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Abstract: Phenolic compounds from fruits and vegetables have shown antioxidant, anticancer,
anti-inflammatory, among other beneficial properties for human health. All these benefits have
motivated multiple studies about preserving, extracting, and even increasing the concentration of
these compounds in foods. A diverse group of vegetable products treated with High Hydrostatic
Pressure (HHP) at different pressure and time have shown higher phenolic content than their
untreated counterparts. The increments have been associated with an improvement in their extraction
from cellular tissues and even with the activation of the biosynthetic pathway for their production.
The application of HHP from 500 to 600 MPa, has been shown to cause cell wall disruption facilitating
the release of phenolic compounds from cell compartments. HPP treatments ranging from 15 to
100 MPa during 10–20 min at room temperature have produced changes in phenolic biosynthesis with
increments up to 155%. This review analyzes the use of HHP as a method to increase the phenolic
content in vegetable systems. Phenolic content changes are associated with either an immediate stress
response, with a consequent improvement in their extraction from cellular tissues, or a late stress
response that activates the biosynthetic pathways of phenolics in plants.

Keywords: phenolic compounds; high hydrostatic pressure; reactive oxygen species; biosynthesis;
extraction; stress response; cell wall modification

1. Introduction

Phenolics are a group of specialized metabolites with antioxidant, antimicrobial, anti-
cancer, anti-inflammatory activity, among other biological properties for human health [1,2].
Fruits and vegetables are rich sources of these compounds. Due to their association with
treating and preventing some chronic diseases, a diet rich in vegetables and fruits is highly
recommended [3,4].

Thermal treatments are frequently used during fruit and vegetable processing to
inactivate pathogenic and spoilage microorganisms and enzymes to ensure food safety
and quality [5]. However, these treatments can decrease the nutritional value by reducing
thermosensitive bioactive compounds, along with modifying texture, taste, and flavor [5,6].
To overcome these adverse effects, other alternatives such as high hydrostatic pressure
(HHP) have been used to preserve food. HHP consists of applying pressures normally
up to 600 MPa into a chamber. The pressure is generally transmitted by water at room or
moderate temperature. This treatment can inactivate microorganisms and enzymes while
minimizing quality losses in the pressurized products [7]. This technology is considered an
innovative technique for the nonthermal treatment of food [8].

Pressure is a physical parameter that affects the state of physical, chemical, and
biological systems. Pressure can modify the chemical configuration of some food molecules
changing the rate of chemical and enzymatic reactions [9]. HHP is governed by the Le
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Chatelier and Pascal principles [10]. The former states that a system under pressure will
adopt molecular configurations and will adjust the rate of chemical reactions to achieve
the lowest volume [11]. In other words, pressure favors phenomena and reactions that
are accompanied by negative volume changes [12]. While the Pascal or isostatic principle
states that the pressure applied is instantly and uniformly transmitted in all directions of
the fluid and its surroundings [13].

HHP to inactivate microorganisms was first proposed in the late 1980s. Since then, the
use of this technology as a preservation method has increased in the food industry. The
ability of HHP to inactivate microorganisms and enzymes related to food oxidation are
some examples of the benefits involved [7]. HHP-treated products present better nutrient
retention, flavor, and color. Moreover, HHP reduces or eliminates the use of additives and
does not produce residues during processing because only water is involved in the entire
process [14–16]. Nevertheless, some enzymes and bacterial spores are highly resistant to
pressure requiring the combination of pressure and temperature for their inactivation. In
addition, some residual enzyme activity and dissolved oxygen could cause enzymatic and
oxidative degradation of specific food components, and most HHP-treated products need
to be stored at low temperature [17]

In addition to food preservation, HHP has been proposed as a method to enhance
bioactive compound content in foods and to improve their extraction. Some pressurized
foods have shown higher contents of functional compounds such as phenolics compared
with untreated products. The increments have been associated with the release of these
compounds from cellular compartments, resulting in increased extractability due to the
mechanical stress occurring during the pressurization, which compacts the cellular mor-
phology, cell wall, and organelles [18]. Another mechanism for the increment is related to
the immediate response of plants to generate signaling molecules that activate pathways
that regulate gene expressions or with the late response associated with higher enzyme
activity produced by the signaling molecules generated in the immediate response, which
activate the biosynthesis of specialized metabolites [19].

This review analyzes the mechanisms for phenolic increment in vegetables and fruits
immediately after HHP treatment and during storage, differentiating between increment
due to cellular disruption (improvement of extraction yield) or activation of the metabolic
pathways for compound biosynthesis.

2. Biosynthesis of Phenolics in Plants

The biosynthesis of phenolic in plants is achieved by the malonate and the shikimate
pathways [20]. The malonate pathway is mainly focused on the synthesis of secondary
fatty acids, and some phenolic compounds such as aromatic polyketides, where flavonoids
are included. The precursors of this pathway are acetyl-CoA and malonyl-CoA [21]. The
shikimate pathway (Figure 1) is responsible for the biosynthesis of most phenolics in
plants [22]. This consists of seven steps carried out by different enzymes, and starts with
two molecules, erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) derived from
glycolysis and pentose phosphate pathways, respectively [23]. The first step consists of the
condensation of erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) into 3-deoxy-
D-arabinoheptulosonate 7-phosphate (DAHP) by the DAHP synthase [24]. In the second
step, the DAHP is cyclized, forming 3-dehydroquinate (DHQ) due to the action of DHQ
synthase [25]. In the third and fourth steps, DHQ is dehydrated to 3-dehydroshikimate
(DHS) and then is reduced to shikimate by the bifunctional enzyme 3-dehydroquinate
dehydratase/shikimate dehydrogenase [26,27]. In the fifth step, the shikimate is converted
to shikimate 3-phosphate (S3P) by the shikimate kinase [28]. In the sixth step, the shikimate
3-phosphate is condensate with a second molecule of PEP into 5-enolpyruvylshikimate
3-phosphate (EPSP) [29]. Finally, the EPSP is dephosphorylated by the chorismate synthase
to produce chorismite [30].
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Figure 1. Shikimate pathway for the production of phenolics in plants. PEP: phosphoenolpyru-
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dehydroquinate, S3P: shikimate 3-phosphate, EPSP: 5-enolpyruvylshikimate 3-phosphate, PAL:
Phenylalanine Ammonium Lyase. Modified from [22,31].

After the production of chorismate, the phenic acid is formed by the enol-pyruvate
transferase action, the phenic acid goes under a decarboxylation, and the substitution
of the oxygen for an amino group results in the formation of L-phenylalanine [31]. The
most important step occurs by the phenylalanine ammonium lyase (PAL). This enzyme
deaminates the L-phenylalanine into cinnamic acid. L-phenylalanine is a block for the
formation of secondary metabolites, so its relationship with the biosynthesis of phenolic
compounds is important [31–33] (Figure 1). The production of phenolic compounds in
plants is strictly related to the activity of the enzyme PAL. A study in strawberries showed
that at the peak of maximum PAL activity, there was a higher anthocyanin content [34].
The formation of metabolites such as phenolic compounds is also related to the defense
mechanism against biotic or abiotic stress [32].

Biotic and Abiotic Factors Influencing Biosynthesis of Phenolics

The production of specialized metabolites in plants is affected by biotic and abiotic fac-
tors, such as environmental conditions, microorganisms, insect attacks, among others [35].
Biotic stress is caused by the action of bacteria, fungi, viruses, and nematodes that attack
the plants by secreting enzymes to break down tissues. Insects and vertebrates are also
biotic stressors that use plants as a food source [36]. Abiotic stress is caused by external
factors such as drought, soil salinization, extreme temperatures, strong winds, climate, and
change of season of the year [36]. Even air pollution and the use of pesticides can act as
abiotic factors [35].

Phenolic compounds are implicated in the biotic and abiotic stresses by reinforcing
cell walls and scavenging of ROS (Reactive Oxygen Species) [37]. Biotic and abiotic stres-
sors promote the production of free radicals and oxygen species in plants, inducing the
synthesis of secondary products like phenolics as a mechanism to protect plants [38]. Some
researchers have taken advantage of this to seek new ways to deliberately increase bioac-
tive compounds in plants. Some techniques to increase phenolics in plants are based on
controlled elicitation. One example is the use of nanoparticles (NPs) such as Cu, CdO,
CeO2, CuO, Ag, and ZnO as abiotic elicitors for induction of phenolic and other bioactive
compounds in plant cells [39]. NPs induce the production of ROS, leading to the transcrip-
tion of secondary metabolites [40]. The effect on NPs as elicitors vary, but generally shows
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an increment of secondary metabolites such as phenols and flavonoids [41]. However, an
important drawback of the use of NPs is their toxicity [42]. It has been suggested that
the elevated production of ROS by NPs results in lipid peroxidation, which damages cell
membrane, proteins, and DNA resulting in cell death [43].

Mechanical force is another important abiotic stress factor that has shown a positive
effect on the production of phenolics in plants. HHP at pressure levels below 100 MPa
acts as a mechanical stressor resulting in an increment of phenolic levels [44,45]. Pressure,
temperature, and time of exposure are variables that have been studied for the biosynthesis
of metabolites in plants under HHP [9]. A very useful advantage of this technology is
the retention of cell viability at certain treatment conditions, which allows the cells to
keep enzymatic activities to induce significant production of phenolics [44]. The HHP
potential for the biosynthesis of phenolic compounds is presented in the following sections,
differentiating it from the increment due to improvement in extraction yields.

3. HHP as a Stress Factor for the Biosynthesis of Phenolics and to Increase Their
Extraction Yield
3.1. Effect of HHP on Phenolics Biosynthesis

Although the effects of HHP on the biosynthesis of phenolics have been evaluated
in fruits and vegetables such as mangoes, carrots, strawberries, and suspension cultures
of grapes and potato, there is not yet enough research on the mechanism(s) implied in
the increment for the biosynthesis of phenolics by HHP. Several studies using pressures
from 10 to 100 MPa at treatment times from 10 to 20 min at room temperature have been
tested immediately after processing or during the storage at different temperatures and
relative humidities; and the results have revealed a change in phenolics biosynthesis with
increments up to 155%. Some studies conclude biosynthesis of phenolics due to the low-
pressure levels used and the increment in their content, nevertheless, some of them do not
show studies related to increment in PAL activity, ROS production, or gene expression,
which are important to conclude this (Table 1).

Table 1. High hydrostatic pressure effects on the biosynthesis of phenolic in different vegetable systems.

Sample
Treatment Conditions

Storage
Conditions

Analyzed
Compound

Main Findings
Reference

P (MPa) t (min) CUT (s) T (◦C) Approximate
Change (%)

PAL
Activity (%)

Mango Mangifera
indica (Whole fruit) 15–60 10–20 3, 10 &

28
25

2–14 days at
25 ◦C and 85–90%

RH

Total
phenols

↓7.2 up to
↑68.4 NR

[46]
Flavonoids ↓38.6 up to

↑36.8 NR

Mango Mangifera
indica (Whole fruit) 20–80 10 NR 20 1–16 days at

13 ◦C with 85%
RH

Total
phenols

↓5.2 up to
↑30 NR

[47]
Flavonoids ↓27.6 up to

↑69.7 NR

Vitis vinifera
(Suspension culture) 40 10 NR 25 1–7 days at 25 ◦C Anthocyanin ↓53.9 up to

↑53.3 NR [48]

Carrots Daucus carota
(Whole vegetable) 60 & 100 CUT 15.33 &

20.67 22 0–3 days at 15 ◦C
CO2 < [0.5 v/v]

Total
phenols

↓11.8 up to
↑154.9

↓61.4 up to
↑380 [49]

Potato Solanum
tuberosum (suspension

culture)
100–200 10 NR 25 1–24 h Polyphenols ↑54.0 up to

↑456.0 ↑199 [44]

Strawberry Seolhyang,
Fragaria × ananassa

Duch
(Whole fruit)

30–90 5 NR 25 NR

Total
phenols

↑6.4 up to
↑23.1 NR

[50]
Anthocyanin ↓16.9 up to

↑10.0 NR

P: Pressure; t: time; T: Temperature; CUT: Come up time (time to achieve desired pressure); NR: Not reported;
RH: Relative humidity. ↑ indicates an increment of content compared with the untreated sample; ↓ indicates
decreasing of content compared with the untreated sample.

Phenolic biosynthesis due to HHP does not seem to increase proportionally with the
pressure. The increments primarily depend on the type of fruit treated and the ripening
stage, as well as, the storage conditions such as temperature, relative humidity, and storage
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time [46,47]. In addition, it has been observed that the increment does not occur immedi-
ately after processing, but during storage producing a late stress response. For example,
mango treated at 60 MPa/20 min showed an increment in phenolics of about 11, 29, and
47% after two, five, and eight days of storage, respectively, compared to nontreated samples
(Figure 2a) [46]. After day eight, the concentration of phenolics starts to decay [46,48].
This decrement could be associated with the activity of oxidative enzymes, which are
normally inactivated at higher pressure levels (>200 MPa) than the ones used to induce
stress in the vegetable systems. According to Ortega et al. [48], the initial improvement in
phenolic content could be attributed to an increment in their biosynthesis due to immediate
oxidative stress, while reductions at longer times could be related to the damage in cellular
structures and the ripening process [46]. In another study with mango, Hu et al. [47]
showed 19.6% increment in phenolics after one day of storage (Figure 2b) and 69.7% incre-
ment in flavonoids after four days. Overall, Ortega et al. [46] found greater increments in
phenolics compared to Hu et al. [47], which could be attributed to differences in treatment
conditions, ripening stage of the fruit, and the storage conditions. It has been proved that
25 ◦C is the best temperature for mango ripening, which may result in improved phenolic
compounds and other metabolites such as organic acids and sugars [51]. Both studies
agreed that pressures around 60 and 80 MPa have an initial increase in phenolics, but
the concentration gradually decreases with storage time. Although both studies suggest
biosynthesis of phenolic compounds due to HHP; the authors did not show any test to
probe the biosynthesis, for example, the increment in PAL activity. Further studies need to
be performed to prove the biosynthesis of phenolic compounds [32,50].
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Figure 2. Effect of high hydrostatic pressure in the increment of phenolic compounds of mango
(Mangifera indica) stored at two conditions. (a) Fruits stored at 25 ± 1 ◦C with 85–90% relative
humidity [46] and (b) fruits stored at 13 ◦C with ~85% humidity [46].

Ortega et al. [46] suggested that pressure as an abiotic stressor can lead to cell wall
fracture or deformation causing cell wall loosening by crosslinking or depolymerizing its
components [52]. Plant cells can sense the mechanical perturbation at their cell surfaces and
they respond [53]. This promotes the production of ROS, like H2O2, which later acts, con-
trols, and initiates enzymatic responses to repair the damaged cell wall via stress-responsive
gene, oxidative burst linked with cell wall reinforcement, biosynthesis of phenolics, among
others [9,48,54]. Injuries caused by mechanical stress, such as pressure, modify how plants
synthesize secondary metabolites, as can be represented in Figure 3 [35]. The release of
H2O2 is carried out in minutes, acting as the elicitor in the biosynthesis. The production
of H2O2 at the cellular level acts as Ca+2 signaling, activates kinases, hormonal signaling,
and regulates gene expression [54,55]. H2O2 as a signaling molecule activating metabolic
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pathways [56], leads to increased PAL activity, which as previously mentioned, synthesizes
simple phenols derived from the cinnamic acid [19,31,32].
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Figure 3. HHP effect in cell wall deformation from food. Modified from Gómez-Maqueo, et al. [18].

Similar to mango, for HHP-treated carrots after one day of storage, the total phe-
nolic content increased 69.1% at 60 MPa and 154.9% at 100 MPa [49]. After day one,
phenolic concentration starts to decrease showing similar values to the control (Figure 4).
Viacava et al. [49], related the change in phenolic concentration with PAL activity observing
an immediate effect in PAL. On day 0, PAL activity was reduced by 61.4% (100 MPa), while
no significant increment was presented at day 1 at any pressure level evaluated; however,
it increased at day 2 by 380.2 and 139.7% at 60 and 100 MPa, respectively. The authors
attributed the low activity of PAL at day 1 and the higher concentrations of phenolic content
on the same day, to the higher availability of precursors during the HHP treatment and
the activation of enzymes not quantified in the study. In general, results showed that the
PAL activity was higher at 60 than at 100 MPa, having greater metabolic activity because
the samples were under higher oxidative stress-producing higher ROS, which resulted in
higher PAL activity. It has shown that pressure has different effects on enzyme activities
depending on factors such as type of product, type of enzyme, and treatment conditions.
It has been stated that pressure could have favorable effects on the release of membrane-
bound enzymes, or in the activation of proenzymes that require a biochemical change or a
change on their configuration to expose the active site and to become active, and a direct
relationship is not always observed between the increment in enzyme activity and pressure
level [57]. Figure 5 shows the hypothetical model from Viacava et al. [49] explaining the
immediate and late physiological response of carrots to HHP application, this hypothetical
model could be applied to other vegetables and fruits. The immediate response involves
cell wall deformation (mass exchange), increment in respiration rate, and production of
signaling molecules such as H2O2, while the late response involves the biosynthesis of
secondary metabolites during storage [18,19,47].

The synthesis of phenolics in cell cultures has also been evaluated. Cai et al. [48]
studied the synthesis of anthocyanins during seven days of storage of a cell suspension of
Vitis vinifera treated at 40 MPa for 10 min, observing the greatest increment at day 6 (53.3%).
For potato (Solanum tuberosum) suspension culture treated at 100–200 MPa for 10 min,
phenolic content increased immediately after processing by 54, 81, 267, 456, and 453% at
pressures of 100, 125, 150, 175, and 200 MPa, respectively; nevertheless, these increments
appear not to be associated with biosynthesis, but rather with the loss of compartmentation
and subsequent release of the content of the vacuoles into the cytoplasm [44].
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Bioactive compounds, such as phenolics, are contained in specific organelles in the
cell, which can vary depending on each type of product and variety [18]. The increment
in phenolic compounds observed after HHP is not always attributed to biosynthesis. The
release of phenolics by extraction from specific organelles could be responsible for the
increments. The better extractability of phenolic at pressure levels above 100 MPa has
been related to cell membrane disruption and release of bound phenolics, resulting in
higher extractability and an improvement in bioaccessibility [58]. Making it different
from biosynthesis, which is suggested to be a dual stress-response mechanism related
to ATP, ROS, and the activation-deactivation of enzymes [18,19,47,50]. In the following
section, some studies showing an increment of phenolics due to improvement of extraction
are discussed.

3.2. Effect of HHP on Phenolics Extraction Yield

Several methods have been applied for phenolic extraction, such as conventional
solvent extraction (CSE), and novel technologies like ultrasonic-assisted extraction (UAE),
microwave-assisted extraction (MAE), and supercritical fluid extraction (SFE-CO2) [59–61].
The application of novel technologies has resulted in favorable results on extraction yields
compared with CSE [60,61].

HHP can also favor the release of bioactive compounds from cellular compartments,
enhancing their extractability [18]. When fruits and vegetables are subjected to pressure
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levels normally higher than 100 MPa, the mechanism for phenolic biosynthesis is not
promoted because the cell is inactivated before reacting to the stress caused by pressure [18].
In this case, the increment observed in phenolic can be attributed to improvement in
extraction rather than to biosynthesis. HHP increases mass transfer in an immediate
response due to the damage caused to the cell membrane, which increases permeability
and facilitates secondary metabolites diffusion via solvent extraction [59,62]. In addition,
disruption of weak interaction between phenolics and cell wall favors their release. In
plants, phenolic compounds exist in both free and bound forms [60]. In dry fruits, bound
phenolic content (mgGAE/100 g) ranged from 96 to 408; and free phenolic from 46 to
345. While in fresh fruits, the bound phenolic content ranged from 29 to 306; and free
phenolics from 120 to 316 [63]. The main difference between free and bound phenolics is
that free is solvent extractable, while the bound phenolic cannot be extracted into water
or aqueous/organic solvents mixtures [60]. Based on this information, it is suggested that
during the application of HHP treatments, the increment in free phenolic content would
be attributed to the cell decompartmentalization, which produces phenolic release from
plant tissue improving yield extraction, while the increment of bound phenolic compounds
in addition to decompartmentalization is probably due to the increment of the enzyme’s
activity involved in the hydrolysis of proanthocyanidins, phenolic acids, and hydrolyzable
tannins, which are esterified-bound and glycosylated-bound [61].

The effects on plant tissues, organelles, cell walls, and membranes, depend on the
pressure level [62]. For example, in a study with prickly pears [18], the application of HHP
at 100 MPa helped to release phenolics attached to cell walls by cell wall modifications
(Figure 6). At this pressure level, the cell was still viable and capable to synthesize metabo-
lites in response to the abiotic stress, but at higher pressure levels (350–600 MPa), the cell
wall collapsed, enhancing the extractability of phenolic at pressures higher than 100 MPa.
Higher pressure levels, and times, favored the extraction of phenolics due to the higher loss
of cell wall integrity [18]. Table 2 shows studies for a variety of foods (vegetables, fruits, by
products of plants, etc.) in which the authors have observed increment in phenolics (an-
thocyanins, flavonoids, polyphenols, and individual phenolics), suggesting improvement
in their extractability at treatment conditions mainly from 300–600 MPa for 5–20 min at
temperatures generally around 20–40 ◦C.

Molecules 2022, 27, x FOR PEER REVIEW 10 of 15 
 

 

Ecklonia arborea TPPC 

400 15 2.03 35 Stored in 
brown glass 

flask at 
10 °C 

↑46.0 

[72] 
600 5 3.07 35 ↑20.0 

Green tea  
Camellia sinensis L. TPC 490 15 25 25 NR ↑32.6 [73]  

Longan fruit peri-
carp  

Dimocarpus longan L. 
TPC 500 2.5 NR 30 4 °C until 

analysis 
↑43.8 [59] 

Korean barberry 
Berberis koreana TPC 500 5 & 15 NR 25 

−20 °C until 
analysis 

↑29.9 up to 
↑33.1 [74] 

Grape pomace TPC 50–200 5–30 NR 25 NR 
↓27.9 up to 

↑18.6 [75] 

P: Pressure; t: time; T: Temperature; CUT: Come up time (time to achieve desired pressure); NR: 
Not reported; TPC: total phenolic content. TPPC: total polyphenol content; ↑ indicates the incre-
ment in content compared with the untreated sample; ↓ indicates a decrease in content compared 
with the untreated sample. 

 
Figure 6. Optical microscopy images showing the effects of HHP in phenolics extractability at 100 
(A), 350 (B), and 600 (C) MPa during the come-up time (CUT) and 5 min. Cw: cell wall, Ph: phenolic 
compound, Oc: calcium oxalate crystal. Modified from [18]. 

In most cases presented in Table 2, HHP showed a positive effect on the extraction of 
phenolics. Results indicate that the higher the pressure and treatment time, the higher the 
extractability of phenolics. Some remarkable results are from Okur et al. [65] for sour 
cherry (Figure 7a), in which the increment in time of treatment from 1 to 10 min enhances 
the extraction yield from 39.5 up to 95% at 400 MPa and from 65 up to 109.9% at 500 MPa, 
respectively. Also, the increment in pressure from 400 to 500 MPa resulted in improve-
ment of the extracted phenolics from 39.5 up to 61% [65]. The same tendency was shown 
for grape (Figure 7b), where the extraction of phenolic increased from 55 up to 75% by 
increasing the pressure treatment from 200 to 550 MPa [69]; gooseberry pulp treated at 
400 and 500 MPa (during 10 min) showed an increment in the extracted phenolics of 8.3 
and 22.9%, respectively [68]. In other studies, the treatment at 500 MPa of apricot nectar, 
showed an increment in total phenolics from 2 up to 9.6% when the holding time increases 
from 5 to 20 min (Figure 7c) [64]. Liu et al. [76] in wild berry demonstrated that at 200 
MPa, the anthocyanin content increased from 6.3 to 8% by increasing the holding time 
from 5 to 10 min.  

Figure 6. Optical microscopy images showing the effects of HHP in phenolics extractability at 100 (A),
350 (B), and 600 (C) MPa during the come-up time (CUT) and 5 min. Cw: cell wall, Ph: phenolic
compound, Oc: calcium oxalate crystal. Modified from [18].
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Table 2. Effect of high hydrostatic pressure on phenolic extraction yield.

Sample Analyzed Compound
Treatment Conditions

Storage Conditions Approximate
Change (%) ReferenceP

(MPa)
t

(min)
CUT
(min)

T
(◦C)

Apricot nectar Prunus armeniaca L.

TPC (Individual phenols include:
Catechin, Chlorogenic acid,

Neochlorogenic acid, Epicatechin,
Ferulic acid, Caffeic acid,

p-Coumaric acid)

300–500 5–20 2.5–4.2 34–40 2 days at 4 ◦C ↑2.0 up to ↑12.5 [64]

Sour cherry pomace
Prunus cerasus L. TPC 400 & 500 1–10 NR 20 −4 ◦C until analysis ↑39.5 up to ↑109.9 [65]

Grape by products (Skin, stems,
and seeds) Vitis Vinifera

TPC 600 60 NR 70 NR ↑48.0
[66]

Anthocyanins 600 60 NR 70 NR ↑41.4

Jerusalem Artichoke
Helianthus tuberosus L.

TPC (Pre-fermentation) 100 24 h NR 50 NR ↑36.6
[67]

TPC (Post-fermentation 100 24 h NR 50 NR ↑61.36

Cape gooseberry pulp Physalis
peruviana L. TPC 300–500 1–5 NR 25 0 and 60 days at 4 ◦C ↓32.3 up to ↑35.9 [68]

Grape Vitis Vinifera TPPC 200–550 10 28.6 s–78.6 s 20 4 ◦C until
fermentation(13 days) ↑55.0 up to ↑75.0 [69]

Wild Berry Lonicera caerulea
TPC 200–600 5–20 4–12 s 25 4 ◦C until analysis (48 h) ↓10.0 up to ↑14.4

[70]
Anthocyanins 200–600 5–20 4–12 s 25 4 ◦C until analysis (48 h) ↓6.3 up to ↑7.9

Açai Pulp Euterpe oleracea Martius TPC 600 5 NR 25 and 65 Stored for 24 h with
oxygen and light barrier ↓10.3 up to ↑11.4 [63]

Cricket Acheta domesticus TPC 500 15 NR 30 and 40 NR ↑9.3 up to ↓67.3 [71]

Mealworm Tenebrio molitor TPC 500 15 NR 30 and 40 NR ↓23.7 up to ↑8.6 [71]

Silvetia compressa TPPC
400 15 2.03 35 Stored in brown glass

flask at 10 ◦C
↓41.0

[72]
600 5 3.07 35 ↓30.0

Ecklonia arborea TPPC
400 15 2.03 35 Stored in brown glass

flask at 10 ◦C
↑46.0

[72]
600 5 3.07 35 ↑20.0
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Table 2. Cont.

Sample Analyzed Compound
Treatment Conditions

Storage Conditions Approximate
Change (%) ReferenceP

(MPa)
t

(min)
CUT
(min)

T
(◦C)

Green tea Camellia sinensis L. TPC 490 15 25 25 NR ↑32.6 [73]

Longan fruit pericarp Dimocarpus
longan L. TPC 500 2.5 NR 30 4 ◦C until analysis ↑43.8 [59]

Korean barberry Berberis koreana TPC 500 5 & 15 NR 25 −20 ◦C until analysis ↑29.9 up to ↑33.1 [74]

Grape pomace TPC 50–200 5–30 NR 25 NR ↓27.9 up to ↑18.6 [75]

P: Pressure; t: time; T: Temperature; CUT: Come up time (time to achieve desired pressure); NR: Not reported; TPC: total phenolic content. TPPC: total polyphenol content; ↑ indicates
the increment in content compared with the untreated sample; ↓ indicates a decrease in content compared with the untreated sample.



Molecules 2022, 27, 1502 11 of 15

In most cases presented in Table 2, HHP showed a positive effect on the extraction
of phenolics. Results indicate that the higher the pressure and treatment time, the higher
the extractability of phenolics. Some remarkable results are from Okur et al. [65] for
sour cherry (Figure 7a), in which the increment in time of treatment from 1 to 10 min
enhances the extraction yield from 39.5 up to 95% at 400 MPa and from 65 up to 109.9%
at 500 MPa, respectively. Also, the increment in pressure from 400 to 500 MPa resulted in
improvement of the extracted phenolics from 39.5 up to 61% [65]. The same tendency was
shown for grape (Figure 7b), where the extraction of phenolic increased from 55 up to 75%
by increasing the pressure treatment from 200 to 550 MPa [69]; gooseberry pulp treated at
400 and 500 MPa (during 10 min) showed an increment in the extracted phenolics of 8.3
and 22.9%, respectively [68]. In other studies, the treatment at 500 MPa of apricot nectar,
showed an increment in total phenolics from 2 up to 9.6% when the holding time increases
from 5 to 20 min (Figure 7c) [64]. Liu et al. [76] in wild berry demonstrated that at 200 MPa,
the anthocyanin content increased from 6.3 to 8% by increasing the holding time from 5 to
10 min.
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Figure 7. HHP effect in the extraction of phenolic compounds from (a) Sour cherry pomace (Prunus
cerasus L.) [65], (b) Grape (Vitis vinifera) [69], and (c) apricot nectar (Prunus armeniaca L.) [64].

The levels of improvement during HHP processing depend on a variety of factors such
as treatment conditions, type of compound, food physical characteristics, and composition.
While, after HHP processing, the method used for phenolic extraction (i.e., type of solvent,
ratio solvent: sample, contact, time, etc.) could influence the yield obtained among different
studies from different authors. In addition, the storage conditions and handling after
and during processing could influence results among different studies. As mentioned
before, during processing, HHP could influence enzymes increasing their activity due to
factors such as the release of membrane-bound enzymes or configuration changes, this
last mechanism is also related to decreasing activity [57]. According to this, the extraction
yields for the different samples could also be related to the residual activity of oxidative
enzymes and the contact between phenolic and oxidative enzymes released from plant
tissues after pressurization, which promotes oxidative reactions. The enzymatic activity
could explain why at certain treatment conditions, no increment in phenolics was observed,
but rather a decrease. Some examples are Silvetia compressa, where 400 MPa (15 min) and
600 MPa (5 min) decreased phenolics by 30 and 41%, respectively [72]. In cases where the
change in the extractability yield of phenolics was not observed, it could be related to the
retention of phenolics by the cell wall components. Some examples are gooseberry treated
at 300 MPa for 5 min stored for 60 days [68], wild berry treated at 400 MPa for 20 min [77],
and even cricket treated at 500 MPa for 15 min at a temperature of 65 ◦C [71].

It has been suggested that the increment in bioactive compounds by HHP could result
in better bioavailability. Bioavailability determines the number of bioactive compounds
that are digested, absorbed, and metabolized and therefore it determines their action in
the human body [78–80]. For apple (Granny Smith) treated at 500 MPa, it was showing a
higher absorption of minerals produced by high solubility in the intestine [79] [81], while
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for orange juice, higher bioavailability of vitamin C was observed. There are not enough
studies showing the relationship between increment in phenolics and better bioavailability.
The treatment of olives (Azeitera, Carrasqueña, Conserva de Elvas, and Morisca) at 600 MPa
for 6 min at 10 ◦C showed an increase of bioavailability in phenols in the large intestine [79].
A review from Serment-Moreno et al. [9] concluded that HHP treatment (200–600 MPa)
improved the bioavailability of phytochemical contents. This effect on the increase in
bioavailability reported after HHP treatment can be related to differences in cell wall
structures and improvement in the capacity of binding the phenolic compounds in the food
matrix [1,4].

4. Final Remarks

This work describes two possible mechanisms for the increment of phenolics in foods
after HHP treatment and during storage. The overview presented suggested that the
increments could be related to phenolic biosynthesis and improvement of their extractability
in food. The enhancement of the extraction of phenolic through HHP has been related to an
immediate response to stress, where the HHP disrupts cellular compartments enhancing
mass transfer and extractability or due to the disruption of non-covalent interactions
between phenolics and cell wall. Despite a few cases, HHP has shown to be more effective
at higher pressure levels, (>200 MPa); however, the level of yield achieved highly depends
on the type of food and intensity of the other variables (time, temperature) as well as the
extraction/analysis methods used. The use of HHP at lower values of pressure (<100 MPa)
has been shown to activate biosynthesis of phenolic in a late response where the higher
production of ROS such as H2O2 activates metabolic routes that increase the phenolic
content. Despite very few cases, the use of HHP showed to be a very innovative and
promising technology to improve the phenolic compounds in plants. The results presented
in this review are highly relevant for the future use of HHP technology for both biosynthesis
and extraction of phenolics or even other secondary metabolites with functional activities.
This technology could help to generate food with better nutritional and functional value,
including enhanced antioxidant activity, in addition to a better extraction could even
influence the bioavailability of these compounds in the human body, increasing their
beneficial effects on health.
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