsnor−/− mice after 5-FU treatment. Lastly, to test whether other denitrosylases 
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may also play a role in HSC regeneration after 5-FU treatment when GSNOR is absent, 

we examined the expression of TRX1, TRXR, and TXNIP in Lin− cells from Gsnor+/+ and 

Gsnor−/− mice at day 9 post-5-FU treatment. The result showed that only a mild increase in 

the expression of TRXR with no difference of TRX1 and TXNIP was observed in Gsnor−/− 

Lin− cells compared with Gsnor+/+ Lin− cells at day 9 post-5-FU treatment (Figure S3E). 

These data further confirm that GSNOR plays a key role in the context of 5-FU-induced 

HSC regeneration.

Deletion of GSNOR impairs the repopulating ability of HSCs

To examine the impact of GSNOR deficiency on the long-term regenerative capacity 

of HSC in vivo, we performed serial competitive transplantation experiments, in which 

the transplanted HSCs experience extensive long-term regenerative stress (Figure 3A). In 

contrast to the Gsnor+/+ HSCs that made robust peripheral blood (PB) contribution after 

the first round of transplantation, the Gsnor−/− HSCs showed a progressive decline in 

the percentage of donor-derived PB cells (Figure 3B). Further analysis revealed a multi-

lineage defect in the reconstitution ability of Gsnor−/− donor HSCs (Figures S4A–S4C). In 

secondary transplantation, the chimerism of donor-derived cells showed a further decrease 

in recipient mice that were transplanted with HSCs from Gsnor−/− mice compared with the 

recipients transplanted with HSCs from Gsnor+/+ mice (Figures 3C and S4D). To examine 

the self-renewal and differentiation ability of HSCs post-transplantation, we analyzed the 

chimerisms of donor cells in BM from the primary and secondary recipients. We found a 

significant reduction in the percentage of donor-derived CD34−LSK, LSK, LK, Lin−, and 

BM cells in Gsnor−/− HSCs-transplanted recipients as compared with the Gsnor+/+ HSCs-

transplanted controls in both first and second round of transplantation (Figures 3D and 

3E). Taken together, these data demonstrate that GSNOR deficiency impairs the long-term 

repopulating capacity of HSC.

Inhibiting NO synthesis restores regenerative capacity of Gsnor−/− HSCs

Given that GSNOR-deficient HSCs exhibited increased level of NO and impaired 

regeneration upon regeneration stress (Figures 2 and 3), we speculated that excessive NO 

might be responsible for the reconstitution defect of Gsnor−/− HSCs. To establish the direct 

link between NO-mediated protein S-nitrosylation and HSC regeneration, we treated the 

serial transplanted recipient mice with NOS inhibitor L-NAME, which has been widely used 

to inhibit NO synthesis (Gomes et al., 2013), and examined the donor contribution in PB and 

BM (Figure S5A). The chimerism of Gsnor−/− donor-derived cells in PB was significantly 

increased by L-NAME treatment compared with PBS treatment in both the first and second 

rounds of transplantation (Figures 4A and S5B). Similarly, the multi-lineage reconstitution 

capacity of Gsnor−/− donor HSCs was increased by L-NAME treatment (Figures S5C–

S5E). Consistently, the percentage of Gsnor−/− donor-derived CD34−LSK, LSK, LK, Lin−, 

and total BM were significantly increased after L-NAME treatment compared with PBS 

treatment (Figure 4B). In contrast, the L-NAME versus PBS treatment had no significant 

effect on the chimerism of mice that were transplanted with Gsnor+/+ HSCs (Figures 4A, 

4B, and S5B–S5E). These data indicate that induction of NO contributes to the impairment 

of the regenerative capacity of Gsnor−/− HSCs.
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Next, we examined the effect of L-NAME treatment on hematopoietic recovery in the 

Gsnor−/− and Gsnor+/+ mice following 5-FU treatment. L-NAME-treated Gsnor+/+ mice 

showed a reduction of NO level in LT-HSCs, suggesting a successful inhibition of NO 

by L-NAME (Figure S5F). Further analysis on the absolute number of hematopoietic stem/

progenitor cells (LT-HSCs, GMP, CMP, and MEPs) and mature cells (B cells, myeloid 

cells, and T cells) showed no significant difference between L-NAME-treated mice and 

PBS-treated mice (Figures S5G and S5H), indicating L-NAME treatment does not have 

detrimental effect on hematopoietic system. Gsnor−/− mice showed a decreased number of 

LT-HSCs in response to 5-FU treatment (Figure 4C). However, the reduction of LT-HSCs 

in Gsnor−/− mice was restored by L-NAME treatment (Figure 4C). Consistently, L-NAME 

treatment ameliorated the GSNOR-deficiency-induced apoptosis, as indicated by both the 

reduction of annexin-V-positive cells and activation of caspase-3/7 (Figures 4D and 4E). To 

further determine the effect of L-NAME on NO inhibition, we detected the total protein 

S-nitrosylation in Lin− cells from Gsnor−/− and Gsnor+/+ mice treated with L-NAME and 

PBS at day 9 post-5-FU treatment. The results showed that, as compared with PBS-treated 

group, the total protein S-nitrosylation level was decreased after L-NAME treatment in both 

Gsnor−/− and Gsnor+/+ group (Figure 4F), indicating an inhibition of protein S-nitrosylation 

via L-NAME treatment. In conclusion, these data suggest that NOS inhibitor L-NAME 

treatment improves the impaired recovery of Gsnor−/− HSCs after 5-FU treatment.

Chemical chaperone rescues the regeneration defect of Gsnor−/− HSCs

As shown above (Figure 2), a defect of HSC recovery and accumulation of protein 

aggregation were detected in Gsnor−/− mice in response to 5-FU treatment. Therefore, we 

reasoned that the defect of HSC recovery in Gsnor−/− mice after 5-FU treatment might 

be due to protein aggregation. To verify this hypothesis, after 5-FU treatment, we treated 

Gsnor+/+ and Gsnor−/− mice with TCA, which has been used to reduce the level of protein 

aggregation in fetal liver HSCs (Sigurdsson et al., 2016; Figure 5A). We found that TCA 

treatment significantly inhibited the increased protein aggregation in Gsnor−/− HSCs (Figure 

5B). We then analyzed the absolute number of HSCs in Gsnor+/+ and Gsnor−/− mice after 

5-FU followed by TCA treatment. The number of LT-HSCs in Gsnor−/− mice treated with 

TCA was significantly increased compared with Gsnor−/− mice treated with PBS, suggesting 

that TCA treatment enhanced HSC recovery in Gsnor−/− mice in response to 5-FU treatment 

(Figure 5C). Of note, TCA treatment strongly diminished the elevated apoptosis in Gsnor−/− 

HSCs upon 5-FU treatment, as indicated by the decreased annexin-V-positive cells (Figure 

5D) and alleviated activation of caspase-3/7 (Figure 5E). In contrast, TCA versus PBS 

treatment had no significant effect on the protein aggregation, LT-HSCs number, and 

apoptosis rate in Gsnor+/+ mice (Figures 5B–5E). Collectively, these data indicate that the 

accumulation of protein aggregation and consequently enhanced apoptosis are responsible 

for the impaired regenerative capacity of Gsnor−/− HSCs.

Chop deletion rescues the impaired function of Gsnor−/− HSCs

It has been shown that accumulation of protein aggregation activates endoplasmic reticulum 

(ER)-stress-induced apoptosis in fetal liver HSCs (Sigurdsson et al., 2016). We also found 

decreased absolute number of LT-HSCs in Gsnor−/− fetal liver compared with Gsnor+/+ 

fetal liver at embryonic day 14.5 (E14.5) (Figure S6A). Similar like 5-FU-treatment-induced 
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HSC proliferation (Figure 1B), HSCs at fetal liver stage are highly proliferative (Pietras 

et al., 2011). This may lead to NO production and cause protein S-nitrosylation, which 

cannot be efficiently removed in Gsnor−/− fetal liver and results in HSC number reduction 

via ER-stress-mediated apoptosis. Therefore, we reasoned that ER stress response could 

mediate the apoptosis of Gsnor−/− HSCs. To test this hypothesis, Gsnor+/+ and Gsnor−/− 

mice were treated with a single dose of 5-FU, and LT-HSCs were purified at day 9 post-5-

FU treatment for unfolded protein response (UPR)-related gene expression analysis. As 

expected, the expression of many UPR-related genes was markedly upregulated in LT-HSCs 

from Gsnor−/− mice compared with LT-HSCs from Gsnor+/+ mice (Figure 6A). In order 

to examine the induction of UPR activation at protein level, we treated the Gsnor+/+ 

and Gsnor−/− mouse embryonic fibroblast (MEF) cells with GSNO and examined the 

expression of UPR-related proteins, such as Bip, ATF4, Chop, and the level of protein 

S-nitrosylation 24 h after GSNO treatment. Compared with PBS treatment, an increase of 

the total protein S-nitrosylation in both Gsnor−/− and Gsnor+/+ MEF cells was detected 

after GSNO treatment (Figure 6B). Meanwhile, increased expression of Bip, ATF4, and 

Chop were detected in GSNO-treated Gsnor−/− MEF cells compared with GSNO-treated 

Gsnor+/+ MEF cells (Figure 6B). Among the upregulated proteins, Chop has been reported 

as an important factor regulating UPR-induced apoptosis (van Galen et al., 2014). To 

test whether the ER-stress-induced apoptosis is responsible for the regeneration defect of 

Gsnor−/− HSCs, we generated Gsnor and Chop double-knockout mice (Gsnor−/−Chop−/−) 

and performed serial competitive transplantation to examine the regenerative capacity of 

Gsnor−/−Chop−/− HSCs. We found that the chimerism of donor-derived cells in PB was 

significantly increased in Gsnor−/−Chop−/− recipient mice compared with Gsnor−/−Chop+/+ 

recipient mice in both the first and second rounds of transplantation (Figures 6C and 6D). 

These data suggest that Chop deletion rescues the reconstitution defect of Gsnor−/−Chop+/+ 

HSCs. To further determine the HSC recovery in Gsnor−/−Chop−/− mice, we treated the 

Gsnor−/−Chop+/+ and Gsnor−/−Chop−/− mice with a single dose of 5-FU and calculated the 

number of LT-HSCs at day 9 post-5-FU treatment. We found that the number of LT-HSCs 

was strongly increased in Gsnor−/−Chop−/− mice compared with Gsnor−/−Chop+/+ mice 

(Figure 6E). Furthermore, the activity of caspase-3/7 in LT-HSCs was markedly reduced in 

Gsnor−/−Chop−/− mice compared with LT-HSCs in Gsnor−/−Chop+/+ mice (Figure 6F). In 

line with these results, either L-NAME or TCA treatment reduced the expression of Chop in 

LT-HSCs of Gsnor−/− mice (Figure S6B). Taken together, these data indicate that GSNOR 

regulates HSC regeneration via Chop-mediated apoptosis.

DISCUSSION

In this study, we found that increased NO level induced in LT-HSCs after 5-FU treatment 

contributed to the increased protein S-nitrosylation as well as the protein aggregation 

(Figures 1G and 1H). In GSNOR-deficient mice, the loss of protein denitrosylation ability 

further exacerbated the accumulation of protein S-nitrosylation, which eventually triggered 

apoptosis in HSCs. The rescue of apoptosis by chemical chaperone in Gsnor−/− HSCs 

suggested that proteostatic collapse is responsible for the protein-S-nitrosylation-induced 

apoptosis. Furthermore, the genetic ablation of Chop rescued the regeneration defect of 
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Gsnor−/− HSCs, indicating that proteostatic collapse impairs HSC regeneration via ER-

stress-induced apoptosis.

The previous studies revealed that NO stimulates HSC proliferation, mobilization, and 

myeloid differentiation (Aicher et al., 2003; Nogueira-Pedro et al., 2014). We detected an 

increased level of NO (Figure 1C), enhanced HSC proliferation (Figure 1B), and increased 

HSC absolute number (Figure S1A) in 5-FU-treated mice, which was consistent with 

previous studies. In our study, GSNOR deficiency does not affect the homeostasis of HSC 

although results in a dramatic cell death in HSCs under regenerative stresses. A reasonable 

possibility is, at steady state, most of HSCs remain in quiescent stage with limited protein 

synthesis, and once experiencing proliferative stress, sharply increased protein synthesis 

in HSCs requires a boost of the protein folding machinery, whereas the enhanced NO 

accompanied by HSC proliferation leads to increased S-nitrosylation-compromised protein 

folding and results in an accumulation of protein aggregation and eventually leads to 

UPRER-mediated apoptosis. These data demonstrate a unique role of GSNOR in maintaining 

the balance between HSC proliferation and survival through the regulation of proteostasis 

upon regenerative stresses.

GSNOR, functioning as a denitrosylase, plays an important role in many physiological 

processes by denitrosylating target proteins. GSNOR deficiency impairs mitochondrial 

dynamics and mitophagy in aging cells by promoting the S-nitrosylation of Drp1 and Parkin 

(Rizza et al., 2018). In lymphatic system, GSNOR deletion enhances the S-nitrosylation 

of GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), which results in thymocytes 

apoptosis and impairs lymphocyte development (Yang et al., 2010). GSNOR deletion 

increases HIF-alpha S-nitrosylation, which results in improvement in angiogenesis after 

myocardial injury (Lima et al., 2009). In this study, we show that GSNOR, by exerting its 

catalytic efficiency and specificity for GSNO reduction, regulates the protein S-nitrosylation 

during HSC regeneration. Consistently, MSCs from Gsnor−/− mice showed decreased 

capacity during vasculogenesis due to downregulation of PDGFRα (platelet derived growth 

factor receptor alpha) related to NO/GSNOR imbalance (Gomes et al., 2013). Together, 

these studies suggest that GSNOR regulates different stem cell functions according to the 

distinct denitrosylated target proteins in a tissue- and physiological-condition-dependent 

manner.

Protein quality and proteostasis are essential for the maintenance of cell function (García-

Prat et al., 2017; Higuchi-Sanabria et al., 2018). A research showed an accumulation of 

protein aggregation in proliferative HSCs (Liu et al., 2019). In this study, GSNOR deficiency 

resulted in a significant increase of protein aggregation and defected reconstitution capacity 

in response to HSC regenerative stress (Figures 2E and 5B). UPR-related genes were 

highly expressed in Gsnor−/− HSCs after 5-FU treatment (Figure 6A), which may be due 

to the accumulation of protein aggregation. A recent study showed that chemical chaperone 

TCA can significantly diminish the increased level of protein aggregation in fetal liver 

HSCs (Sigurdsson et al., 2016). Consistent with this finding, we found that TCA treatment 

attenuated the accumulation of protein aggregation and rescued the defect of HSC recovery 

in Gsnor−/− mice (Figure 5). These data demonstrate a clear and mostly linear relationship 

Yi et al. Page 10

Cell Rep. Author manuscript; available in PMC 2022 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the accumulation of protein aggregation and the defected reconstitution capacity of 

GSNOR-deficient HSCs.

ER utilizes its protein folding status as a signal to orchestrate downstream adaptive or 

apoptotic response. Previous studies showed that, compared to the progenitor compartment, 

HSCs are susceptible to misfolded protein induced by ER stress and have a strong activation 

of apoptotic response (van Galen et al., 2014). Consistently, our data showed an enhanced 

ER-stress response and apoptosis in Gsnor−/− HSCs after 5-FU treatment (Figure 6A), 

suggesting a potential role of UPR in GSNOR-deficient HSCs. Among the upregulated UPR 

genes, Chop is most functionally relevant to the reduced viability of Gsnor−/− HSCs, as it is 

the key factor mediating UPRER-induced apoptosis. Deletion of Chop significantly rescued 

the defect of Gsnor−/− HSCs, demonstrating that the UPR-induced apoptosis is essential in 

suppressing HSC regeneration.

As a posttranslational modification, S-nitrosylation is widely considered as an important 

mediator of signal transduction pathways. However, aberrant S-nitrosylation often affects 

protein misfolding and causes ER stress, which results in an impairment of cell function 

(Ryan et al., 2013). It has been reported that excessive S-nitrosylation of IRE1a induced 

by obesity-associated inflammation results in compromising UPR function and alters ER 

homeostasis (Yang et al., 2015). S-nitrosylation of PDI (protein-disulphide isomerase) 

and parkin plays an essential role in protein homeostasis maintenance, trigger protein 

misfolding, and ER stress under neurodegeneration conditions (Uehara et al., 2006; Chung 

et al., 2004; Yao et al., 2004). In line with the above findings, our study showed an increased 

level of protein S-nitrosylation and protein aggregation in HSPCs under regeneration stress, 

which reinforces the relationship between the increased protein S-nitrosylation and impaired 

protein folding. In our study, several S-nitrosylated proteins were observed in Gsnor−/− 

HSPCs during regeneration process (Figure S7A; Table S1). Interestingly, a few heat shock 

proteins, HSP60, HSP70, and HSP90 were highly S-nitrosylated in Gsnor−/− Lin− BM 

cells(Table S1). One of them, the S-nitrosylation of HSP90 and its contribution in protein 

aggregation, was further measured. Previous study showed S-nitrosylation on the catalytic 

domain (Cys 596/597) and the C-terminal domain of HSP90 inhibits its ATPase activity 

(Martínez-Ruiz et al., 2005; Retzlaff et al., 2009). Here, we reported new S-nitrosylation 

residues of HSP90 located at its M domain (Cys521/590/591) in GSNOR deficiency 

cells, which affected the protein folding function of HSP90 and caused an accumulation 

of protein aggregation (Figures S7B–S7D). Reversal of the S-nitrosylation by mutation 

of the nitrosylation residues of HSP90 ameliorated the protein aggregation induced by 

GSNOR deficiency (Figures S7E–S7G). Taken together, we found that S-nitrosylation 

of HSP90 compromises its protein-folding activity, contributing to the accumulation of 

protein aggregation in Gsnor−/− cells upon stress. These data suggest that the increased 

level of S-nitrosylated UPR-related proteins might lead to an impairment of protein folding 

and contribute to the induction of protein aggregation. Nevertheless, given that GSNOR 

deficiency induces protein aggregation via increased S-nitrosylation of many proteins, 

identifying other essential targets of GSNOR that regulate the UPR will be of great interest.

In summary, our data established a mechanistic link between the GSNOR-mediated protein 

S-nitrosylation and the Chop-mediated UPR in regulating HSC viability during regeneration 
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process. This finding further emphasized the importance of proper regulation of proteostasis 

in HSCs under proliferative stress, which is also physiologically important for maintaining 

HSC stress responses in vivo. Interfering with S-nitrosylation modification may help to 

achieve HSC functional expansion without losing its viability under proliferative stresses.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for reagents may be directed to and will 

be fulfilled by the Lead Contact, Zhenyu Ju (zhenyuju@163.com).

Materials availability—This study did not generate new unique reagents.

Data and code availability—This study did not generate datasets or codes.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

MICE Gsnor−/− mice were provided by Dr. Limin Liu (University of California, San 

Francisco)(Liu et al., 2004). Chop deficient mice were purchased from Nanjing institute of 

biomedical research, Nanjing University. 8-week-old CD45.1 mice or CD45.1/2 were used 

as recipient or competitor mice in HSC transplantation assay. Both female and male mice 

were used. All mice were maintained in a specific pathogen-free facility. The Animal Care 

and Ethics Committee at Hangzhou Normal University approved all animal experiments in 

our study.

METHOD DETAILS

Flow cytometry and cell sorting—BM cells were incubated in a lineage cocktail 

containing antibodies against CD4 (RAM4-5), CD8 (53-6.7), Ter119 (TER119), CD11b 

(M1/70), Gr-1 (RB6-8C5), and B220 (RA3-6B2) for 30 min. After washing, the cells 

were incubated with CD48 (HM48-1), CD150 (TC15-12F12.2), CD45.2 (104), CD45.1 

(A20), Sca1 (E13-161.7), Flt3 (A2F10), IL-7R (A7R34), c-Kit (ACK2), CD16/32 (93), 

CD34 (RAM34), and streptavidin. Side population cell analysis was performed using 

Hoechst 33342 (5ug/ml, Sigma-Aldrich). All monoclonal antibodies were purchased from 

BD Bioscience or eBioscience. Before cell sorting, BM cells were first enriched with anti-

antigen-presenting cell microbeads (MiltenyiBiotec) and then stained with surface markers. 

FACS analysis was performed with BD Influx cell sorter and BD LSRFortessa. Data were 

analyzed with FlowJo software.

Transplantation Analysis—Competitive transplantation was performed by transplanting 

300 LT-HSCs sorted from 2-3-month old Gsnor+/+ and Gsnor−/− mice (donor, CD45.2) along 

with 5 × 105 BM cells from young (2-3-month old) competitor mice (CD45.1 or CD45.1/

CD45.2). Recipient mice (CD45.1/CD45.2 or CD45.1) were lethally (8Gy) irradiated before 

transplantation and treated with antibiotic water for 2 weeks after transplantation. The 

chimerisms of donor-derived cells in PB and BM were examined at indicated time points 

after transplantation.
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Apoptosis and cell cycle assays—Apoptosis assays were performed via Annexin V/

DAPI (Annexin V Apoptosis Detection Kit, eBioscience) and caspase- Glo 3/7 (Promega) 

staining. Cell cycle analyses was performed via BrdU (BD Cytofix/Cytoperm kit) and Ki67 

staining (BD Cytofix/Cytoperm kit). For BrdU assay, BrdU (100mg/kg, BD Bioscience) was 

injected via intraperitoneal (i.p.) 16 hours before mice sacrifice.

Lentivirus production—Lentivirus were produced in 293T cells after transfection of 7 μg 

HSP90WTor HSP90M plasmid, 5 μg pspAX2 helper plasmid, and 3 μg Pmd2g.23. The virus 

was collected 48 hours after transfection and concentrated by centrifugation at 25,000 rpm 

for 2.5 hours at 4°C, and the virus pellet was suspended in PBS. LSK cells from WT or 

Gsnor−/− mice were infected with HSP90WT and/or HSP90M lentivirus and then transplanted 

into lethally irradiated mice 48 hours after infection. The recipient mice were treated with 

5-FU two months later, 1000 of the transduced LT-HSC (GFP+) cells were sorted, and 

caspase-3/7 assay were performed.

NO level detection assay—A total of 5 × 106 BM cells were stained with surface 

markers and washed with cold PBS, cells were then stained with NO-sensitive fluorescent 

dye DAF-FM DA (Sigma-Aldrich, 1 μM) at 37°C for 30 min. DAF-FM DA signal was 

analyzed by FACS.

5-FU treatment—For survival assay, the recipient mice were i.p. injected with two rounds 

of 5-FU (Sigma Aldrich, 150 mg/kg). For HSC regeneration assay, mice were i.p. injected 

with a single-dose of 5-FU (Sigma Aldrich, 150 mg/kg).

L-NAME and TCA treatment—The eNOS inhibitor L-NAME (Sigma Aldrich) was 

dissolved in PBS with 50mg/ml as a stock solution. Intraperitoneal injected with 10 mg/kg 

per mouse. For the HSC engraftment assay, mice were injected with L-NAME every 3 times 

per week at 3 weeks post transplantation;For the 5-FU and L-NAME treatment assay, mice 

were injected with L-NAME every other days after 5-FU treatment. TCA (Sigma-Aldrich) 

was dissolved in PBS with 5mg/ml as a stock solution. The stock solution was diluted to 

500 μg/ml, and 300ul of the diluents was intraperitoneal injected into mice. Mice were 

euthanized and BM cells were collected for subsequent analysis.

Protein Aggregation (ProteoStat Staining)—Cells were fixed and permeabilized 

using BD Fixation/Permeabilization Solution kit (BD, 554714). The levels of protein 

aggregation in indicated populations were analyzed by FACS using ProteoStat Dye (Enzo 

Life Sciences).

RNA isolation and Real-time PCR analysis—Total RNA was isolated from HSCs 

using RNeasy Micro Kit (QIAGEN) and reversed using PrimeScriptcDNA synthesis Kit 

(Takara). Real-time-PCR was performed with Eva-Green probe on a 7300 Real-Time 

PCR system for 40 cycles. A mouse internal β-actin was included in every reaction for 

normalization. Each experiment was performed in at least three biological replicates.

Immunofluorescence assay—For immunostaining, MEF cells were cultured in 24 

wells plate with coverslips. After cell seeding for 24 hours, the cells were further treated 
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with GSNO donor (Sigma Aldrich, 10uM) for 24 hours. Cells were fixed with 4% 

paraformaldehyde (Sigma Aldrich), and blocked with a blocking solution (normal goat 

serum) accompanied with 0.1% saponin for permeabilization. After blocking, the cells 

were incubated in 0.1% saponin with primary antibody: anti-FLAG (Medical & Biological 

Laboratories), secondary antibody and fluorescence-probe: Alex Flour 633 goat anti-mouse, 

ProteoStat Dye (1:1000), DAPI (1ug/ml). Images were taken in multi-tracking mode on a 

laser scanning confocal microscope (LSM710, Carl Zeiss) with a 63 plan apochromat 1.4 

NA objective.

Western Blot assay—The cells were lysed in RIPA buffer and subjected to SDS-PAGE. 

Proteins were transferred to nitrocellulose filter membrane (Millipore). Subsequently, the 

membrane was blocked in 5% skimmed milk and followed by incubation with anti-GSNOR 

(ABclonal, WA-20754D), anti-TRX1 (Proteintech, 14999-1-AP), anti-TRXR (Proteintech, 

67728-1-Ig), anti-TXNIP (Proteintech, 18243-1-AP), β-actin (Sungene Biotech, KM9001) 

antibodies overnight. On the next day, the membranes were incubated with secondary 

antibody. Finally, the protein bands were visualized with an ECL Western Blot detection 

kit (Pierce).

Quantitative S-nitrosylation proteomics and data analysis —The iodo TMT 

labeling was conducted by using iodoacetyl tandemmass tag (iodoTMT) reagents (90103, 

Thermo Scientific, USA) as described previously(Qu et al., 2014). Briefly, isolated WT and 

Gsnor−/− Lin− cells were lysed in HENS buffer, free cysteine was blocked with methyl 

methanethiosulfonate (MMTS), and S-nitrosylated cysteine were labeled with different iodo 

TMT reagent and enriched with anti-TMT antibody. The multiplexed quantitative mass 

spectrometry data were collected by using Q Exactive mass spectrometer equipped with 

an easy n-LC 1000HPLC system (Thermo Scientific) on data-dependent acquisition mode. 

The raw data from Q Exactive were analyzed with Proteome Discovery version 1.4 using 

Sequest HT search engine for protein identification and Percolator for false discovery rate 

analysis. The Uniprot miceprotein database was used for searching data from the mice 

sample. Protein quantification was also performed on Proteome Discovery version 1.4 using 

the ratio of the intensity of reporter ions from the MS/MS spectra. Only unique peptides of 

proteins or protein groups were selected for protein relative quantification.

The biotin switch assay—The IBP for detecting the S-nitrosylation was performed as 

previously described. cells were lysed in HEN buffer (250mM HEPES pH 7.7, 0.1mM 

EDTA, 10mM neocuproine) with 1% NP40 (Nonidet P-40), protease inhibitor cocktail and 

20mM MMTS for 20min at 4°C, then centrifuged at 12000 × g for 10 minutes at 4°C. 

The supernatant were incubated with 2.5% SDS at 50°C for 30 minutes with frequent 

vortex (every 5 minutes), and excess MMTS was removed by ice-cold acetone precipitation 

followed by centrifugation at 2000 × g for 10 minutes. This precipitation was repeated three 

times. The precipitate was recovered in HEN buffer containing 2.5% SDS with 0.4mM 

biotin- maleimide and 10mM ascorbate and incubated at 37°C for 1 hour or at room 

temperature for 2 hours. The excess biotin-maleimide was removed by ice-cold acetone 

precipitation as previously described. The pellet was resuspended in HEN buffer with 

200mM DTT and incubated for 15 minutes at 100°C, followed by addition neutralization 
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buffer (250mM HEPES pH 7.7, 100mM NaCl, 0.1mM EDTA, 10mM neocuproine) and 

streptavidin-agarose (50-100 μl/sample) to purify the biotinylated proteins. This material 

was incubated at room temperature for 2 hours. The agarose was washed 3 times(800 × g 

for 1 minute)with neutralization buffer with 0.05% SDS and the proteins were eluted by 

HEN buffer containing 2.5% SDS at 100°C for 15 minutes. The eluted mixture was analyzed 

by SDS-PAGE, followed by immunoblotting with anti-HSP90 (CST, 5087), anti-Bip (CST, 

3177), anti-ATF4 (CST, 11815), anti-Chop (CST, 2895) antibodies.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data are presented as the mean ± SD. All data were tested for the normal distribution 

using the Shapiro-Wilk normality test. For data that did not pass normality test, we 

performed log (for cell number or ratios) or logit transformation (for proportions), and 

tested for the normal distribution using the Shapiro-Wilk normality test with the transformed 

data before statistical analysis. We used parametric tests for the data that passed normality 

test. Statistical significance between two groups was assessed by Student’s t test with 

Welch’s correction. To assess the statistical difference between two conditions or treatments, 

we performed two-way ANOVA followed by Tukey’s multiple comparison test. The 

non-normally distributed data were assessed Wilcoxon/Mann-Whitney test. All statistical 

analyses were performed with GraphPad Prism 7 software. The significance level was set at 

0.05. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• S-nitrosylation and protein aggregation are increased during HSC 

regeneration

• GSNOR deficiency augments protein S-nitrosylation, leading to abnormal 

HSC regeneration

• Reduction of S-nitrosylation via NO inhibition enhances the function of 

Gsnor−/− HSC

• TCA treatment or Chop deletion rescues regeneration defect of GSNOR-

deficient HSC

Yi et al. Page 18

Cell Rep. Author manuscript; available in PMC 2022 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Increase of NO level and protein aggregation in regenerating HSCs
(A) The levels of NO in freshly isolated Lineage+ (Lin+), Lineage− (Lin−), 

Lineage−cKit+Sca1+ (LSK), and CD48−CD150+LSK (LT-HSCs) cells from 2-month-old 

WT mice were detected by DAF-FM DA probe. The data show the relative changes of NO 

levels in the indicated groups (fold change to the NO level in Lin+ cells; n = 3 per group).

(B) WT mice were treated with a single dose of 5-FU (150 mg/kg) and sacrificed at day 

9 post-treatment. BrdU (100 mg/kg) was injected 16 h prior to mice sacrifice. The results 
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present the percentage of BrdU-positive cells in LT-HSCs at the indicated time points after 

5-FU treatment (n = 5-6 per group).

(C–G) WT mice were treated with a single dose of 5-FU (150 mg/kg) and sacrificed at day 9 

post-treatment.

(C) The data show the relative change of NO levels in the indicated populations (fold change 

to the NO level in the same population at day 0 post-5-FU treatment; n = 6–7 per group from 

2 independent experiments).

(D) The S-nitrosylated proteins in Lin− cells were purified by a biotin-switch method, and 

the total SNO was detected by western blot with antibody against biotin (n = 2 pools; n = 3 

mice per pool).

(E) Representative fluorescence-activated cell sorting (FACS) histogram (left) and the 

quantification of the level of protein aggresome (right) in LT-HSCs. The value of protein 

aggresome in LT-HSCs was normalized to the value detected at day 0 (n = 3–4 per group).

(F) The mRNA expression of iNOS relative to β-actin was analyzed in CD11b+ BM cells 

from the indicated groups (n = 3 per group).

(G) The level of NO was examined in CD11b+ BM cells from the indicated groups (n = 4 

per group).

(A–G) Data were tested for normal distribution via Shapiro-Wilk normality test. Statistical 

significance between two groups of normally distributed data was assessed by Student’s t 

test with Welch’s correction. Statistical significance of the non-normally distributed data was 

assessed by Wilcoxon/Mann-Whitney test (B). All data are shown as mean ± SD. *p < 0.05; 

**p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 2. GSNOR deficiency impairs HSC regeneration after 5-FU treatment
(A) Western blot was performed to detect the expression of GSNOR, TRX1, TRXR, and 

TXNIP in freshly isolated Lin− cells from WT mice post-5-FU treatment. WT mice received 

an intraperitoneal (i.p.) injection of 5-FU (150 mg/kg) and were sacrificed at the indicated 

time points (n = 2 pools; n = 3 mice per pool).

(B) Gsnor+/+ and Gsnor−/− mice (2 to 3 months old) were treated with 5-FU (150 mg/kg) 

twice with a 1-week interval. The results show the survival rate of Gsnor+/+ and Gsnor−/− 

mice after 5-FU treatment (n = 6–7 per group).
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(C–G) Gsnor+/+ and Gsnor−/− mice (2 to 3 months old) were treated with a single dose of 

5-FU (150 mg/kg), and the following assays were performed at day 9 post-5-FU treatment.

(C) The data show the absolute number of LT-HSCs in indicated groups (n = 3 per group).

(D) The data show the levels of NO in indicated groups (the values of NO were normalized 

to the mean value of NO in Gsnor+/+ LSK cells (n = 3–4 mice per group).

(E) The data show the level of protein aggresomes in the indicated groups (the values of 

protein aggresomes were normalized to the mean value of protein aggresomes in Gsnor+/+ 

LT-HSCs; n = 4–5 mice per group).

(F) The data show the percentage of annexin-V-positive cells in LT-HSCs in the indicated 

groups (n = 4–5 mice per group).

(G) The data show the activation of caspase 3/7 in LT-HSCs in the indicated groups (values 

were normalized to Gsnor+/+ LT-HSCs; n = 4 mice per group).

(C–G) Data were tested for normal distribution via Shapiro-Wilk normality test. Statistical 

significance of the two groups of normally distributed data was assessed by Student’s t test 

with Welch’s correction.

Data are shown as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 3. Deletion of GSNOR impairs the repopulating ability of HSCs
(A) Schematic diagram showing the serial competitive transplantation assay. In brief, 

300 LT-HSCs from Gsnor+/+ mice or Gsnor−/− mice (2 to 3 months old; CD45.2) were 

transplanted into lethally irradiated recipients (CD45.1/2) along with 5 × 105 competitor BM 

cells (CD45.1). 5 months post-transplantation, 1 × 106 BM cells from the primary recipients 

were transplanted into the second round of recipient mice.

(B and C) The chimerism of donor-derived cells in PB was examined at the indicated time 

points after the first and second round of transplantation (n = 3–6 recipients per group).
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(D) The chimerisms of donor-derived cells in the indicated populations were analyzed at 5 

months after the primary transplantation (n = 5–6 per group).

(E) The chimerisms of donor-derived cells in the indicated populations were analyzed at 8 

months after the 2nd transplantation (n = 3–6 per group).

(B–E) Data were tested for normal distribution via Shapiro-Wilk normality test. Statistical 

significance of the two groups of normally distributed data was assessed by Student’s 

t test with Welch’s correction (C and D). Logit transformation was performed with the 

non-normally distributed data, and the Shapiro-Wilk normality test was used for testing 

the normal distribution. Student’s t test with Welch’s correction was used to compare the 

statistical significance of the logit-transformed normally distributed data (B). Statistical 

significance of the non-normally distributed data was assessed by Wilcoxon/Mann-Whitney 

test (E). Data are shown as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 

0.0001; NS, not significant.
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Figure 4. Inhibiting NO synthesis restores regenerative capacity of Gsnor−/− HSCs
(A and B) Three hundred LT-HSCs from Gsnor+/+ and Gsnor−/− mice were transplanted 

into lethally irradiated recipients along with 5 × 105 competitor cells (LT-HSCs were pooled 

from 3 to 4 donor mice). 3 weeks after transplantation, mice were treated with L-NAME (10 

mg/kg) or PBS every other day. The chimerisms of donor-derived cells in PB and BM were 

analyzed at 16 weeks after transplantation (n = 4–5 per group).

(A) Percentage of donor-derived cells in PB.

(B) Percentage of donor-derived cells in the indicated populations.
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(C–F) Gsnor+/+ and Gsnor−/− mice received an i.p. injection of 5-FU (150 mg/kg). L-NAME 

(10 mg/kg) or PBS injection were performed with the mice every other day after 5-FU 

treatment. Mice were sacrificed for further analysis at day 9 post-5-FU treatment.

(C) Data show the absolute number of LT-HSCs in indicated groups (n = 5–6 per group from 

two independent experiment).

(D) Data show the percentage of annexin-V-positive cells in LT-HSCs in indicated groups (n 

= 3–4 per group).

(E) Data show the activation of cleaved-caspase-3/7 in LT-HSCs in indicated groups (values 

were normalized to WT LT-HSCs; n = 5–7 per group).

(F) Total S-nitrosylated proteins (SNO) were purified from Lin− cells by a biotin-switch 

method. Total SNO was detected by western blot with an antibody against biotin (n = 3 mice 

per pool; n = 2 independent experiments; one of the two is shown, the other shows a similar 

result).

(A–E) Data were tested for normal distribution via Shapiro-Wilk normality test. (A and 

B) Statistical significance of the non-normally distributed data was assessed by Wilcoxon/

Mann-Whitney test.

(C–E) To compare the significance between two treatments that passed normality test, 

two-way ANOVA followed by Tukey’s multiple comparison test was used. Data are shown 

as mean ± SD. *p < 0.05; **p < 0.01.
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Figure 5. Chemical chaperone rescues the regeneration defect of Gsnor−/− HSCs
(A) Schematic diagram of chemical chaperone taurocholic acid (TCA) treatment post-5-FU 

treatment. Gsnor+/+ and Gsnor−/− mice were treated with a single-dose of 5-FU (150 mg/kg). 

The mice were then treated with TCA (7.5 mg/kg) or PBS every other day after 5-FU 

treatment. Mice were sacrificed at day 9 post-5-FU treatment for further analyses.

(B) Data show the quantification of protein aggregation in LT-HSCs of mice in the indicated 

groups (values were normalized to the mean value in Gsnor+/+ PBS group; n = 3–5 mice per 

group from two independent experiments).
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(C) Data show the absolute number of LT-HSCs in the indicated groups (n = 3–4 per group 

from three independent experiments).

(D) Data show the percentage of annexin-V-positive cells in LT-HSCs in the indicated 

groups (n = 3–5 mice per group from two independent experiments).

(E) Data show the activation of caspase 3/7 in LT-HSCs in the indicated groups (the values 

were normalized to the mean value of LT-HSCs in PBS-treated Gsnor+/+ mice; n = 3–4 per 

group).

(B–E) Data were tested for normal distribution via Shapiro-Wilk normality test. To compare 

the significance between two treatments that passed normality test, two-way ANOVA 

followed by Tukey’s multiple comparison test was used. Data are shown as mean ± SD. 

*p < 0.05; ****p < 0.0001.
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Figure 6. Chop deletion rescues the impaired function of Gsnor−/− HSCs
(A) Gsnor+/+ mice and Gsnor−/− mice received an i.p. injection of 5-FU (150 mg/kg). The 

relative expression of the indicated genes to β-actin was measured by qPCR in freshly 

isolated LT-HSCs from the mice 9 days after 5-FU treatment (n = 8–10 per group).

(B) Gsnor+/+ and Gsnor−/− MEF cells were treated with or without chemical NO donor 

S-nitrosoglutathione (GSNO), and the total SNO level was detected. Total SNO was detected 

by western blot with an antibody against biotin. Western blot was performed to detect 

the expression level of Bip, ATF4, and Chop in Gsnor+/+ and Gsnor−/− MEF cells in the 

Yi et al. Page 29

Cell Rep. Author manuscript; available in PMC 2022 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presence or absence of GSNO (n = 2 independent experiments; one of the two is shown, the 

other shows a similar result).

(C and D) Three hundred LT-HSCs from Gsnor+/+Chop+/+, Gsnor−/−Chop+/+, and 

Gsnor−/−Chop−/− mice were transplanted into lethally irradiated recipient mice along with 5 

× 105 competitor BM cells. 12 weeks later, 1 × 106 BM cells from the primary recipients 

were transplanted into the secondary recipients.

(C) The results show the percentage of donor-derived cells in PB at the indicated time point 

after first round of transplantation (n = 3–5 per group).

(D) The data show the chimerism of donor-derived cells in PB 8 weeks after the second 

round of transplantation (n = 3 per group).

(E and F) Gsnor+/+Chop+/+ mice, Gsnor−/−Chop+/+ mice, and Gsnor−/−Chop−/− mice were 

treated with a single dose of 5-FU (150 mg/kg) and sacrificed at day 9 post-5-FU treatment 

for further analyses.

(E) The data show the absolute number of LT-HSCs in the indicated groups (n = 3–5 per 

group).

(F) The data show the activation of cleaved-caspase-3/7 in LT-HSCs in the indicated groups 

(the values were normalized to the mean value in LT-HSCs from Gsnor+/+Chop+/+ mice; n = 

3–4 group).

(A–F) Data were tested for normal distribution via Shapiro-Wilk normality test. Statistical 

significance of the two groups of normally distributed data was assessed by Student’s t test 

with Welch’s correction. Statistical significance of the non-normally distributed data was 

assessed by Wilcoxon/Mann-Whitney test (A). Data are shown as mean ± SD. *p < 0.05; 

****p < 0.0001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

B220-APC eBioscience RA3-6B2; RRID: AB_469394

B220-PE-cy7 Biolegend RA3-6B2; RRID: AB_313004

B220-biotin Biolegend RA3-6B2; RRID: AB_312989

Flt3-PE eBioscience A2F10; RRID: AB_465860

IL-7R-Percp-Cy5.5 Biolegend A7R34; RRID: AB_1937273

CD16/32- Percp-Cy5.5 eBioscience 93; RRID: AB_996661

CD16/32- Alexafluo700 eBioscience 93; RRID: AB_493994

cKit-APC eBioscience ACK2; RRID: AB_469433

cKit-PE-cy7 Biolegend 2B8; RRID: AB_893228

Streptavidin-APC-cy7 Biolegend 405208

CD34-FITC eBioscience RAM34; RRID: AB_465021

CD34- Alexafluo700 eBioscience RAM34: RRID: AB_2815232

Sca1-FITC Biolegend D7: RRID: AB_756190

Sca1-PE-cy7 Biolegend D7; RRID: AB_493597

CD150-PE Biolegend TC15-12F12.2: RRID: AB_313683

CD150-BV605 Biolegend TC15-12F12.2; RRID: AB_11204248

Ki67- Alexafluo488 Biolegend 11F6; RRID: AB_2566800

CD48-FITC Biolegend HM48-1; RRID: AB_313019

Annexin V-FITC BD Bioscience 556419

CD11b-biotin Biolegend M1/70; RRID: AB_312787

CD4-biotin Biolegend RM4-5; RRID: AB_312711

CD8-biotin Biolegend 53-6.7; RRID: AB_312743

Gr1-biotin Biolegend RB6-8C5; RRID: AB_313369

Ter119-biotin Biolegend TER119; RRID: AB_313705

CD11b-APC-cy7 Biolegend M1/70; RRID: AB_830642

CD4-FITC Biolegend RM4-5; RRID: AB_312713

CD8-FITC Biolegend 53-6.7: RRID: AB_312745

CD45.1-PE eBioscience A20; RRID: AB_465675

CD45.2-Percp-Cy5.5 BD Bioscience 104

BrdU-FITC BD Bioscience Bu20a

Chemicals, peptides, and recombinant proteins

Anti-APC magnetic microbeads Miltenyi Biotec 130-090-855

5-Fluorouracil Sigma-Aldrich F6627

verapamil Sigma-Aldrich V105

Hoechst 33342 Sigma-Aldrich B2261

L-NAME Sigma-Aldrich 483125
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REAGENT or RESOURCE SOURCE IDENTIFIER

TCA Sigma-Aldrich T4009

GSNO Sigma-Aldrich N4148

Critical commercial assays

Caspase Glo3/7 Promega G8090

BD Cytofix/Cytoperm Kit BD Biosciences 554714

ROS detection Reagents Invitrogen C10446

DAF-FM-DA-NO detection Kit Beyotime S0019

ProteoStat Aggregation Detection Kit Enzo ENZ-51035-K100

Annexin V Apoptosis Detection Kit I eBioscience 00-0055-56

RNeasy Micro Kit QIAGEN 74004

Plasmid Maxi Kit Omega D6926-03

PrimeScript cDNA synthesis Kit Takara RR047A

Software

BD FACSDiva BD N/A

Flowjo v.10 Treestar N/A

GraphPad Prism v.7 Graphpad Software N/A
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