
Complex diseases: omics and genome-wide 
association studies
Common, severe human diseases such as cancer, 
diabetes, asthma, or mental and cardiovascular disorders 
have complex etiologies and complex mechanisms. To 

uncover the causal events leading to these diseases, 
information on the factors that challenge human health 
and the immediate responses to these challenges is 
needed. Yet, unfortunately, the dataset is never complete. 
In most cases, studies of humans are restricted to 
observations after a disease has occurred, except in 
clinical cases when individuals with particular diseases 
are treated or take part in randomized controlled 
intervention trials. Outside clinical trials, longitudinal 
studies (observational studies tracking the same individ
uals) that analyze phenotypes can also be undertaken. 
Both of these types of studies are hampered by unknown 
and uncontrolled exposure to the environment (such as 
differences in nutrition, medication, environmental endo
crine disruptors and lifestyle) even in wellphenotyped 
cohorts (where weight, height and health status, for 
example, are known).

Cohorts can be analyzed for specific features such as 
genomic variance (variants in the DNA sequence) or 
metric parameters (concentrations or comparative levels) 
of RNA, proteins or metabolites. If the features analyzed 
and disease phenotypes coincide (and the frequency of 
coincidence is biostatistically valid), then it would be 
possible to identify the pathways involved. Therefore, a 
current approach to unveiling the etiology and mecha
nism of complex diseases is to employ sophisticated 
analysis methodologies (omics) that allow for the inte
gration of multiple layers of molecular and organismal 
data. Data acquired with omics have already contributed 
considerably to the understanding of homeostasis in 
health and disease. Genomewide association studies 
(GWAS), in particular, have contributed substantially to 
the field in the past 6  years [1]. This approach has 
identified numerous genetic loci that are associated with 
complex diseases. However, the number of genetic 
mechanisms that have been identified to explain complex 
diseases has not increased significantly [2].

In this review, I will highlight the current limitations of 
GWAS and how issues such as the large sample size 
required can be overcome by adding metabolomics 
information to these studies. I will explain the principles 
behind the combination of metabolomics and GWAS 
(mGWAS) and how together they can provide a more 
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powerful analysis. I conclude by exploring how mGWAS 
has been used to identify the metabolic pathways 
involved in metabolic diseases.

Aims and limitations of GWAS
GWAS analyze the association between common genetic 
variants and specific traits (phenotypes). The phenotypes 
originally included weight (or body mass index), height, 
blood pressure or frequency of a disease. More recently, 
specific traits in the transcriptome, proteome or metabo
lome have been included, and these are usually quanti
tative (for example, concentration). GWAS can also be 
used to explore whether common DNA variants are 
associated with complex diseases (for example, cancer or 
type 2 diabetes mellitus). The common variants might be 
single nucleotide polymorphisms (SNPs), copy number 
polymorphisms (CNPs), insertions/deletions (indels) or 
copy number variations (CNVs), but most GWAS employ 
SNPs [3]. At present, SNPs are used most frequently 
because of coverage of a large fraction of genome, through
put of assay, quality assurance and costeffective ness. 
Because the concept of GWAS is hypothesisfree, the 
analyses of GWAS are generally genetically unbiased, but 
they assume a genetic cause that might not be the most 
significant contributor.

In the past, candidate gene and pedigree analyses were 
very successful in the study of diseases of monogenetic 
origin: heritable dysregulation of certain metabolomic 
traits (inborn errors of metabolism) were among the first 
to be associated with specific genes [4]. However, these 
approaches are not useful in complex diseases because 
candidate regions contain too many genes or there are no 
groups of related individuals with a clear inheritance 
pattern of the disease phenotype. Inspired by the success 
of the Mendelian inheritance (genetic characteristics 
passed from the parent organism to offspring) approach, 
a great effort was undertaken to generate a human 
reference database of common genetic variant patterns 
based on a haplotype survey  the haplotype map 
(HapMap) [5]. This resource indeed improved, through 
linkage disequilibrium (LD) analyses, both the quality 
and the speed of GWAS, but it has not solved the major 
issue of study outcome. The common limitation of 
GWAS is that they do not provide mechanisms for 
disease; in other words, GWAS are unable to detect 
causal variants. Specifically, a GWAS provides informa
tion about an association between a variant (for example, 
SNP) and a disease, but the connection between a SNP 
and a gene is sometimes unclear. This is because 
annotated genes in the vicinity of a SNP are used in an 
attempt to explain the association functionally. However, 
proximity to a gene (without any functional analyses) 
should not be taken as the only sign that the identified 
gene contributes to a disease.

It should be further noted that the current analysis 
tools for SNPs do not include all possible variants, but 
rather only common ones with a major allele frequency 
greater than 0.01. SNPs with frequencies of less than 1% 
are not visible (or hardly discernible) in GWAS at present 
[3], and therefore some genetic contributions might 
remain undiscovered. So far, associations discovered by 
GWAS have had almost no relevance to clinical prognosis 
or treatment [6], although they might have contributed to 
risk stratification in the human population. However, 
common risk factors fail to explain the heritability of 
human disease [7]. For example, a heritability of 40% had 
been estimated for type 2 diabetes mellitus [8,9], but only 
5 to 10% of the type 2 diabetes mellitus heritability can be 
explained by the more than 40 confirmed diabetes loci 
identified by GWAS [9,10].

Overcoming the limitations
There are several ways to improve GWAS performance. 
Instead of searching for a single locus, multiple 
independent DNA variants are being selected to identify 
those responsible for the occurrence of a disease [2]. 
Odds ratios could be more useful than Pvalues for the 
associations [6] in the interpretation of mechanisms and 
the design of replication or functional studies. This is 
espe cially true if highly significant (but spurious) asso
ciations are observed in a small number of samples, 
which might originate from a stratified population. The 
design of GWAS is also moving from tagging a single 
gene as a cause of disease to illuminating the pathway 
involved. This pathway might then be considered as a 
therapeutic target. In this way, GWAS comes back to its 
roots. The term ‘postGWAS’ is used to describe GWAS
inspired experiments designed to study disease mecha
nisms. This usually involves exploration of expression 
levels of genes close to the associated variants, or 
knockout experiments in cells or animals [11]. In other 
words, postGWAS analyses bring functional validation 
to associations [12].

Although omics approaches are powerful, they do not 
provide a complete dataset. Each omic technology pro
vides a number of specific features (for example, trans
cript level fold change, protein identity or metabolite 
concentration, concentration ratios). At present, experi
mental datasets consisting of thousands of features un
fortunately do not encompass all the features present in 
vivo. With incomplete data, only imperfect conclusions 
can be expected. However, the coverage of different 
omics features is expanding rapidly to overcome both 
genetic and phenotypic limitations of GWAS. As for the 
genetic aspects, progress in whole genome sequencing 
(for example, the 1000 Genomes Project [13,14]) is 
beginning to provide more indepth analyses for less 
frequent (but still significant), and multiple, coexisting 
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disease loci. In addition, epigenetic features (for example, 
methylation, histone deacetylation) will soon be expanded 
in GWAS [1517].

Improvements in the interpretation of phenotypes are 
likely to come from causal DNA variants showing 
significant and multiple associations with different omics 
data [11]. GWAS can be applied to intermediate pheno
types (including traits measured in the transcriptome, 
proteome or metabolome). The resulting associations can 
identify SNPs related to molecular traits and provide 
candidate loci for disease phenotypes related to such 
traits. Diseaseassociated alleles might modulate distinct 
traits such as transcript levels and splicing, thus acting on 
protein function, which can be monitored directly (for 
example, by proteomics) or by metabolite assays. This 
leads to the conclusion that another way to improve the 
outcomes of GWAS is the application of versatile and 
unbiased molecular phenotyping. The choice of molecu
lar phenotyping approach will be driven by its quality 
regarding feature identification, coverage, through put 
and robustness.

Metabolomic phenotyping for GWAS
Metabolomics deals with metabolites with molecular 
masses below 1,500  Da that reflect functional activities 
and transient effects, as well as endpoints of biological 
processes, that are determined by the sum of a person’s 
or tissue’s genetic features, regulation of gene expression, 
protein abundance and environmental influences. Ideally 
all metabolites will be detected by metabolomics. 
Metabolomics is a very useful tool that complements 
classical GWAS for several reasons. These include 
quanti fication of metabolites, unequivocal identification 
of metabolites, provision of longitudinal (timeresolved) 
dynamic datasets, high throughput (for example, 500 
samples a week, with 200 metabolites for each sample), 
implementation of quality measures [1821] and stan
dard ized reporting [22].

Enhancing classical GWAS for disease phenotypes with 
metabolomics is better than metabolomics alone for 
unequivocal description of individuals, stratification of 
test persons, and provision of multiparametric datasets 
with independent metabolites or identification of whole 
pathways affected (including codependent metabolites). 
It is also instrumental in quantitative trait locus (QTL) or 
metabolite quantitative trait locus (mQTL) analyses. In 
these studies quantitative traits (for example, weight or 
concentrations of specific metabolites) are linked to DNA 
stretches or genes. This information is important for 
assessing the extent of the genetic contribution to the 
observed changes in phenotypes.

A part of the metabolome could be computed from the 
genome [23], but the information would be static and 
hardly usable in biological systems except for annotation 

purposes. The time dynamics of the metabolome pro
vides a means to identify the relative contributions of 
genes and environmental impact in complex diseases. 
Therefore, combining mGWAS expands the window of 
phenotypes that can be analyzed to multiple quantitative 
features, namely total metabolite concentrations.

Metabolomic approaches
Metabolomics mostly uses two major technological 
approaches: nontargeted metabolomics by nuclear mag
netic resonance (NMR) or mass spectrometry (MS) [24]; 
and targeted metabolomics by MS [20,25].

Nontargeted metabolomics provides information on 
the simultaneous presence of many metabolites or 
features (for example, peaks or ion traces). Sample 
through put may reach 100 samples a week on a single 
NMR spectrometer, gas chromatographymass spectro
meter (GCMS) or liquid chromatographytandem mass 
spectrometer (LCMS/MS) [20,25]. The number of 
metabolites identified varies depending on the tissue and 
is usually between 300 (blood plasma) and 1,200 (urine) 
[26]. The major advantage of nontargeted metabolomics 
is its unbiased approach to the metabolome. The 
quantification is a limiting issue in nontargeted metabo
lomics as it provides the differences in the abundance of 
metabolites rather than absolute concentrations. In silico 
analyses (requiring access to public [2730] or proprietary 
[31,32] reference databanks) are required to annotate the 
NMR peaks, LC peaks or ion traces to specific meta
bolites. Therefore, if a metabolite mass spectrum is not 
available in the databases, the annotation is not automatic 
but requires further steps. These may include analyses 
under different LC conditions, additional mass fragmen
tation or highresolution (but slow) NMR experiments.

Targeted metabolomics work with a defined set of 
metabolites and can reach a very high throughput (for 
example, 1,000 samples per week on a single LCMS/
MS). The set might range from 10 to 200 metabolites in a 
specific (for example, only for lipids, prostaglandins, 
steroids or nucleotides) GCMS or LCMS/MS assay [33
37]. To cover more metabolites, samples are divided into 
aliquots and parallel assays are run under different 
conditions for GC or LCMS/MS. In each of the assays 
the analyzing apparatus is tuned for one or more specific 
chemical classes and stable isotope labeled standards are 
used to facilitate concentration determination. The major 
advantages of targeted metabolomics are the throughput 
and absolute quantification of metabolites.

Both approaches (that is, targeted and nontargeted) 
reveal a large degree of common metabolite coverage 
[38] or allow for quantitative comparisons of the same 
metabolites [21,39]. Metabolomics generates largescale 
datasets, in the order of thousands of metabolites, which 
are easily included in bioinformatics processing [40,41].

Adamski Genome Medicine 2012, 4:34 
http://genomemedicine.com/content/4/4/34

Page 3 of 7



GWAS with metabolomics traits
The outcome of GWAS depends very much on the 
sample size and the power of the study, which increases 
with the sample size. Some criticisms of GWAS have 
addressed this issue by questioning whether GWAS are 
theoretically big enough to overcome the threshold of 
Pvalues and associated odds ratios. Initial GWAS for a 
single metabolic trait (that is, plasma highdensity 
lipoprotein (HDL) concentration [42]) were unable to 
detect the genetic component even with 100,000 samples. 
This indicates low genetic penetrance for this trait and 
suggests that another approach should be used to 
delineate the underlying mechanism. More recently, 
metabolomics was found to reveal valuable information 
when combined with GWAS. Studies with a much 
smaller sample size (284 individuals) but with a larger 
metabolic set (364 featured concentrations) demon
strated the advantage of GWAS combined with targeted 
metabolomics [34]. In this study the genetic variants 
were able to explain up to 28% of the metabolic ratio 
variance (that is, the presence or absence of a genetic 
variant coincided with up to 28% of changes in concen
tration ratios of metabolites from the same pathway). 
Moreover, the SNPs in metabolic genes were indeed 
functionally linked to specific metabolites converted by 
the enzymes, which are gene products of the associated 
genes.

In another study on the impact of genetics in human 
metabolism [35], involving 1,809 individuals but only 163 
metabolic traits, followed by targeted metabolomics 
(LCMS/MS), it was shown that in loci with previously 
known clinical relevance in dyslipidemia, obesity or 
diabetes (FADS1, ELOVL2, ACADS, ACADM, ACADL, 
SPTLC3, ETFDH and SLC16A9) the genetic variant is 
located in or near genes encoding enzymes or solute 
carriers whose functions match the associating metabolic 
traits. For example, variants in the promoter of FADS1, a 
gene that encodes a fatty acid desaturase, coincided with 
changes in the conversion rate of arachidonic acid. In this 
study, the metabolite concentration ratios were used as 
proxies for enzymatic reaction rates, and this yielded very 
robust statistical associations, with a very small Pvalue 
of 6.5 × 10179 for FADS1. The loci explained up to 36% of 
the observed variance in metabolite concentrations [35]. 
In a recent fascinating study on the genetic impact on the 
human metabolome and its pharmaceutical implications 
with GWAS and nontargeted metabolomics (GC or 
LCMS/MS), 25 genetic loci showed unusually high 
pene trance in a population of 1,768 individuals (repli
cated in another cohort of 1,052 individuals) and 
accounted for up to 60% of the difference in metabolite 
levels per allele copy. The study generated many new 
hypotheses for biomedical and pharmaceutical research 
[21] for indications such as cardiovascular and kidney 

disorders, type 2 diabetes, cancer, gout, venous thrombo
embolism and Crohn’s disease.

A specific subset of the metabolome dealing with lipids 
termed lipidomics has provided important insights into 
how genetics contributes to modulated lipid levels. This 
area is of particular interest for cardiovascular disease 
research, as about 100 genetic loci (without causal 
explanation as yet) are associated with serum lipid 
concentrations [42]. Lipidomics increases the resolution 
of mGWAS over that with complex endpoints such as 
total serum lipids (for example, HDL only). For example, 
a NMR study showed that eight loci (LIPC, CETP, PLTP, 
FADS1, -2, and -3, SORT1, GCKR, APOB, APOA1) were 
associated with specific lipid subfractions (for example, 
chylomicrons, lowdensity lipoprotein (LDL), HDL), 
whereas only four loci (CETP, SORT1, GCKR, APOA1) 
were associated with serum total lipids [43]. GWAS have 
already enabled tracing of the impact of human ancestry 
on n3 polyunsaturated fatty acid (PUFA) levels. These 
fatty acids are an important topic in nutritional science 
in trying to explain the impact of PUFA levels on 
immunological responses, cholesterol biosynthesis and 
cardiovascular disease [4447]. It has been shown that 
the common variation in n3 metabolic pathway genes 
and in the GCKR locus, which encodes the glucose 
kinase regulator protein, influences the levels of plasma 
phos pholipid of n3 PUFAs in populations of European 
ancestry, whereas in other ancestries (for example, 
African or Chinese) there is an impact on the influences 
in the FADS1 locus [48]. This explains the mechanisms 
of differ ent responses to diet in these populations. 
GWAS with NMRbased metabolomics can also be 
applied to large cohorts. An example is the analysis of 
8,330 indi viduals in whom significant associations 
(P < 2.31 × 1010) were identified at 31 loci, including 11 
new loci for cardiometabolic disorders (among these 
most were allocated to the following genes: SLC1A4, 
PPM1K, F12, DHDPSL, TAT, SLC2A4, SLC25A1, 
FCGR2B, FCGR2A) [49]. A comparison of 95 known loci 
with 216 metabolite concentrations uncovered 30 new 
genetic or metabolic associations (P  <  5  ×  108) and 
provides insights into the underlying processes involved 
in the modulation of lipid levels [50].mGWAS can also 
be used in the assignment of new functions to genes. In 
metabolite quantitative trait locus (mQTL) analyses with 
nontargeted NMRbased metabolomics, a previously 
uncharacterized familial com ponent of variation in 
metabolite levels, in addition to the heritability 
contribution from the corresponding mQTL effects, was 
discovered [38]. This study demon strated that the sofar 
functionally unannotated genes NAT8 and PYROXD2 are 
new candidates for the mediation of changes in the 
metabolite levels of tri ethylamine and dimethylamine. 
Serumbased GWAS with LC/MS targeted metabolomics 
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has also contributed to field of function annotation: 
SLC16A9, PLEKHH1 and SYNE2 have been assigned to 
transport of acylcarnitine C5 and metabolism of phos
phatidylcholine PCae36:5 and PCaa28:1, respectively 
[34,35].

mGWAS has recently contributed to knowledge on 
how to implement personalized medicine by analysis of 
the background of sexual dimorphism [51]. In 3,300 
independent individuals 131 metabolite traits were 
quantified, and this revealed profound sexspecific asso
cia tions in lipid and amino acid metabolism  for example, 
in the CPS1 locus (carbamoylphosphate synthase 1; 
P  =  3.8  ×  1010) for glycine. This study has important 
implications for strategies concerning the development 
of drugs for the treatment of dyslipidemia and their 
monitoring; an example would be statins, for which 
different predispositions should now be taken into 
account for women and men.

GWAS and metabolic pathway identification
By integrating genomics, metabolomics and complex 
disease data, we may be able to gain important infor
mation about the pathways that are involved in the 
develop ment of complex diseases. These data are 
combined in systems biology [52] and systems epidemi
ology evaluations [53,54]. For example, SNP rs1260326 in 
GCKR lowers fasting glucose and triglyceride levels and 
reduces the risk of type 2 diabetes [55]. In a recent 
mGWAS [35], this locus was found to be associated with 
different ratios between phosphatidylcholines, thus pro
vid ing new insights into the functional background of the 
original association. The polymorphism rs10830963 in 
the melatoninreceptor gene MTNR1B has been found to 
be associated with fasting glucose [56], and the same SNP 
associates with tryptophan:phenylalanine ratios in 
mGWAS [35]: this is noteworthy because phenylalanine 
is a precursor of melatonin. This may indicate a 
functional relationship between the phenylalaninemela
tonin pathway and the regulation of glucose homeostasis. 
The third example is SNP rs964184 in the apolipoprotein 
cluster APOA1APOC3APOA4APOA5, which associates 
strongly with blood triglyceride levels [57]. The same 
SNP associates with ratios between different phos pha
tidyl cholines in mGWAS [35]: these are biochemically 
connected to triglycerides by only a few enzymatic 
reaction steps.

Conclusions
By combining metabolomics as a phenotyping tool with 
GWAS, the studies gain more precision, standardization, 
robustness and sensitivity. Published records worldwide 
illustrate the power of mGWAS. They provide new 
insights into the genetic mechanisms of diseases that is 
required for personalized medicine.
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