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Abstract. Phylogenetic networks are important for the study of evo-
lution. The number of methods to find such networks is increasing, but
most such methods can only reconstruct small networks. To find bigger
networks, one can attempt to combine small networks. In this paper,
we study the Network Hybridization problem, a problem of com-
bining networks into another network with low complexity. We charac-
terize this complexity via a restricted problem, Tree-child Network
Hybridization, and we present an FPT algorithm to efficiently solve
this restricted problem.
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1 Introduction

Evolutionary histories are often represented by phylogenetic trees, and more
recently, by phylogenetic networks. Knowing the evolutionary history of a species
is vital for understanding their biology. Therefore, it is important to have meth-
ods for finding phylogenetic networks that accurately represent the true evolu-
tionary histories. Many methods exist to find evolutionary histories; some are
purely combinatorial, others have a likelihood component as well. Here, we focus
mainly on the purely combinatorial problems.

One classic combinatorial method is to solve Hybridization: given a set
of trees, find the simplest network that displays these trees [1]. Unfortunately,
the problem is NP-hard, even on inputs of two trees [2]. For this problem, it
is assumed we can construct accurate phylogenetic trees for small parts of the
genomes of the studied taxa. When the input consists of only two or three trees, it
can be solved relatively efficiently—EPT time [8,17]—even though the problem
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is already NP-hard in that case. For an input consisting of three trees or more,
there is still an FPT algorithm [9], but it is not practical. In these cases, it is
useful to limit the search space to networks with a restricted structure, such as
tree-child networks [7], or temporal networks [6].

Another combinatorial approach for finding phylogenetic networks is to com-
bine smaller networks. The smaller networks are often assumed to have certain
properties. For example, it may be assumed that we are given all strict subnet-
works containing the full set of leaves. In that case, it is possible to reconstruct
a level-k tree-child network from all its level-(k − 1) subnetworks [15]. Another
assumption could be that the input consists of all subnetworks obtained by
removing exactly one leaf [11]. Instead of having almost all leaves, the sub-
networks can also be allowed to have only few leaves. For example, low level
networks can be reconstructed from their full set of binets [5,12], trinets [10,16]
or quarnets [4].

In practice, it may not be easy to find all subnetworks. This renders many of
the previously mentioned methods useless. Furthermore, these methods typically
only work for low level networks. This means that they cannot be used when the
phylogenetic signal comes from a complicated evolutionary history, or if there is
some randomness in the data, complicating the data as well.

In this paper, we combine networks that all contain the full set of leaves,
but we do not assume we have all the subnetworks of the network we want to
find. The problem we solve is analogous to Hybridization, but with networks
as the input, Network Hybridization: Given a set of networks with taxa X,
find a network N with minimal reticulation number, that displays all input net-
works. Since this is a generalization of the Hybridization problem, the problem
remains NP-hard in general, even for inputs of two networks. We show that for
the restricted problem on tree-child (topologically restricted class of networks;
defined formally in Sect. 2) inputs and output, we can use tree-child sequences
to obtain an FPT algorithm. This FPT algorithm is an extension of the one
introduced in [7] in which they considered tree inputs; the tree-child sequence
approach was first introduced in [14]. We also comment briefly on how some
measure of an optimal solution to the Network Hybridization problem can
be characterized by solving this restricted problem.

Structure of the Paper. We start with a quick introduction of relevant concepts
from mathematical phylogenetics in Sect. 2. Then, in Sect. 3, we formally intro-
duce Tree-child Network Hybridization and prove its relation to tree-
child sequences. This section also relates this problem to the more general Net-

work Hybridization. In Sect. 4.1, we lay the theoretical foundation to extend
the algorithm in [7] that takes inputs of trees to also work for inputs of net-
works. As a last theoretical section in the paper, we present an FPT algorithm
that solves Tree-Child Network Hybridization (Sect. 4.2). We conclude
the paper with a discussion, including some open questions (Sect. 5).
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2 Preliminaries

The main objects of study for this paper are phylogenetic networks. These graphs
are used in biology to represent evolutionary scenarios for a given set of species.

Definition 1. A (rooted phylogenetic) network on a finite set of taxa X is a
directed acyclic graph with

– one node of indegree-0 and outdegree-1, the root;
– nodes of indegree-1 and outdegree-0 labelled bijectively with X, the leaves;
– nodes of indegree-1 and outdegree-2, the tree nodes;
– nodes of indegree greater than 1 and outdegree-1, the reticulations.

If all the reticulation nodes have indegree-2, the network is called binary. An
edge uv is called a tree edge if v is a tree node or leaf, and a reticulation edge
if v is a reticulation. The vertex u is the parent of v, and v is the child of u.
The reticulation number r(N) of a network N is the total number of reticulation
edges minus the total number of reticulations.

A network is stack-free if every reticulation has a child that is a tree node or
a leaf. A network is tree-child if it is stack-free and every tree node has a child
that is a tree node or a leaf. We now define some relevant notation for local
structures in phylogenetic networks.

Definition 2. Let N be a network on X and x, y ∈ X two leaves. Then we say
N has a cherry {x, y} if the parent of x is the parent of y; we say that N has a
reticulated cherry (x, y) if the parent of x is a reticulation, and the parent of y
is a parent of this reticulation. If (x, y) is a cherry or a reticulated cherry in N ,
then it is called a reducible pair.

Tree-child sequences are built on the notion of reducing cherries and reticu-
lated cherries from networks.

Definition 3. Let N be a network on X, and (x, y) a pair of leaves. Let px
and py denote the parents of x and y in N , respectively Then reducing (x, y) in
N results in a network N(x, y) obtained as follows:

– If {x, y} is a cherry in N , remove x and the pendant edge pxx, and suppress
px if it has become a degree-2 node;

– If (x, y) is a reticulated cherry in N , remove the reticulation edge pypx and
suppress px or py if it has become a degree-2 node.

– Otherwise, N(x, y) := N .

The reversal of reducing cherries and reticulated cherries can be done by
adding ordered pairs of leaves to the network.

Definition 4. Let N be a network and let (x, y) be reducible pair. Then we may
construct N from N(x, y)—also called add (x, y) to N(x, y)—by applying the
following.
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1. If x is a leaf in N(x, y) (i.e., if (x, y) is a reticulated cherry in N), and
(a) if p, the parent of x in N(x, y), is a reticulation then add a node q directly

above y, and add an edge qp.
(b) otherwise, add nodes p and q directly above x and y respectively, and add

an edge qp.
2. If x is not a leaf in N(x, y) (i.e., if (x, y) is a cherry in N) then add a labelled

node x, insert a node q directly above y, and add an edge qx.

The above notion of adding an ordered pair of leaves (x, y) to a network N
is well-defined if y is already a leaf in N . If this is indeed the case, we may
obtain a network from a sequence of ordered pairs by iteratively adding ordered
pairs to an existing network. To do so, we impose the following condition on our
sequence of ordered pairs: The second coordinate of each pair has to occur as
a first coordinate in the remainder of the sequence, or as the second coordinate
of the last pair. Then, the following procedure constructs a network from a
sequence.

Procedure ConstructNetworkFromSequence(S)
Input: A sequence of ordered pairs S = (x1, y1) · · · (xn, yn);
Output: The network that can be constructed from S;

1 Set N to be the tree on one leaf yn;
2 for i = n, . . . , 1 do
3 if xi is a leaf of N then
4 if the parent of xi is a reticulation then
5 Let px denote the parent of xi;
6 else
7 Subdivide the incoming edge of xi with a node px;

8 Subdivide the incoming edge of yi with a node py;
9 Add the edge pypx to N ;

10 else
11 Subdivide the incoming edge of yi with a node py;
12 Add a new node labelled xi to N ;
13 Add the edge pyxi to N ;

14 return N ;

Note that because we only add reticulation edges to existing reticulation
nodes wherever possible (Line 4), the network obtained by using the above pro-
cedure is always stack-free. Imposing another condition: no first coordinate leaf
is used as a second coordinate in the remainder of the sequence on the sequence
ensures that the network we obtain is tree-child. With this in mind, we formally
define a tree-child sequence (Fig. 1).

Definition 5. A tree-child sequence (TCS) is a sequence of ordered pairs of two
leaves such that the following conditions hold:
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– the second coordinate of each pair has to occur as a first coordinate in the
remainder of the sequence or as the second coordinate of the last pair;

– no first coordinate leaf is used as a second coordinate in the rest of the
sequence.

Let S be a TCS, that involves the leaves X. Then, the weight of S is w(S) =
|S| − |X| + 1. Given a sequence of ordered pairs S = S1S2 · · ·S|S|, we let NS
denote the network

NS := (· · · ((NS1)S2) · · ·S|S|−1)S|S| = NS1S2 · · ·S|S|.

We introduce some notation for subsequences of a sequence S. For i ∈ [|S|],
we use the following notation for subsequence of S. The ith ordered pair
of S is Si = (xi, yi). The first i ordered pairs in S is denoted by S[:i] =
(x1, y1), . . . , (xi, yi). The subsequence of S without the first i ordered pairs
is denoted by S[i+1:] = (xi+1, yi+1), (xi+2, yi+2), . . . , (xn, yn). We say that the
leaves x1, . . . , xi are forbidden for S[:i]. Forbidden leaves do not appear as a
second coordinate leaf in a TCS (by the second condition of TCSs).

We say S reduces N to the leaf x if NS is the tree with the single leaf x.
Similarly, let N be a set of networks, then we denote by NS the set of reduced
networks {NS : N ∈ N}, and we say S reduces N to x if NS is the one leaf tree
x for all N ∈ N .

We call a sequence S′ of ordered pairs a partial TCS if there exists a TCS S
such that S[:i] = S′ for some i.

3 Network Hybridization

In this section we formally define the Tree-child Network Hybridization

problem, which asks to find a tree-child network with minimal reticulation

Fig. 1. A binary tree-child network N (grey and black) reduced to a leaf 4 by
a tree-child sequence S. The reduction is shown as a sequence of networks NS[:i]

for i = 0, 1, . . . , 6 from left to right, in which an element of S is applied to the network
successively. Each element of S reduces a pair in N . An example of a cherry (3, 1)
can be seen in the network NS[:3], and a reticulated cherry (3, 4) can be seen in the
network N . The subnetwork of N consisting of the black edges is also reduced by S,
and the embedding can be constructed by building both networks simultaneously and
keeping track of the edges added by the pairs that change the subnetwork (black pairs
and arrows).
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number that displays all input tree-child networks on the same set of taxa.
We generalize the results presented in [14] (they considered inputs of trees while
we consider inputs of networks) by showing how this problem relates to the more
generalized problem of Network Hybridization and also to the Tree-child

Weight problem. For the Tree-child Network Hybridization problem,
it turns out that there is not always a solution for some given inputs; we also
comment on when this is the case.

We start by defining what it means for a network to display another network.

Definition 6. Let N be a network on the set of taxa, X. A network N ′ on Y ⊆
X is a subnetwork of N if N ′ can be obtained from N by deleting reticulation
edges, removing leaves not labelled by Y , and suppressing all degree-2 nodes in the
resulting subgraph. If N ′ can be obtained from a subnetwork of N by contracting
edges, then we say N displays N ′. Given a set of networks N on some subsets
of the taxa X, then we say that N displays N if N displays all networks in N .

If a network N ′ on X is a subnetwork of another network N on X, then an
embedding of N ′ into N is the mapping of the nodes of N ′ to the nodes of N
such that the leaves of N ′ are mapped to the leaves of N with the same labels,
and the edges of N ′ are mapped to edge-disjoint paths of N . Our main focus of
this paper is to solve the following problem.

Tree-child Network Hybridization

Input: A set of rooted tree-child networks N on X.
Output: A tree-child network that displays N with minimal
reticulation number if it exists, NO otherwise.

Given an optimal tree-child network to the Tree-child Network

Hybridization problem, one may find a TCS that reduces it. We will show
that the weight of such a TCS is equal to the weight of an optimal solution to
the following related problem.

Tree-child Weight

Input: A set of rooted networks N on X.
Output: A minimal weight TCS that reduces N if it exists, NO
otherwise.

Let N be a set of networks on X. The reticulation number of an optimal
solution to Tree-child Hybridization is denoted htc(N ). The weight of an
optimal solution to Tree-child Weight is denoted stc(N ).

For a set of trees T , the relation htc(T ) = stc(T ) holds. We will extend
this result for network inputs. We first recall some key lemmas from [13]. The
first lemma loosely states that each TCS reducing a set of networks N gives a
tree-child network with corresponding reticulation number that displays N . The
second lemma gives the reverse statement: each tree-child network that displays
a set of networks N gives a TCS of corresponding weight that reduces N .

Lemma 7 ([13], Lemma 8). Let N and N ′ be a tree-child network. Suppose
there is a TCS S that reduces both N and N ′, such that each element of S that
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reduces a pair in N ′ also reduces a reducible pair in N . Then N ′ is a displayed
by N (Fig. 1).

Lemma 8 ([13], Corollary 4). Let N,N ′ be tree-child networks on X such
that N ′ is displayed by N . If a TCS S reduces N , then S also reduces N ′.

Unlike when the input consists of only trees, a solution to Tree-child Net-

work Hybridization does not always exist when the input may also contain
networks (Fig. 1).

Definition 9. A set of tree-child networks N are tree-child compatible if there
exists a tree-child network that displays all networks in N .

Our next step, is to prove that there is a strong connection between tree-child
compatibility and TCSs.

Lemma 10. Let N be a set of tree-child networks on X. Then N is tree-child
compatible iff there exists a TCS that reduces N . Furthermore, if a solution
exists, then htc(N ) = stc(N ).

Proof. Suppose that N is tree-child compatible. Then there exists a tree-child
network N that displays N , with minimal reticulation number. Now let S be a
TCS for N . By Lemma 8, S also reduces all displayed networks of N , and hence
it reduces N . Furthermore, the weight of S is equal to the reticulation number
of N by Lemma 3 from [13], (originally proved slightly less strong in [14]).

Now suppose there exists a TCS S that reduces N . Let N be the tree-child
network that can be constructed from S. Then, by Lemma 7, N displays N .
Because N is the network corresponding to S, the reticulation number of N is
equal to the weight of S. ��

3.1 The Existence of a Tree-Child Solution

In the previous subsection, we have found a strong connection between Tree-

child Network Hybridization and Tree-child Weight for feasible solu-
tions. Not all inputs, however, are feasible. Here, we investigate the feasibility of
inputs, and how to deal with infeasible inputs.

Lemma 11. Let N be a tree-child network with reticulated cherry (x, y), then
any TCS that reduces N must contain the pair (x, y).

Proof. Suppose S is a TCS that reduces N . The only ways to reduce the reticu-
lated cherry (x, y) are by either reducing it directly with the pair (x, y), or by first
turning it into a cherry {x, y} and then reducing it with a pair (x, y) or (y, x).
This second option, however, leads to a contradiction: To make the reticulated
cherry into a cherry, we must reduce a pair of the form (x, ·); however, any
sequence that includes (x, ·) and later (y, x) cannot be tree-child. ��



84 R. Janssen et al.

Fig. 2. Two networks N = {N1, N2} that are tree-child incompatible (black parts
only). The network M displays N , but it is not tree-child. By adding leaves Z = {3, 4}
to M , we get the network MZ which is tree-child. Then, adding these leaves in the
right places to N1 and N2, we get the set of networks NZ ∈ N+ on X ∪ Z, that are
displayed by the tree-child network MZ .

Using the connection between tree-child compatibility and the existence of
TCSs, we can prove an obstruction to tree-child compatibility of Lemma 12.
This obstruction will turn out to be quite valuable in the proofs in the rest of
this paper, as it allows us to quickly check whether a set of networks is tree-child
compatible.

Lemma 12. Let N1, N2 be tree-child networks on the same set of leaves X. For
any pair of leaves x, y, if N1 contains the reticulated cherry (x, y) and N2 con-
tains the reticulated cherry (y, x), then N1 and N2 are not tree-child compatible.

Proof. Let N be a tree-child network that displays both N1 and N2. Then any
TCS S for N reduces both N1 and N2. By Lemma 11, the sequence S must
contain the pair (x, y), because N1 has the reticulated cherry (x, y); similarly,
S must contain (y, x). This means S is a TCS, but it includes both pairs (x, y)
and (y, x), a contradiction. Hence we conclude that N1 and N2 are not tree-child
compatible. ��

Even if an input is infeasible, we still desire a network that displays all input
networks. For this purpose, we can relax the tree-child constraint on output (and
input) of the Tree-child Network Hybridization problem, giving rise to
the following problem.

Network Hybridization

Input: A set of rooted networks N on X.
Output: A network that displays N with minimal reticulation
number.

This problem can be viewed as the natural extension of the classic Hybridiza-

tion problem for trees. Linz and Semple show that Hybridization can be
solved by adding leaves in the right place to all input trees, and then solving
Tree-child Hybridization [14]. This also holds for the network versions of
these problems, as the solution to Network Hybridization can be made tree-
child by adding leaves, and all networks displayed by a tree-child network are
tree-child networks as well (Fig. 2).
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4 An Algorithm for Tree-Child Network
Hybridization

In this section, we give an FPT algorithm for Tree-child Network Com-

bination. We extend the algorithm given in [7] by allowing for inputs to be
networks, and by looking for reducible pairs within networks rather than cher-
ries in trees. Given an input N of tree-child networks, we first look for trivial
reducible pairs. We show that it is safe to reduce trivial reducible pairs as soon
as we encounter one, in any order. We then branch on all possible non-trivial
reducible pairs of the network, and by showing that the total number of possible
reducible pairs at each branching point is at most 8k for the reticulation num-
ber k of the optimal solution, we show that the running time of the algorithm
is O((8k)k · poly(|X|, |N |).

4.1 Counting Cherries

Trivial Pairs. The algorithm in [7] reduces trivial cherries (a pair of leaves
{x, y} that appear as a cherry in any input tree containing x and y) whenever
possible. Here, only looking at trivial cherries is not sufficient. For an input of
networks, we will need to reduce trivial reducible pairs (trivial pairs for short)
whenever possible. A trivial pair is a pair of leaves (x, y) such that all networks
either only have the leaf y, or they have a reducible pair (x, y). In the following
two lemmas, we prove that it is safe to reduce such a pair as soon as we encounter
one.

Lemma 13 (Move to the left). Let N = {N1, . . . , NI} be a set of tree-child
networks on a common set of leaves, and let S(a, b)(x, y)S′ be a TCS for N .
Suppose that for each N ∈ NS we have either x is not a leaf in N , or (x, y)
is a reducible pair of N , and there is at least one network such that the latter
holds. Then there is a TCS for N starting with S(x, y) of length equal to that of
S(a, b)(x, y)S′.

Proof. Suppose b = x. Then there must be a network in NS that has both the
reducible pairs (x, y) and (a, x). This can only occur if a = y: as x is the first
as well as the second element of a reducible pair, it must form a cherry with
another leaf, namely the leaf y. However, S(y, x)(x, y)S′ is not a TCS, which
contradicts our assumption that S(a, b)(x, y)S′ is a TCS for N .

Hence, for the rest of the proof, we assume b �= x. In this case, S(x, y)(a, b)S′

is a TCS. It remains to prove that it reduces N . This is clear if {x, y}∩{a, b} = ∅.
Observe that a �= y, as otherwise S(a, b)(x, y)S′ would not have been a TCS to
begin with. Therefore, we still need to check the cases a = x and b = y.

If a = x and a network has both reducible pairs (x, b) and (x, y), then this
network has a reticulation with reticulated cherries (x, b) and (x, y). The order of
reducing these pairs obviously does not matter for such networks: both options
remove the reticulation edges between the parents of b and y, and the parent
of x. For a network N that only has the reducible pair (x, y) after S (and not
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(x, b)), the network NS(x, y)(x, b) is a subnetwork of NS(x, b)(x, y) = NS(x, y).
This means S(x, y)(x, b)S′ also reduces N [13]. Hence if a = x, the sequence
S(x, y)(a, b)S′ is a TCS for N .

Now suppose b = y. Let N be a network that has both reducible pairs (a, y)
and (x, y). But all tree nodes of N are of outdegree-2; this implies that every
leaf can be the second coordinate of at most one reducible pair. Therefore such
a network cannot exist, and thus this case is not possible. ��

Lemma 14 (Trivial pair reduction). Let N = {N1, . . . , NI} be a set of tree-
child networks on a common set of leaves such that there exists a TCS SS′ for
N . Suppose x, y are leaves such that for each N ∈ NS we have either x not
in N , or (x, y) a reducible pair of N , and there is at least one network such
that the latter holds. Then there exists a TCS S(x, y)S′′ of length equal to SS′

that reduces N , or if y is forbidden after S and there is a sequence of the form
S(y, x)S′′′ of the same length as SS′ that reduces N .

Proof. To reduce a network with reducible pair (x, y), the sequence S′ must
contain either (x, y) or (y, x). Let S′

i be the first occurrence of such a pair.
First suppose S′

i = (x, y). Then for each intermediate set of networks NSS′
[:j]

for j < i we have that all the networks in the set either do not contain x, or have
the reducible pair (x, y). Hence, by repeated application of Lemma 13, there is
a sequence S(x, y)S′′ for N . This sequence has the same length as SS′, because
it is simply a reordering of the pairs.

Now suppose S′
i = (y, x), then x cannot have been the first coordinate in any

pair of S, so all networks in NS contain x. Furthermore, S′ does not contain
the pair (x, y), as this would violate the assumption that SS′ is a TCS. Hence,
each network in NS has a cherry or reticulated cherry on x and y, which is
ultimately reduced by a pair (y, x) in S′. Suppose a network N ∈ NS does not
have the cherry {x, y}. Then it has the reticulated cherry (x, y). To make this
into a cherry, so that it can be reduced by (y, x), the sequence must first contain
a pair of the form (x, z). However, this implies S′ first contains (x, z) and then
(y, x), which contradicts the fact that SS′ is a TCS. Hence, we may assume that
all networks in NS have the cherry {x, y}.

If y is not forbidden after S, we can switch the roles of x and y in the
remaining part of the sequence S′ to get a new TCS SS∗ for N . In S∗, the first
occurrence of (x, y) or (y, x) is S∗

i = (x, y), and we are in the previous case. If
y is forbidden after S, repeated application of Lemma 13 on SS′ and S′

i gives a
sequence S(y, x)S′′′ for N . ��

Bounding Reducible Pairs in Networks with All Leaves. In the algorithm
in [7], a bound on the number of cherries after having reduced all trivial cherries
was required to compute the running time. Here, we require something similar;
we require a bound on the number of reducible pairs after we have reduced all
the trivial pairs. [7] prove such bounds by first focusing on the case where all
input trees have the same leaf set. We do the same, by first focusing on the case
where all input networks have the same leaf set.
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Let N be a set of networks. Then the set of displayed trees of N is the set
of all trees that are displayed by the networks of N .

Lemma 15. Let N = {N1, . . . , NI} be a set of tree-child networks on a common
set of leaves such that there exists a TCS S for N . If N does not contain any
trivial pairs, then the set of displayed trees of N has no trivial cherries.

Lemma 16 ([7] Lemma 10). Let T be a set of phylogenetic trees with leaf set
X such that there is a tree-child network N with k reticulations that displays T .
If T has no trivial cherries, then the total number of cherries of the trees in T
is at most 4k.

Lemmas 15 and 16 gives the bound on the number of reducible pairs for
networks with common leaf sets.

Lemma 17. Let N be a set of tree-child networks with leaf set X such that
there is a tree-child network N with k reticulations that displays N . If N has no
trivial pairs, then the total number of reducible pairs of the networks in N is at
most 8k.

Proof. Each reducible pair of a network is a cherry in one of its displayed trees,
and the set of displayed trees is displayed by the solution network N as well.
Hence, by Lemma 16, there are at most 8k reducible pairs in the trees, and
therefore at most 8k reducible pairs in the networks. ��

Bounding Reducible Pairs in General. Recall that the algorithm will build
a TCS by successively appending reducible pairs; it terminates upon finding the
shortest possible sequence that reduces all the input networks. In the process,
it branches on all possible non-trivial pairs that the input network may have.
Depending on the sequence that is being built, it is possible that leaves that
exist in some of the input networks (after reduction by the existing sequence)
may have already been deleted from others. Here, we show that even for these
instances, it is still the case that the number of possible reducible pairs that we
can branch on is bounded by 8k. This result follows directly from Lemma 7 of
[7]: we change the wording of the statement slightly to accommodate for network
inputs.

Lemma 18. Let N be a set of tree-child networks on X, and let S = (x1, y1),
(x2, y2), . . . , (xr, yr) be a TCS for N with weight k. For any j ∈ [r]∪ {0}, either
there exists a trivial pair of NS[:j], or NS[:j] has at most 8k reducible pairs.

The idea of the proof is as follows. Let j be such that NS[:j] has no trivial
pairs. Then we find a set of tree-child networks N̂j on X with the same set
of reducible pairs as NS[:j] and tree-child hybridization number at most k. By
Lemma 17, this shows that NS[:j] has at most 8k reducible pairs.

The set of networks is constructed by adding back each missing leaf to each
network in NS[:j] at the root. The order in which they are placed at the root
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is the same as the order in which these leaves appear as first element in S[:j].
Now, we may construct a TCS of the same weight as S that reduces this set of
networks. By first reducing the part that corresponds to the part in NS[:j], and
then the leaves placed by the root, we have a TCS that reduces N̂j of weight at
most k:

(xj+1, yj+1), (xj+2, yj+2), . . . , (xr, yr), (x1, yr), (x2, yr), . . . , (xj , yr).

An example of the corresponding networks and their embeddings can be found
in Fig. 3.

N N ′ N̂2 N̂ ′
2

1 2 3 4 1 2 4

S = (4, 3)(1, 2) ◦ (4, 5)(3, 2)(3, 5)(1, 2)(2, 5) Ŝ = (4, 5)(3, 2)(3, 5)(1, 2)(2, 5) ◦ (4, 5)(1, 5)

3

1

2

4

31 2 435 5 5 5

Fig. 3. A set N = {N,N ′} of tree-child networks on the set of taxa {1, 2, 3, 4, 5}, with
a TCS S that reduces it. A set N̂2 = {N̂2, N̂

′
2} of tree-child networks obtained by

reducing the first two elements of S from N , and reattaching the tail of the deleted
edges (red edge) to the root edge, in the order that they were deleted in (as explained
in the sketch proof of Lemma 18). The sequence Ŝ is a TCS of the same weight as S,
obtained from S by deleting the first two elements and appending these two elements
to the end of the sequence, for which we replace the second coordinate of the elements
by 5 (the leaf that appears as the second coordinate element in the last element of S.

4.2 Adapting the Algorithm

Our algorithms are the same as those presented in [7], except for the following
changes.

– The input set of trees T is changed into an input set of tree-child networks
N ;

– trivial cherries are now trivial pairs;
– In line 4, the stop condition of a non-pickable reticulated cherry is added;

The first change is necessary for the algorithm to take an input consisting of
networks. The second change is necessary as not all reducible pairs are cherries
anymore, when the input consists of networks. The while-loop that reduces all
the trivial pairs is still correct in the algorithm, because there is an optimal
sequence that first reduces all trivial pairs (Lemma 14). The last change makes
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Procedure TreeChildSequence(N , S, k)
Input: A collection N of tree-child networks, a partial TCS S, an integer k;
Output: An optimal TCS SS′ of weight at most k for N if such a sequence

exists; Fail otherwise;
1 while There exists a trivial pair (x, y) in NS with y not forbidden by S do
2 Set S = S(x, y);

3 Set N ′ = NS;
4 if some network in N ′ has a cherry (x, y) with x, y forbidden or a reticulated

cherry (x, y) with y forbidden then
5 return Fail;

6 else
7 Set n′ = |{x ∈ X : x is a leaf in N ′}|;
8 Set k′ = |S| − |X| + n′;
9 Set C = {(x, y) | (x, y) is a reducible pair of some network in N ′};

10 if |C| == 0 then
11 return S;
12 else if |C| > 8k or k′ ≥ k then
13 return Fail;
14 else
15 Set Sopt = Fail;
16 foreach (x, y) ∈ C with y not forbidden by S do
17 Set Stemp = TreeChildSequence(N , S(x, y), k);
18 if Stemp �= Fail and (Sopt = Fail or (Sopt �= Fail and

w(Stemp) < w(Sopt))) then
19 Set Sopt = Stemp;

20 return Sopt;

sure we stop when the reduced input NS cannot be fully reduced using a TCS
that can be appended after the prefix S.

Otherwise, the algorithm is still correct. Indeed, the algorithm branches over
all non-trivial pairs, to find a shortest sequence that reduces all input networks;
and this shortest sequence corresponds to a network with minimal reticulation
number that displays all input networks. Furthermore, the running time follows
as each branch-out is over at most 8k pairs, and the search depth is at most k.

Theorem 19. Let N be a set of tree-child networks on a set of taxa
X. If there exists a tree-child network with at most k reticulations that
displays N , then it can be found in O((8k)k · poly(|X|, |N |)) time using
TreeChildNetwork(N , k).

5 Discussion

In this paper, we have introduced Network Hybridization, the problem of
finding a network with minimal reticulation number that displays a set of net-
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Procedure TreeChildNetwork(N , k)
Input: A collection N of tree-child networks, an integer k;
Output: A tree-child phylogenetic network N on X that displays N with

reticulation number at most k, if such a network exists; otherwise
None;

1 Set S = TreeChildSequence(N , ∅, k);
2 if S == Fail then
3 return None;

4 else
5 Set N = ConstructNetworkFromSequence(S);
6 return N ;

works. We showed that the Tree-child Network Hybridization problem,
in which we restrict our inputs and output to be tree-child networks, can be
solved by making slight adjustments to the FPT algorithm presented in [7].

In practice, our algorithm can be sped up using the heuristic improvement
that was introduced in [7]. We may consider branch reduction, in which we ignore
parts of the search tree where no better solution can be found.

For this problem, FPT is essentially the best we can do, because solving the
Network Hybridization problem for an input set of tree-child networks is
NP-hard. This follows from the fact that it is already NP-hard for an input set
of trees. It has recently been shown that if all level-(k−1) subnetworks of a level-k
tree-child networks are given, this network can be constructed in polynomial time
[15]. In other words, the Tree-child Network Hybridization problem is
easy to solve when we are given all level-(k−1) subnetworks of a level-k network.
This suggests that the problem becomes easy if the difference in reticulation
number between the inputs and the output network is bounded. We wonder
if this is still true for networks that are not tree-child, and therefore it would
be interesting to see whether the Hybridization problem is FPT with this
difference in reticulation number as parameter. And, if this is the case, whether
the current algorithm can be proven to have this running time.

Recall that a TCS is a sequence of ordered pairs with two conditions imposed
on them: the first condition ensures that we obtain a network from the sequence
upon using the ConstructNetworkFromSequence algorithm; the second
condition ensures that the network we obtain is tree-child. Upon removing this
second condition from sequences of ordered pairs, we obtain what is called a
cherry-picking sequence [13]. Networks that can be reduced by a cherry-picking
sequence are called orchard networks [3,13]. A natural extension of the results
we have presented in this paper would be to consider the following problem.

Orchard Network Hybridization

Input: A set of orchard networks N on X.
Output: An orchard network that displays N with minimal
reticulation number.
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Ideally, in Algorithm TreeChildSequence, we would simply remove the
tree-child condition to obtain an algorithm which works for orchard networks
as well. However, simply doing so could potentially result in a much higher
running time, as we do not have a bound on the number of reducible pairs
for orchard networks (see Fig. 4). Nevertheless, solving Orchard Network

Hybridization could lead to better upper bounds for the network hybridization
number, and the algorithm could still be efficient in practice. In this light, this
paper has taken the first step towards finding good solutions for Network

Hybridization.

x1 x2 x3 xn1−1 xn1

y1 y2 y3 yn2yn2−1yn2−2

z1 z2 z3 zn2−2 zn2−1 zn2

Fig. 4. An orchard network with n1+n2−1 reticulations such that the set of displayed
trees have at least n1n2 cherries.
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