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Abstract: A novel segmentation algorithm for polarimetric synthetic aperture radar (PolSAR) images
is proposed in this paper. The method is composed of two essential components: a merging order
and a merging predicate. The similarity measured by the complex-kind Hotelling–Lawley trace (HLT)
statistic is used to decide the merging order. The merging predicate is determined by the scattering
characteristics and the revised Wishart distance between adjacent pixels, which can greatly improve
the performance in speckle suppression and detail preservation. A postprocessing step is applied to
obtain a satisfactory result after the merging operation. The decomposition and merging processes
are iteratively executed until the termination criterion is met. The superiority of the proposed method
was verified with experiments on two RADARSAT-2 PolSAR images and a Gaofen-3 PolSAR image,
which demonstrated that the proposed method can obtain more accurate segmentation results and
shows a better performance in speckle suppression and detail preservation than the other algorithms.
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1. Introduction

Synthetic aperture radar (SAR) systems conduct remote sensing and global Earth monitoring
under the illumination of radar beams, which offer a day-and-night and all-weather monitoring
capability compared with optical sensors. Polarimetric SAR (PolSAR) is the advanced form of
SAR, and PolSAR imagery can provide useful information for a diverse number of applications,
from target detection [1,2] and sea ice monitoring [3,4] to feature classification [5], agricultural crop
identification [6], and geophysical parameter estimation [7–10]. Gaofen-3 (GF-3) is China’s first fully
polarimetric SAR satellite, which was launched on 10 August 2016 from Taiyuan (Shanxi province,
China) [11]. GF-3 carries a C-band SAR sensor with 12 different imaging modes [12], which is the largest
number of imaging modes of any SAR sensor, and operates in different polarizations, including single-,
dual-, and quad-polarizations [13,14]. GF-3 can provide a spatial resolution ranging from 1 m to
500 m and a swath coverage ranging from 10 km up to 650 km [15]. From January 2017, GF-3 began
to provide customers with advanced spaceborne SAR imagery which has a full-polarization mode
and a resolution as fine as 1 m in spotlight mode [16]. GF-3 will greatly benefit research into SAR
image interpretation in the next few years. However, the speckle noise inherent in PolSAR data
complicates the image interpretation and analysis and reduces the effectiveness of the applications.
Segmentation can mitigate the effects of speckle noise, and it has been clearly demonstrated [17,18]
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that large performance improvements can be achieved by first segmenting the image into regions with
homogeneous characteristics and then classifying the resulting global regions.

Segmentation of PolSAR images has been an ongoing field of research, and numerous algorithms
have been proposed. Stewart et al. [19] defined the likelihood function of SAR image segmentation
based on the gamma distribution model and, at the same time, the curvature cost function (similar to
the surface tension) was introduced to constrain the shape of the segmented region, and thus an
appropriate objective function for SAR segmentation was constructed. Dong et al. [20] proposed to use
a Gaussian Markov random field (GMRF) model to segment PolSAR intensity images, but in order to
simplify the method, the Gaussian distribution was used to replace the gamma distribution, and only
the intensity information was used. In [21], a split-merge test was derived for the segmentation
of multifrequency PolSAR images following the maximum-likelihood approach. This approach is
especially useful in the extraction of information from urban areas that are characterized by the
presence of different spectral and polarimetric characteristics. The segmentation method proposed
in [22] is equivalent to region merging based on a likelihood-ratio test with an optimized merging
order, where the least different pair of neighboring regions is merged in each step. This shows that
image segmentation can be viewed as a likelihood approximation problem, and its adaptation for the
segmentation of homogeneous and textured scenes has been shown by experiments. Ayed et al. [23]
investigated a level set method for PolSAR image segmentation. This approach consists of minimizing
a function containing an original observation term derived from maximum-likelihood approximation
and a complex Wishart/Gaussian image representation with a classical boundary length prior.
The method has also demonstrated its robustness compared with other recent methods. In [24],
a Wishart Markov random field (WMRF) model was proposed, in which the Wishart distribution was
combined with Markov random fields (MRF) to segment the PolSAR images. The WMRF model is
more consistent with the characteristics of PolSAR data than the Gaussian MRF model, so it provides
more effective results. The advantage of the spectral graph partitioning segmentation algorithm for
PolSAR data was demonstrated in [25]. A region-based unsupervised algorithm that incorporates
region growing and a Markov random field edge strength model was proposed in [26] and designed
for PolSAR segmentation. The evaluation showed that it improves the segmentation performance
by preserving the segment boundaries that the traditional spatial models smooth over. In [27],
the statistical region merging (SRM) segmentation algorithm for optical imagery was introduced to
PolSAR imagery, and a preliminary improvement was made to make it more suitable for PolSAR
data with multiplicative noise. Qin et al. [28] improved the cluster center initialization step and the
postprocessing step and extended the simple linear iterative clustering (SLIC) segmentation algorithm
for optical imagery to PolSAR imagery, achieving decent results. A novel segmentation method was
proposed in [29], which fuses the Dirichlet process mixture model (DPMM) and a similarity measure
scheme into the MRF framework. Experiments on real PolSAR images demonstrated its effectiveness.

In this paper, the similarity measured by the complex-kind Hotelling–Lawley trace (HLT) statistic
is used to decide the merging order. The merging predicate consists of two steps: Firstly, we judge
whether two adjacent pixels are of the same scattering mechanism according to the merging order.
Secondly, we compute the revised Wishart distance between the two adjacent pixels which are of the
same scattering mechanism, and if the revised Wishart distance is smaller than the preset threshold,
we merge the two adjacent pixels. A postprocessing step is applied to obtain a satisfactory result after
the merging operation. The decomposition and merging processes are iteratively executed until the
termination criterion is met.

The rest of this paper is structured as follows. Section 2 describes the PolSAR data and the
model for the covariance matrix data. In Section 3, the proposed segmentation method is presented.
In Section 4, the employed PolSAR images are described and the experimental results are reported.
Additional discussions are presented in Section 5. Finally, the conclusions are given in Section 6.
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2. PolSAR Image Model

Polarimetric radar measures the complex scattering matrix of a medium with quad-
polarizations [30]. The scattering matrix in a linear polarization base can be expressed as:

S =

[
Shh Shv
Svh Svv

]
(1)

where Shv is the scattering element of the horizontal transmitting and vertical receiving polarizations,
and the other three elements are similarly defined. For the reciprocal backscattering case, Shv = Svh.
The polarimetric scattering information can be represented by a complex vector on a linear basis,
as shown in:

Ω =
[

Shh
√

2Shv Svv

]T
(2)

where the superscript T denotes the matrix transpose operation. The vector Ω is a single-look complex
(SLC) format representation of PolSAR data. Single- and dual-channel polarimetric data can be treated
in a similar way as subsets of a lesser dimension and most likely with less information. The scattering
vectors are transformed into multilook sample covariance matrices in order to reduce the speckle noise
at the expense of the spatial resolution. The multilook covariance matrix C can be represented as:

C =
1
L

N

∑
i=1

ΩiΩ∗Ti (3)

C =


〈|Shh|2〉

〈√
2ShhS∗hv

〉
〈ShhS∗vv〉〈√

2ShvS∗hh

〉 〈
2|Shv|2 〉

〈√
2ShvS∗vv

〉
〈
SvvS∗hh

〉 〈√
2SvvS∗hv

〉
〈|Svv|2〉

 (4)

where L is the nominal number of looks used for averaging, the superscript “∗” denotes the complex
conjugate, and · denotes the spatial sample averaging. Hence, after multilooking, each pixel in the
image is a realization of the d× d stochastic matrix variable denoted as C, and the image is referred to
as a multilook complex (MLC) covariance image. The dimension d is either 1, 2, or 3 depending on the
scattering vector used.

It is commonly assumed that the scattering vector Ω jointly follows a circular complex and
multivariate Gaussian distribution [31], denoted as Ω ∼ NC

d (0, Σ), with a zero mean vector, a true

covariance matrix Σ = E
{

ΩΩT
}
= E{C}, and dimension d. It follows from the Gaussian assumption

that if L ≥ d and the {Ωι}L
ι=1 are independent, then the unnormalized sample covariance matrix,

defined as W = LC, follows a nonsingular complex Wishart distribution [32,33], denoted as WC
d (L, Σ).

The probability density function (pdf) of W is given as:

pw(W) =
|W|L−d

Γd(L)|Σ|L
exp
(
−tr

(
Σ−1W

))
(5)

where tr(·) and |·| denote the trace and determinant operators, respectively, and

Γd(L) = π
d(d−1)

2

d

∏
i=1

Γ(L− i + 1) (6)
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is the multivariate gamma function of the complex kind [34], while Γ(·) is the Euler gamma function.
Due to normalization by L, the sample covariance matrix C follows a scaled complex Wishart
distribution [34], denoted as sWC

d (L, Σ), whose pdf is:

pc(C) =
LLd|C|L−d

Γd(L)|Σ|L
exp
(
−Ltr

(
Σ−1C

))
. (7)

3. The Proposed Method

Two important components constitute the proposed method: the merging order followed to test
the merging of regions; and the merging predicate, which is applied to judge whether two adjacent
regions should be merged or not.

3.1. Details of the Processing Steps

The processing flowchart of the proposed approach is given in Figure 1, and the details of its
processing steps are as follows:

1. Compute the similarity of each pixel by Equation (8) according to the eight-neighborhood
estimation model in Figure 2. Sort all the similarities in descending order.

2. Apply SD-Y4O decomposition to determine the dominant scattering mechanism of each pixel in
the PolSAR image.

3. Calculate the revised Wishart distance of two adjacent pixels which are of the same scattering
mechanism according to the descending order of similarities. If the revised Wishart distance is
smaller than the threshold set, merge the two adjacent pixels.

4. The postprocessing step is applied after the pixels in the PolSAR image are all processed.
5. After determining the labels of all the pixels, compute the average covariance matrix of the pixels

with the same label in the original image, and replace their covariance matrices with the average
covariance matrix.

6. The segmented images are iteratively decomposed and merged until the number of pixels whose
label changes is less than 5%.
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3.2. Merging Order

The proposed method calculates the similarity between adjacent pixels according to the
eight-neighborhood estimation model [27,35]. In the eight-neighborhood estimation model, p is
the central pixel and p′ is the adjacent pixel as shown in Figure 2. The averaged covariance matrix of
pixel p is calculated using the blue pixels in the model, and the averaged covariance matrix of pixel p′

is calculated using the purple pixels in the model.
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The merging order has a great influence on the merging results, and if the pixels with a higher
similarity are merged first, a better segmentation result will be obtained. Therefore, we need to select a
simple and efficient method for similarity measurement. This method uses the HLT statistic to measure
the similarity between pixel p and pixel p′. The complex-kind HLT statistic is defined as [36]:

τHLT = tr
(

A−1B
)

(8)

where A and B are the two PolSAR averaged covariance matrices of pixels p and p′, respectively.
In the case of equality of covariance matrices A and B, the value of the test statistic is equal to the
polarimetric dimension, i.e., τHLT = d. The operator τHLT compacts the matrix-variate quotient into a
scalar measure, which can be hypothesis-tested. Calculating the similarity by using the mean value
of the pixels surrounding p and p′ is done to reduce the interference of noise and can obtain a more
robust similarity value. The HLT statistic is an effective approach for measuring the similarity of two
covariance matrices and it also has mathematically simple characteristics.

3.3. Merging Predicate

For PolSAR, the scattering characteristics are inherent in the data. These characteristics can provide
additional information for the selection of homogeneous pixels. Neighboring pixels, which have
similar values in span, may have very different scattering mechanisms that are embedded in the
phase differences and correlations between polarizations. Target decomposition can be applied to
extract the scattering information, and many different target decomposition methods can be chosen
for this purpose [37]. In the proposed method, Bhattacharya decomposition [38] is chosen to decide
the dominant scattering mechanism of the pixels. For two adjacent pixels of the same scattering
mechanism, we compute the revised Wishart distance [39]. Finally, we merge the two adjacent pixels if
the revised Wishart distance is smaller than the threshold.

3.3.1. The Dominant Scattering Mechanisms

Freeman–Durden three-component decomposition can be successfully applied to decompose
PolSAR imagery under the well-known reflection symmetry condition using the covariance
matrix, but this assumption is often not satisfied in urban areas or other complex areas [40].
Yamaguchi four-component decomposition can be used to deal with the non-reflection symmetric
scattering case, where the helix scattering power is added as a fourth component to the
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three-component scattering model which describes surface, double-bounce, and volume scattering [41].
However, the over-estimation of the volume power and, consequently, the underestimation of the
surface and double-bounce powers in the Yamaguchi four-component decomposition model in rotated
urban areas is of major concern. The SD-Y4O method [38] estimates the orientation angle from
full-polarimetric SAR images using the Hellinger distance. Using this stochastic distance (SD), there is
an increase in the surface and double-bounce powers with a corresponding reduction of the volume
power. Thus, the surface, double-bounce, and volume powers are systematically modified to obtain
appropriate estimates. Therefore, the SD-Y4O decomposition method is utilized to divide the pixels
into four dominant scattering mechanisms: surface, double bounce, volume, and helix. The dominant
scattering mechanism of each pixel is determined by the maximum in the scattering powers of surface,
double-bounce, volume, and helix scattering.

3.3.2. The Revised Wishart Distance

We let Ri and Rj be the covariance matrix data sets of the ith and jth regions, respectively, and Σi
and Σj are the center covariance matrices of Ri and Rj, respectively. The hypotheses test [42] is:{

H0 : Σi = Σj
H1 : Σi 6= Σj

. (9)

It is assumed that the sample covariance matrices are spatially independent. Therefore, the

maximum-likelihood (ML) estimator of Σi is Σ̂i =

(
Ni
∑

n=1
Tn

)
/Ni, and the ML estimator of Σj is

Σ̂j =

(
Nj

∑
n=1

Tn

)
/Nj. When Σj is known for hypotheses H0 and H1, the likelihood-ratio test

statistic [28] is:

Q =

∣∣Σ̂i
∣∣LNi∣∣Σ̂j
∣∣LNj

exp {−LNi(Tr(Σ̂−1
j Σ̂i)− q)}. (10)

Thus, the distance measure between the ith and jth regions becomes the revised Wishart distance:

dRW
(

Ri, Rj
)
= − 1

LNi
ln Q= ln

(∣∣Σ̂j
∣∣∣∣Σ̂i
∣∣
)
+ Tr

(
Σ̂−1

j Σ̂i

)
− q. (11)

If i = j, dRW
(

Ri, Rj
)

has a minimum value, i.e., zero; else, the value of dRW
(

Ri, Rj
)

is larger
than zero.

3.4. Postprocessing

After the pixels in the PolSAR image are all processed, a postprocessing step is applied according
to the number of pixels in each region so as to obtain a satisfactory result. We merge the region with its
nearest neighbor when its size is less than Nmin. We calculate the dissimilarity between the region and
its nearest neighbor when its size is in the range of [Nmin, Nmax]. If the dissimilarity is smaller than a
threshold Gth, we merge the two regions; else, the region is preserved. The dissimilarity is defined
as [28]:

G
(

Ri, Rj
)
=

1
q
‖

Tdiag
i − Tdiag

j

Tdiag
i + Tdiag

j

‖
1

(12)

where Tdiag denotes the vector composed by the diagonal elements of the central coherence matrix T
of a region R, and ‖.‖1 denotes the 1-norm. Therefore, the range of G is [0, 1]. Gth was set as 0.3 in all
the experiments described in the experiment section of this paper.
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4. Experiments and Results

To demonstrate the superiority of the proposed approach, we performed segmentation experiments
using two RADARSAT-2 PolSAR images and one GF-3 PolSAR image. The proposed method was
compared with the conventional mean shift (MS) segmentation method [43], the generalized mean shift
(GMS) segmentation method [44], and the generalized statistical region merging (GSRM) method [27].

4.1. Evaluation on Two RADARSAT-2 PolSAR Images

The two PolSAR images were acquired by the C-band quad-polarimetric RADARSAT-2 system
over the city of Wuhan at two different times. Wuhan, China, which is situated between latitude
29◦58′–31◦22′ N and longitude 113◦41′–115◦05′ E, lies in the eastern Jianghan Plain.

4.1.1. Evaluation on the First Data Set

The first PolSAR image was collected on 7 December 2011 over the Hongshan District of Wuhan,
and has nominal pixel spacings of 4.73 m × 5.12 m (range × azimuth). The experimental image is
576 × 579 pixels in size and is shown in Figure 3a. Four classes, consisting of building, vegetation,
water, and bare land, are identified as shown in Figure 3b. The white areas labeled “None” are pixels
that are not assigned to any class.
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The final maps of the segmentation results obtained using the four methods are shown in
Figure 4, where the red lines superimposed onto the Pauli RGB images depict the region boundaries.
As can be seen in Figure 4a,b, blurred segmentation boundaries are achieved, and a number of small,
isolated segments occur in homogeneous areas, such as East Lake (area C of Figure 4a), the urban
areas in the Fuhushan Community Neighborhood (area D of Figure 4a), and the forest in Nanwang
Mountain (area E of Figure 4a). In Figure 4c, although the region boundaries are not as blurred as in
Figure 4a,b, there are still some small, isolated segments in the homogeneous areas, especially in East
Lake (area C of Figure 4c). In contrast, much better segmentation results are obtained in Figure 4d.
Accurate class boundaries are achieved in areas such as East Lake (area C of Figure 4d), the urban areas
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in the Fuhushan Community Neighborhood (area D of Figure 4d), the forest in Nanwang Mountain
(area E of Figure 4d), and the bridge (area F of Figure 4d). This is because the revised Wishart distance
can accurately characterize the similarity between covariance matrices [39,45], which contributes to
the precise determination of the homogeneous regions.Sensors 2018, 18, x FOR PEER REVIEW  8 of 20 
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mean shift (MS); (b) generalized mean shift (GMS); (c) generalized statistical region merging (GSRM);
and (d) the proposed method.

Figure 5 shows the final representation maps, where the covariance of each pixel is replaced by the
average value of the region to which the pixel belongs. As can be seen in Figure 5a, the segmentation
results are broken, which decreases the visual quality and accuracy of the representation map.
In Figure 5b, the roads are well-segmented; however, inaccurate segmentation occurs in areas such as
East Lake (area C of Figure 5b), the urban areas in the Fuhushan Community Neighborhood (area D of
Figure 5b), and the forest in Nanwang Mountain (area E of Figure 5b). In Figure 5c, the speckle noise is
well-suppressed in Nanwang Mountain (area E of Figure 5c), but there are still some areas affected by



Sensors 2018, 18, 2262 9 of 20

speckle noise, such as East Lake (area C of Figure 5c). The textures are also not well-maintained in
areas such as the urban areas in the Fuhushan Community Neighborhood (area D of Figure 5c) and
the roads (area G of Figure 5c). In contrast, the proposed method (Figure 5d) suppresses the influence
of speckle noise and provides very smooth approximations in homogeneous areas. The reason for
this is that the sufficient homogeneous pixels in the region help to overcome the effect of the speckle
noise. The details are also perfectly protected in heterogeneous areas due to the judgment of the
same scattering mechanism in the proposed method, which helps to generate accurate segmentation
boundaries between the different classes, resulting in precise preservation of feature details.
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For visual clarity, areas A and B marked by the orange boxes in Figure 3 are enlarged and shown
in Figure 6. Of all the boundaries in Figure 6a–e, the boundaries in Figure 6e are smoother and closer
to the real terrain edges. In Figure 6f–j, it can be seen that the feature details in Figure 6j are better
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preserved, which indicates that the proposed method shows a good performance with respect to
detail preservation.
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Figure 6. Enlarged versions of areas A and B in the original image and the representation maps
obtained using the four methods: (a) enlarged version of area A in the original image; (b–e) enlarged
versions of area A in the representation maps obtained using conventional MS, GMS, GSRM, and the
proposed method, respectively; (f) enlarged version of area B in the original image; (g–j) enlarged
versions of area B in the representation maps obtained using conventional MS, GMS, GSRM, and the
proposed method, respectively.

To quantitatively evaluate the performance of the four methods, the experimental results were
assessed with the commonly used boundary recall (BR) metric [46,47]. BR is the ratio of the boundary
pixels shared by the obtained superpixels and the ground truth, which can be represented as:

BR = NS∩G/NG (13)

where NS∩G denotes the number of superpixels’ boundary pixels overlapping the ground-truth edges,
and NG represents the number of ground-truth edges. In this paper, the internal boundaries of the
ground truth and the superpixels are employed. In the problem of region generation for PolSAR
images, a larger BR value means a better segmentation result.

In Table 1, we list the BR values of the four methods. From Table 1, we can see that the BR value of
the proposed method is clearly higher than that of the other segmentation methods. Therefore, we can
say that the proposed method obtained more accurate segmentation results than the other methods.

Table 1. Boundary recall (BR) values for the first RADARSAT-2 image.

MS GMS GSRM Proposed Method

BR 0.5441 0.5557 0.5421 0.5871

The results of this experiment with the first RADARSAT-2 PolSAR image confirm the effectiveness
of the proposed method in PolSAR image segmentation.

4.1.2. Evaluation on the Second Data Set

The second PolSAR data set was collected on 25 June 2015 over the Jiangxia District of Wuhan,
with nominal pixel spacings of 4.73 m × 5.12 m (range × azimuth). The experimental image, with a
size of 513 × 510 pixels, is shown in Figure 7a. Four classes, consisting of building, vegetation, water,
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and bare land, are identified as shown in Figure 7b. The white areas labeled “None” are pixels that are
not assigned to any class.
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Figure 7. Pauli RGB image and the corresponding ground truth. (a) Pauli RGB image of the
RADARSAT-2 PolSAR image with a size of 513 × 510. Areas A and B are enlarged in Figure 10;
(b) The ground-truth map of (a).

Figure 8 shows the segmentation results of the four algorithms, where the red lines superimposed
onto the Pauli RGB images depict the region boundaries. In Figure 8a, there are inaccurate
boundaries in homogeneous areas, such as South Lake (area C of Figure 8a) and the urban area
in the Dongshangongyu Community Neighborhood (area D of Figure 8a). As can be seen in Figure 8b,
there are also numerous inaccurate boundaries occurring in the South Lake area (area C of Figure 8b).
In Figure 8c, small, isolated segments occur in the homogeneous areas, such as South Lake (area C of
Figure 8c). In Figure 8d, it can be seen that accurate class boundaries are obtained in areas such as
South Lake (area C of Figure 8d), the urban area in the Dongshangongyu Community Neighborhood
(area D of Figure 8d), and the vegetation area near the Miaoshan overpass (area E of Figure 8d). In the
proposed method, the utilization of the revised Wishart distance in the merging predicate is conducive
to the accurate generation of homogeneous regions.

Figure 9 shows the final representation maps, where the covariance of each pixel is replaced by the
average value of the region to which the pixel belongs. On the whole, it can be observed that Figure 9d
presents a smoother segmentation result, and the speckle noise is well-suppressed in homogeneous
areas, such as South Lake (area C of Figure 9d). The textures are also well-maintained in heterogeneous
areas, such as the urban area in the Dongshangongyu Community Neighborhood (area D of Figure 9d)
and the vegetation area near the Miaoshan overpass (area E of Figure 9d). This is because, in the
proposed method, only adjacent pixels of the same scattering mechanism are included in the following
merging judgment, which contributes to the precise preservation of feature details.
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versions of area A in the representation maps obtained using conventional MS, GMS, GSRM, and the 
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The BR values of the four methods were calculated to quantitatively evaluate the segmentation 
performance. As shown in Table 2, it can be seen that the BR value of the proposed method is clearly 
higher than that of the other segmentation methods, which further demonstrates the advantage of 
the proposed method.  

Figure 9. Representation maps of the four methods: (a) conventional MS; (b) GMS; (c) GSRM;
and (d) the proposed method.

Areas A and B marked by the orange boxes in Figure 7 are enlarged to further illustrate the
segmentation effects of the four methods. From all the boundaries shown in Figure 10a–e, it can be
clearly observed that the boundaries in Figure 10e are more accurate and adhere better to the real
terrain edges. In Figure 10f–j, it can be seen that the feature details in Figure 10j are better preserved,
which confirms the good performance in detail preservation of the proposed method.
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Figure 10. Enlarged versions of areas A and B in the original image and the representation maps
obtained using the four methods: (a) enlarged version of area A in the original image; (b–e) enlarged
versions of area A in the representation maps obtained using conventional MS, GMS, GSRM, and the
proposed method, respectively; (f) enlarged version of area B in the original image; (g–j) enlarged
versions of area B in the representation maps obtained using conventional MS, GMS, GSRM, and the
proposed method, respectively.

The BR values of the four methods were calculated to quantitatively evaluate the segmentation
performance. As shown in Table 2, it can be seen that the BR value of the proposed method is clearly
higher than that of the other segmentation methods, which further demonstrates the advantage of the
proposed method.



Sensors 2018, 18, 2262 14 of 20

Table 2. BR values for the second RADARSAT-2 image.

MS GMS GSRM Proposed Method

BR 0.4952 0.5573 0.5472 0.5722

From the results of this experiment with the second RADARSAT-2 PolSAR image, it is again
verified that the proposed method shows an outstanding advantage in PolSAR image segmentation.

4.2. Evaluation on a GF-3 PolSAR Image

To further validate the effectiveness of the proposed method, we utilized a GF-3 PolSAR image,
which was acquired in quad-polarized strip I (QPSI) mode on 30 April 2017 over Wuhan Optics Valley,
China, to conduct a segmentation experiment. The experimental image is 519 × 510 pixels in size with
a spatial resolution of 8 m as shown in Figure 11a. Four classes, consisting of building, vegetation,
water, and bare land, are identified as shown in Figure 11b. The white areas labeled “None” are pixels
that are not assigned to any class.
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Figure 12 presents the segmentation results of the four algorithms, where the red lines 
superimposed onto the Pauli RGB images depict the region boundaries. From an overall perspective, 
the results in Figure 12a–c show clear boundaries. However, the boundaries between the different 
classes are more accurate in Figure 12d, especially in the forest (area C of Figure 12d), the vegetation 
area (area D of Figure 12d), and the Jiayuanhuadu Community Neighborhood (area E of Figure 12d). 
As analyzed above, in the proposed method, the employment of the revised Wishart distance 
contributes to the precise determination of homogeneous regions.  

Figure 11. Pauli RGB image and the corresponding ground truth. (a) Pauli RGB image of the GF-3
PolSAR image with a size of 519 × 510. Areas A and B are enlarged in Figure 14; (b) The ground-truth
map of (a).

Figure 12 presents the segmentation results of the four algorithms, where the red lines
superimposed onto the Pauli RGB images depict the region boundaries. From an overall perspective,
the results in Figure 12a–c show clear boundaries. However, the boundaries between the different
classes are more accurate in Figure 12d, especially in the forest (area C of Figure 12d), the vegetation
area (area D of Figure 12d), and the Jiayuanhuadu Community Neighborhood (area E of Figure 12d).
As analyzed above, in the proposed method, the employment of the revised Wishart distance
contributes to the precise determination of homogeneous regions.
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Figure 12. The final maps of the segmentation results obtained using the four methods: (a) conventional
MS; (b) GMS; (c) GSRM; and (d) the proposed method.

Figure 13 shows the final representation maps, where the covariance of each pixel is replaced by
the average value of the region to which the pixel belongs. It can be observed that Figure 13d presents
a smoother segmentation result, the speckle noise is well-suppressed in homogeneous areas, and the
boundaries are smoother and closer to the real terrain edges in areas such as the forest (area C of
Figure 13d) and the vegetation area (area D of Figure 13d). The feature details are also better preserved
in heterogeneous areas, such as the Jiayuanhuadu Community Neighborhood (area E of Figure 13d).
The reason for this is that the judgment of the same scattering mechanism in the merging predicate is
conducive to the accurate preservation of textures.
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Figure 13. The representation maps of the four methods: (a) conventional MS; (b) GMS; (c) GSRM;
and (d) the proposed method.

For visual clarity, areas A and B marked by the orange boxes in Figure 11 are enlarged to
further compare the segmentation effects of the four algorithms. From all of the boundaries shown
in Figure 14a–e, it can be clearly seen that the boundaries between the different classes in Figure 14e
are clearer. In Figure 14f–j, it can be observed that the textures in Figure 14j are better maintained,
which confirms the good performance in detail preservation of the proposed method.

To quantitatively assess the segmentation performances, the BR values of the four methods were
calculated. As can be seen from Table 3, the BR value of the proposed method is clearly higher than
that of the other segmentation methods, which shows that the proposed method can obtain a more
accurate segmentation result than the other algorithms.

In summary, the results of this experiment with the GF-3 PolSAR image further confirm the
superiority of the proposed method in PolSAR image segmentation.
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Figure 14. The enlarged versions of areas A and B in the original image and the representation maps
obtained using the four methods: (a) the enlarged version of area A in the original image; (b–e) the
enlarged versions of area A in the representation maps obtained using conventional MS, GMS, GSRM,
and the proposed method, respectively; (f) the enlarged version of area B in the original image; (g–j) the
enlarged versions of area B in the representation maps obtained using conventional MS, GMS, GSRM,
and the proposed method, respectively.

Table 3. BR values for the GF-3 PolSAR image.

MS GMS GSRM Proposed Method

BR 0.4290 0.4532 0.5298 0.5341

5. Discussion

In this paper, we have proposed a new segmentation method for PolSAR data based on
the complex-kind HLT statistic, the scattering characteristics, and the revised Wishart distance.
The performance of the proposed method was analyzed using two RADARSAT-2 PolSAR images and a
Gaofen-3 PolSAR image, with both visual representation and quantitative evaluation. The experiments
and results confirmed the effectiveness and advantage of the proposed method.

Compared with other algorithms, the proposed method has the following advantages:

(1) The revised Wishart distance can accurately characterize the similarity between covariance matrices,
which is conducive to the precise determination of homogeneous regions, contributing to the
suppression of speckle noise.

(2) The judgment of the same scattering mechanism helps to generate accurate segmentation
boundaries between the different classes, resulting in perfect preservation of the feature details.

(3) The SD-Y4O decomposition and merging processes are iteratively executed until the termination
criterion is met, which contributes to the accurate segmentation results.

However, there are still some limitations to the proposed method:

(1) The proposed method is implemented by manually setting the revised Wishart distance threshold,
and is thus affected by subjective factors to some extent.

6. Conclusions

A novel segmentation algorithm for PolSAR images has been presented in this paper. The merging
order is based on the similarity measured by the complex-kind HLT statistic. The SD-Y4O
decomposition method is applied to divide pixels into the four dominant scattering mechanisms:
surface, double bounce, volume, and helix. The merging predicate is determined by the scattering
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characteristics and the revised Wishart distance between adjacent pixels. A postprocessing step is
employed to remove the generated small, isolated regions after the merging operation. The SD-Y4O
decomposition and merging processes are iteratively executed until the termination criterion is met.
The superiority of the proposed method was verified on two RADARSAT-2 PolSAR images and a
Gaofen-3 PolSAR image, with both visual representation and quantitative evaluation. The results
demonstrated that the proposed method outperformed the other three methods of conventional
MS, GMS, and GSRM in speckle suppression and detail preservation, and could obtain more
accurate segmentation results. Nevertheless, the revised Wishart distance threshold needs to be
set manually, and is thus affected by subjective factors to some extent. Therefore, in our future work,
optimizing the strategy of determining the threshold will help to further improve the performance of
the proposed method.
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