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Abstract: Fibroblast growth factor 23 (FGF23) has recently been identified as a critical regulatory factor in phosphate (P) metabolism. 
Although the exact molecular mechanism of FGF23 synthesis through sensing the concentration of P is yet to be determined, experimental 
and clinical data indicate the influential role of FGF23 in P and calcium (Ca) homeostasis. Here, we extended our previous mathematical 
model in calcium regulation and examined the conceivable roles of FGF23 in mineral metabolism. We assumed that the level of 
FGF23 was controlled through the concentrations of P and calcitriol in serum, and its actions such as lowering of the renal threshold 
for P, inhibition of the production of calcitriol in the kidney tubule, and inhibition of the production of parathyroid hormone (PTH) 
were included. Comparisons between the models with and without FGF23 demonstrate a complex interplay of FGF23 with calcitriol 
and PTH. In consistent with the model, our in vitro experimentation indicates that expression of FGF23 is activated in the presence 
of P though a G-protein linked receptor. We expect that further efforts on modeling and experimental evaluation would contribute to 
diagnosing patients with metabolic diseases such as osteoporosis and chronic kidney diseases, and developing FGF23-linked treatment 
strategies.
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Introduction
The FGF family consists of 22 members for various 
functions in embryonic development, cellular 
proliferation and differentiation, tissue repair, and 
tumor growth and invasion. FGF23 has recently 
been demonstrated to represent a critical circulating 
hormone involved in phosphate metabolism. It 
is an approximately 32-kD (251 amino acids) 
protein and its N-terminal region contains the FGF 
homology domain.1 The primary function of FGF23 
is considered to be inhibition of reabsorption of 
renal tubular phosphate.2 However, many questions 
are unanswered for the role of FGF23 in mineral 
metabolism with regards to known regulators such 
as PTH and calcitriol.3,4 Thus, a traditional regulatory 
mechanism with PTH and calcitriol needs to be rebuilt 
in accordance with the actions of FGF23.

Understanding the mechanism of Ca and P 
metabolism requires multiscale mathematical 
modeling. Behaviors of this highly interactive, 
nonlinear process can hardly be predicted by simple 
intuition. FGF23 is primarily synthesized in bone 
but its site of action is the kidney. Although genetic 
and biochemical analyses are essential to identify 
regulatory mechanisms, those approaches alone 
will not be sufficient to quantitatively evaluate the 
key processes and develop effective therapeutic 
interventions for patients undergoing hemodialysis 
and patients with metabolic disorders. Various 
mathematical models have been developed for 
calcium homeostasis.5–8 However, few models have 
been formulated including phosphate metabolism. 
Several models are proposed for bone remodeling,9–11 
but mineral metabolism in the kidney is not included. 
To our knowledge, no comprehensive models for 
calcium and phosphate metabolism are available 
including the role of PTH and FGF23.

In this study, we included the actions of FGF23 
to a previously published mathematical model of 
calcium and phosphate metabolism8 and investigated 
the potential influence of FGF23 on the observable 
state variables such as the serum concentrations of 
PTH, calcitriol, Ca, P, and the urinary excretion of Ca 
and P. In order to support the mechanism of sensing 
P in bone through a G-linked protein receptor, we 
conducted two in vitro experiments to evaluate the 
mRNA expression level of FGF23 using MLO-A5 
osteocyte-like cells.12 The first experiment was aimed 

to examine whether expression of FGF23 would be 
elevated in the presence of P in a culture medium, 
while the second experiment using an inhibitor to 
G-linked protein receptors was designed to evaluate 
their potential role in sensing the level of P in bone. 
The specific questions addressed in the present 
modeling study included: How does an increase 
in the concentration of FGF23 affect the actions of 
calcitriol and PTH? And how does alteration in the 
concentration of calcitriol or PTH modulate the 
FGF23 concentration and the absorption and excretion 
levels of P? The model was built with and without 
the predicted effects of FGF23, and the dynamic 
responses were numerically evaluated in a transient 
time frame (0–100 h) as well as at 2000 h.

Model, Materials and Methods
Modeling dynamical exchange 
processes
The present work with the action of FGF23 is an 
extension of a previously published model without 
FGF23.8 In brief, the mineral metabolism in the 
previous model was treated as exchange processes at 
three interfaces: intracellular and extracellular spaces 
for P; extracellular space and bone for Ca and P; and 
extracellular space and the outside world (through 
ingestion and excretion) for Ca and P (Fig. 1A). 
These exchanges were controlled by two endocrine 
factors—PTH and calcitriol, which were assumed to 
be confined to the extracellular compartment.

Considered in the previous model were the functional 
compartments, which represented the secretory mass 
of the parathyroid glands, the pools of transporting 
intestinal translocators for Ca and P, the pools of 
renal tubular translocators for Ca and P, and the pool 
of the tubular 1-hydroxilating enzyme (converting 
calcidiol into calcitriol). With the exception of the 
parathyroid gland secretory mass that was assumed 
to remain constant, the dynamics of the pools were 
modeled with the first-order nonlinear, diffusional, 
differential equations. A modeling principle was that 
the instantaneous rate of variation of the pool size was 
equal to the sum of the influxes minus the sum of the 
effluxes. Thus, the dynamical exchange processes in 
each of the compartments was represented by a time 
derivative of 8 pools in a general form:

	 d(Qx)/dt = ∑Jinflux(x) - ∑Joutflux(x)� (1)

http://www.la-press.com


FGF23 in mineral metabolism

Gene Regulation and Systems Biology 2009:3	 133

where Q = size of  the pool of the state variable x (e.g. Ca 
in bone); J(x)influx = influxes of variable x (e.g. intestinal 
uptake of P); and J(x)outflux = outfluxes (e.g. urinary 
output of Ca). These 8 pools included 3 pools of Ca 
in bone, extracellular space (serum), and intestine, 
4 pools of P in bone, serum, intracellular space, and 
kidney, and 1 pool of PTH in parathyroid grand. No 
independent state variables were considered for Ca 
in kidney or intracellular space, or for P in intestine 
(see details in 8 and Appendix).

Modeling five FGF23-linked pathways
In addition to dynamical alterations of  three molecular 
regulators (PTH, calcitriol, and 1α-hydroxylase) 
in the previous model, the dynamical alteration of 
FGF23 was added in the current model as a mineral 
metabolism regulator (Fig. 1B). The total amount of 
FGF23 in serum, Q FGF23 (pg), was modeled:

	 d(QFGF23)/dt = JFGF23 - δ . QFGF23� (2)

where JFGF23 = rate of  FGF23 secretion (pmole/hr), 
and δ = rate factor for FGF23 degradation (0.8 h-1). 
Since the secretion of  FGF23 is reported to be modulated 
by the serum concentrations of P and calcitriol 
(pathways I and II in Fig. 1B, respectively), JFGF23 
was modeled:

JFGF23 (XP , Xcal) = {VP 
. XP/(XP + KP)}{Vcal 

. Xcal/(Xcal + Kcal)}	

(3)

in which XP, and Xcal were the serum concentrations 
of P, and calcitriol. The parameters (VP, Vcal) 
and (KP, Kcal) represented the maximum rates and 
Michaelis constants in Michaelis-Menten kinetics, 
respectively.

Three effects of FGF23 were considered in the 
extended model: inhibition of the production of 
calcitriol in the kidney tubule (pathway III), inhibition 
of the production of PTH by the parathyroid glands 
(pathway IV), and lowering of the renal threshold for 
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Figure 1. Schematic illustration of mineral metabolism in the described model with the action of FGF23. A) Five compartments in the model, where 
extracellular space contains plasma and extracellular fluid. Note that Ca = calcium, and P = phosphate. B) Modeling of FGF23 actions including 
5 pathways (I–V).
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P (pathway V). In each pathway, the effect of FGF23 
was modeled in a form:

	 Vmax 
. XFGF23/(XFGF23 + KM.M.),  

	 or  
		 Vmax 

. KM.M /(XFGF23 + KM.M.)� (4)

in which Vmax = maximum rate in Michaelis-Menten 
kinetics; KM.M. = affinity for the FGF23 receptor; and 
XFGF23 = serum concentration of FGF23. The former 
was used for stimulatory effects (pathway V) and the 
latter for inhibitory (pathways III and IV).

Dynamical simulation
Prior to numerical simulations, we identified the 
reference states (steady-states), in which the state 
variables were kept constant. Using stepwise 
perturbations to the selected reference state variables, 
we evaluated the transient responses for 0–100 h, and 
a set of new steady states at 2000 h after an onset of 
perturbations. In order to avoid an impulsive jerk, 
stepwise perturbation was given using an exponential 
function in the initial perturbation phase with a time 
constant of 1 h. The key parameters employed in the 
study are listed (Table 1).

Analysis of FGF23 expression
Using MLO-A5 osteocyte-like cells, we conducted 
two experiments for investigation of FGF23 mRNA 
expression. In the first experiment, cells were grown 
either in the presence or absence of hydroxylapatite 
[Ca10(PO4)6(OH)2] and examined the effects of 
hydroxylapatite in the culture medium on the FGF23 
mRNA level. In the second experiment, cells were 
grown with and without a pharmacological agent 

(pertussis toxin; an inhibitor of G-protein linked 
receptors)13 and tested whether expression of FGF23 
would be affected by blocking a G-protein linked 
receptor as a potential phosphate sensor in bone cells.

In both experiments, approximately 1 × 106 
cells were seeded on the 3D collagen matrix 
(20 mm × 40 mm × 2 mm; Zimmer Dental) and 
cultured in αMEM medium containing 5% fetal bovine 
serum, 5% bovine serum and antibiotics (50 units/ml 
penicillin and 50 µg/ml streptomycin; Invitrogen) 
for two days. Deposition of hypdroxylapatite was 
conducted by immersion of the collagen matrix in 
500 mM Na2HPO4 solution for 5 min followed by 
rinsing in water and immersion in 500 mM CaCl2 
solution for 5 min.14 The matrix was thoroughly rinsed 
in water. Pertussis toxin (Calbiochem) was administered 
for 1 day at a concentration of 100 or 500 ng/ml.

Total RNA was harvested using RNeasy mini kits 
(Qiagen), and reverse transcription was conducted 
with high capacity cDNA reverse transcription kits 
(Applied Biosystems).15 Quantitative real-time 
PCR was performed using ABI 7500 with Power 
SYBR green PCR master mix kits (Applied 
Biosystems). The PCR primers were FGF23 
(5’-GACCAGCTATCACCTACAGATCCAT-3’; 
5’-TGTAATCATCAGGGCACTGTAGATG-5’), 
and GAPDH (5’-TGCACCACCAACTGCTTAG-3’; 
5’-GGATGCAGGGATGATGTTC-3’).

The mRNA level of GAPDH was used as an internal 
control. In evaluation of the effect of hydroxylapatite 
on FGF23 expression, the GAPDH mRNA levels 
in the two samples were compared and the ratio 
(GAPDH level in hydroxylapatite/GAPDH level in 
control) was calculated. The level of FGF23 mRNA 
in hydroxylapatite was then divided by this ratio, and 

Table 1. FGF23-linked parameters employed in the study.

FGF23 pathways Effect Remark Value
General Rate of FGF23 degradation 0.8 h-1

Reference FGF23 concentration 0.03 ng/ml
I (P to FGF23) stimulatory Michaelis constant 0.03 mg/ml
II (calcitriol to FGF23) stimulatory Michaelis constant 0.038 ng/ml
III (FGF23 to calcitriol) inhibitory Michaelis constant 0.03 ng/ml
IV (FGF23 to PTH) inhibitory Michaelis constant 0.03 ng/ml
V (FGF23 to P) stimulatory Michaelis constant 0.03 ng/ml
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the mean value of the FGF23 mRNA level in control 
was set to 1. In evaluation of the effect of pertussis 
toxin on FGF23 expression, the same normalization 
procedure based on the GAPDH mRNA levels was 
taken in which the FGF23 mRNA level for the sample 
with 0 ng/ml pertussis toxin was set to 1. Experiments 
were conducted three times.

Results
Responses to a stepwise increase  
in FGF23 secretion
Based on the above mentioned formulation of the 
expression and actions of FGF23, we first evaluated the 
effects of the stepwise increase in the secretion of  FGF23 
on the regulatory and homeostatic variables such as 
the concentrations of PTH, calcitriol, Ca, and P in 
serum as well as the absorption and excretion amounts 
of Ca and P. In the transient responses (0–100 h) to 
an increase in FGF23 from 30 to 260 pg/ml, those 
variables were decreased with varying temporal 
behaviors (Fig. 2). The concentration of PTH, for 

instance, was swiftly reduced within a few h followed by 
a gradual recovery, while the concentration of calcitriol 
was monotonously lowered. The concentrations of Ca 
and P in serum were steeply dampened in the initial 
∼10 h and they stayed at the lower levels. Interestingly, 
the maximum reduction was observed in the excretion 
amount of Ca, which became nearly zero in 10 h.

In order to characterize the chronic effects of the 
increase in FGF23, we evaluated the pseudo steady-state 
values (2000 h) (Fig. 3). The variables as a function of 
the level of  FGF23 including the concentrations of  PTH, 
calcitriol, Ca, and P in serum, and the absorption and 
excretion levels of  Ca and P exhibited a monotonous 
decrease as the level of FGF23 increased.

Responses to a stepwise increase  
in the uptake of P
To evaluate the effects of FGF23 actions in mineral 
metabolism, we next evaluated the responses of the 
state variables in the presence and absence of FGF23 
actions after a stepwise increase in the phosphate intake. 

0 50      100
Time (h)

0 50      100
Time (h)

0 50      100
Time (h)

0 50      100
Time (h)

0 50      100
Time (h)

0 50      100
Time (h)

0 50      100
Time (h)

FG
F2

3 
(p

g/
m

l)

pT
H

 (p
g/

m
l) C

C

CC

c
al

ci
tr

io
l (

pg
/m

l)

c
a 

(m
M

)

p 
(m

M
)

U
rin

ar
y 

c
a 

ou
tp

ut
 (m

M
/h

)

U
rin

ar
y 

p 
ou

tp
ut

 (m
M

/h
)

300

30
80

60

40

20

10

200

100

2.5

1.5

1.2

1.6 

1.4 

1.2 

1.0 

0.3

0.2

0.1

1.1

1.0

0.9

1.0

2.0

Figure 2. Transient responses (0–100 h) to a stepwise increase in FGF23. The variables include the concentrations of FGF23, PTH, calcitriol, calcium, 
and phosphate in serum, and the excretion levels of calcium and phosphate in urine.
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As predicted in the responses to the stepwise FGF23 
increase in Figures 2 and 3, the transient responses 
revealed that the model with FGF23 always reduced 
the levels of 7 state variables within 20 h (Fig. 4). The 
concentrations of PTH, calcitriol, Ca, and P in serum, 
for instance, were lowered by 17%, 23%, 9%, and 
10% in 100 h, respectively.

Consistent with the transient responses, those 
variables (the concentrations of PTH, calcitriol, Ca, P in 
serum, the absorption levels of calcium and phosphate 
in intestine, and the excretion levels of calcium and 
phosphate in urine) at 2000 h after the onset of the 
increased phosphate intake in diet from 2 to 20 mM/h 
were significantly lowered in the presence of FGF23 
(Fig. 5). The observed reductions were more evident 
in the responses to a higher intake level of P.

Responses to a stepwise increase  
in Ca uptake
The effects of FGF23 in response to the increased 
uptake of Ca were opposite to those in response to 

the elevated uptake of P, since the stepwise increase 
in Ca uptake lowered the concentration of FGF23 in 
serum (Fig. 6). Although the FGF23 model presented 
virtually no influence on the absorption or excretion 
of Ca, it elevated the intestinal uptake and the urinary 
output of P. Furthermore, in the presence of FGF23 
actions the concentrations of PTH, calcitriol, Ca, and 
P in serum were elevated.

Responses to a stepwise increase  
in calcitriol or PTH
Numerical simulations were also conducted in response 
to a stepwise increase in two regulatory factors 
(calcitriol or PTH), and the pseudo steady-state values 
(2000 h) in the presence and absence of FGF23 were 
evaluated. Although the synthesis of FGF23 is affected 
by calcitriol and not by PTH in the current model, the 
stepwise perturbations in both calcitriol and PTH altered 
the level of FGF23. First, the increase in calcitriol 
upregulated the level of FGF23 (Fig. 7), while that 
in PTH downregulated in (Fig. 8). Second, compared 
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to the model without the actions of  FGF23 the stepwise 
elevation of calcitriol in the FGF23 model reduced the 
level of PTH. On contrary, the stepwise increase of 
PTH in the current model significantly elevated the 
concentration of calcitriol in serum.

Neither perturbation did not show any clear effects 
on the absorption of Ca in intestine, but they changed 
the absorption and excretion of P. In accordance 
with the predicted increase in FGF23, the stepwise 
input of calcitriol decreased the intestinal uptake and 
the urinary output of P. In concert to the simulated 
decrease in FGF23, on the other hand, the stepwise 
elevation of PTH increased the intestinal absorption 
and the urinary excretion of P.

Expression of FGF23 in hydroxylapatite-
deposited collagen matrix
The FGF23 mRNA level was unregulated in the culture 
that was rich in Ca and phosphate (hydroxylapatite). 

Quantitative real-time PCR showed that the 
mRNA level of FGF23 was elevated 8.7 fold in the 
matrix deposited with hydroxylapatite (Fig. 9A). 
Furthermore, the elevated FGF23 mRNA level 
in hydroxylapatite was suppressed by the inhibitor 
of G-protein linked receptors approximately by 10% 
and 85% at the concentrations of 100 and 500 ng/ml 
pertussis toxin, respectively (Fig. 9B).

Discussion
The current study presented mathematical formulation 
of the metabolism of Ca and P including the actions of 
FGF23. Prior to the discovery of FGF23, the calcium-
PTH-calcitriol axis has been considered a primary 
regulatory pathway in mineral metabolism. The major 
function of this axis is maintenance of the serum 
calcium level, while its role in the serum phosphate 
level is treated secondarily.16 Recent advances in 
our understanding of disorders involving mineral 
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Figure 8. Steady-state responses (2000 h) to a stepwise increase in the concentration of PTH in serum. The dotted and solid curves correspond to the 
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metabolism have led to the FGF23-bone-kidney axis 
being added to the calcium-PTH-calcitriol pathway.17 
In response to an increase in the phosphate level in 
serum (pathway I), it is proposed that the expression 
of FGF23 is elevated in osteocytes in bone. However, 
no phosphate sensor has been identified. The 
present experimentation for the first time activated 
expression of FGF23 in osteocyte cells in vitro, 
although hydroxylapatite is a compound consisting 
of calcium and phosphate. Furthermore, similarly to a 
calcium sensor,18 the mRNA expression analysis using 
pertussis toxin indicates a possibility that a phosphate 
sensor is also a G-protein linked receptor.

The described model allows prediction of the 
concentrations of FGF23, calcitriol, PTH, Ca, and P in 
serum together with the intestinal absorption and the 
urinary excretion of Ca and P in response to varying 

perturbations. The FGF23 elevation is considered 
to reduce production of calcitriol in the kidney and 
decrease absorption of calcium and phosphate from the 
intestine.19 Although the exact molecular mechanism is 
yet to be determined, numerical simulations revealed 
that the presence of FGF23 altered the levels of both 
Ca and P in serum through a complex interplay with 
calcitriol and PTH (pathways II–IV). Calcitriol is 
modeled to be stimulatory to the circulatory level of 
FGF23 in serum (pathway II), while PTH is predicted 
to be inhibitory in an indirect fashion.

The current model should be further refined 
using experimental and clinical data regarding the 
upstream and downstream events for expression 
of FGF23. Furthermore, the parameter values in 
Table 1 need validations. Nevertheless, the recent 
clinical studies support that FGF23 inhibits renal 
production of calcitriol (pathway III), downregulates 
PTH release (pathway IV), and induces renal 
phosphaturia (pathway V).20 Furthermore, FGF23 
and PTH in serum are shown to be associated in vivo, 
supporting the assumption of the model that FGF23 
directly regulates PTH expression.21 Using both rats 
and ex vivo rat parathyroid cultures, it is reported 
that FGF23 suppresses expression and secretion 
of PTH.22

Physiological data from FGF23 mutations can be 
also used for validation of the role of FGF23. The 
FGF23 gene was identified by its mutations associated 
with  autosomal dominant hypophosphatemic 
rickets, which is an inherited phosphate wasting 
disorder.17 Thereafter, a variety of disorders resulting 
from FGF23 malfunctioning have been reported. 
These disorders, which are caused by mutations in 
the genes that directly or indirectly interact with 
FGF23, include hyperphosphatemic familial tumoral 
calcinosis, hereditary hypophosphatemic rickets with 
hypercalciuria, autosomal recessive hypophosphatemic 
rickets, and X-linked dominant hypophosphatemic 
rickets. Furthermore, clinical data from patients with 
chronic kidney diseases should be useful in evaluating 
the interactions among calcitriol, PTH, and FGF23.

In summary, the described mathematical model 
allows us evaluation of the dynamical metabolic 
processes in Ca and P by considering the regulatory 
actions of calcitriol, PTH, and FGF23. Biological 
experimentation indicated a potential role of G-linked 
protein receptors in regulating expression of  FGF23 in 
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bone cells. Further evaluations are necessary to refine 
the model. The results herein support that the described 
model-based approach together with biological 
verification is useful for characterization of the 
dynamical metabolic responses, which is indispensable 
for development of quantitative treatment strategies 
for patients with metabolic disorders.
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Appendix
According to our previous model without considering 
the effects of FGF23,8 the rate of changes of the calcium 
pools in bone (Ċb) and plasma including extracellular 
fluid (Ċp) as well as the transportable fraction in 
intestine (Ċ fi) are expressed:

	 C t Q Qb pb
c

bp
c( ) = - � (A1)

	 C t Q Q Q Qp bp
c

ip
c

pb
c

pu
c( ) ( ) ( )= + - + � (A2)

	 C t K C K Ci
f

i
f f( ) ( )= - -1 21 � (A3)

where Qxy
c

 = rate of a calcium transfer from tissue “x” 
to tissue “y”. The dynamical changes of the phosphorus 
pools in bone ( Pb), intracellular fluid ( Pc), and plasma 
( Pp) together with the transportable fraction in the 
kidney ( P f

k ) are expressed:

P t Q pb Q bpb
P P( ) = - � (A4)

P t Q Qc pc
p

cp
p( ) = - � (A5)

P t G K P K Pf
k k

f
k
f( ) { ( ) }= - -5 61 � (A6)

P t Q Q Q Q Q Qp bp
p

cp
p

ip
p

pb
p

pc
p

pu
p( ) ( ) ( )= + + - + + 	

�

(A7)

in whichQxy
p  = rate of a phosphorus transfer from 

tissue “x” to tissue “y”. Lastly, the changes of 
1α-hydroxylase ( hk), calcitriol ( vp), and PTH together 
with a dynamic alteration of secretory mass of the 
parathyroid gland ( π p and π f ) are modeled:

	
h t s hk h h k( ) = -δ � (A8)

	 v t s h vp v k v p( ) = -δ � (A9)

	 π δ ππ πp pt s( ) = - � (A10)

	
Π Π Πf f tt K K( ) ( )= - -3 41 � (A11)

The reference values in the above formulation are listed 
below assuming that the volume of plasma and extracellular 
fluid is 14 L.

Cb Exchangeable pool amount of 
Calcium in “bone (b)”

4.00 g

Cp Pool amount of calcium in 
“plasma and extracellular fluid (p)”

1.34 g

Ci
f transportable Calcium fraction in 

“intestine (i)”
0.500

Pb Exchangeable pool amount of 
Phosphorus in “bone (b)”

1.86 g

Pc Pool amount of Phosphorus in 
“cells (c)”

104 g

Pp Pool amount of Phosphorus in 
“plasma and extracellular fluid (p)”

0.518 g

Pk
f Transportable Phosphorus 

fraction in “kidney (k)”
0.500

vp Concentration of calcitriol 
[1,25(OH)2vitamin D] in “plasma 
and extracellular fluid (p)”

37.5 pg/ml

πp concentration of pth in “plasma 
and extracellular fluid (p)”

36.4 pg/ml
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