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Abstract

Many research teams perform numerous genetic, transcriptomic, proteomic and other types

of omic experiments to understand molecular, cellular and physiological mechanisms of dis-

ease and health. Often (but not always), the results of these experiments are deposited in

publicly available repository databases. These data records often include phenotypic char-

acteristics following genetic and environmental perturbations, with the aim of discovering

underlying molecular mechanisms leading to the phenotypic responses. A constrained set

of phenotypic characteristics is usually recorded and these are mostly hypothesis driven of

possible to record within financial or practical constraints. We present a novel proof-of-prin-

cipal computational approach for combining publicly available gene-expression data from

control/mutant animal experiments that exhibit a particular phenotype, and we use this

approach to predict unobserved phenotypic characteristics in new experiments (data

derived from EBI’s ArrayExpress and ExpressionAtlas respectively). We utilised available

microarray gene-expression data for two phenotypes (starvation-sensitive and sterile) in

Drosophila. The data were combined using a linear-mixed effects model with the inclusion

of consecutive principal components to account for variability between experiments in con-

junction with Gene Ontology enrichment analysis. We present how available data can be

ranked in accordance to a phenotypic likelihood of exhibiting these two phenotypes using

random forest. The results from our study show that it is possible to integrate seemingly dif-

ferent gene-expression microarray data and predict a potential phenotypic manifestation

with a relatively high degree of confidence (>80% AUC). This provides thus far unexplored

opportunities for inferring unknown and unbiased phenotypic characteristics from already

performed experiments, in order to identify studies for future analyses. Molecular mecha-

nisms associated with gene and environment perturbations are intrinsically linked and give
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rise to a variety of phenotypic manifestations. Therefore, unravelling the phenotypic spec-

trum can help to gain insights into disease mechanisms associated with gene and environ-

mental perturbations. Our approach uses public data that are set to increase in volume, thus

providing value for money.

Introduction

Despite the flood of molecular omics data, with a few notable exceptions, such as the Geno-

type-Tissue Expression (GTEx) project [1], most datasets are rarely re-used, mainly due to

challenges with combining the data from different sources. However, in most experimental

studies, additional measures are made of biochemical, and physiological changes and of

changes in the phenotypic characteristics that they bring about. Phenotypes can include, for

instance, morphology, behaviour and pathology. Usually, a limited number of phenotypes are

recorded, due to various study constraints. An intermediate phenotype, or sub-phenotype, is

one that underlies the study phenotype, but crucially is influenced by fewer genes [2]. For

instance, sub-phenotypes of Parkinson’s Disease (PD) can include olfactory impairment, gut

function disturbance, motor impairments and cognitive decline, each of which may be medi-

ated by subsets of the genes that together result in PD pathology. Quantifying a wide variety of

sub-phenotypes associated with animal models of a disease could therefore help to identify

causal mechanisms.

The aim of the present study was to develop an in-silico approach for inferring unobserved

phenotypic characteristics from published gene-expression data resulting from genetic or envi-

ronmental perturbations. To do this, we generated molecular signatures for two target pheno-

types in the fruit fly Drosophila, starvation stress response defective (starvation-sensitive) and

sterile, using available gene-expression data. Using machine learning, we were able to show

that these molecular signatures are able to reliably predict the starvation-sensitive and sterile

phenotypic traits solely using expression datasets from studies where these phenotypes were

not originally measured, thus adding value to already deposited data.

Materials and methods

A schematic overview of the generation of a gene-expression molecular signature for a specific

phenotype of interest is presented in Fig 1.

Data collection

Linking phenotypes to perturbed genes in Drosophila. In order to identify perturbed

genes that lead to a particular phenotype, we downloaded several datasets from FlyBase

(http://flybase.org/). These comprised: allele phenotypic data, synonyms, annotation identifi-

ers, control vocabulary and alleles to gene identifiers. Using in-house custom programs, we

parsed and linked all these identifiers with the phenotypic data. That is, for each FlyBase phe-

notype, we obtained a list of identifiers (e.g. FlyBase gene numbers, allele symbols, synonyms).

Obtaining expression data from EBI’s ArrayExpress. To maximise the number of exper-

iments for each phenotype chosen for this study, we used the Affymetrix GeneChip Drosophila

Genome 2.0 Array (EBI’s ArrayExpress identifier A-AFFY-35). At the time of conducting the

analysis, the largest number of experiments had been performed using the Affymetrix Genome

2.0 microarray platform (number of experiments: 330).
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Fig 1. Flow diagram of the overall generation of molecular signatures for a phenotype of interest. a) Building the molecular signature and selecting model

parameters for a particular phenotype. b) Predicting phenotypic manifestation in unknown experiments utilising the molecular signature.

https://doi.org/10.1371/journal.pone.0240824.g001
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Using the above-mentioned FlyBase identifiers (linking phenotypes to perturbed genes) we

searched EBI’s ArrayExpress for any potential match using the textual representation of EBI’s

web resource, i.e. REST-style queries. The identifiers were used as keywords to form a URL

and the XML result was parsed using a custom-made Perl program. The nature of the allele

constructs for experiments deposited in EBI’s ArrayExpress does not follow a specific nomen-

clature and the authors/depositors are allowed relative freedom in describing the gene con-

structs. For example, EBI’s ArrayExpress identifier E-GEOD-18576 lists a genotype

description as a DHR96 mutant. We did not assume that different allele constructs for the

same gene will exhibit the same phenotype. Therefore, for each of the experiments that

matched any of the FlyBase identifiers for the two target phenotypes, we manually curated the

data first by reading all the accompanying manuscripts and subsequently retained experiments

where the same allele construct was used. Furthermore, only experiments with raw gene-

expression data (data with available raw cel files) were retained.

Normalised gene-expression values

Raw gene-expression data (cel files) were downloaded from the EBI’s ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/). An ‘experiment’ throughout this manuscript was considered to

be a set of control/mutant gene-expression microarray assays, submitted to EBI’s ArrayExpress

under the same identifier and exhibiting the phenotype of interest, unless otherwise specified

(see Fig 2). Separately, for each experiment, the raw data were summarised and normalised by

using the rma (bioconductor’s package affy [3]). Log2-normalised expression data for all

experiments that exhibited a particular phenotype were combined in a single dataset.

Removal of batch effects within an experiment

Individual experiments for the two target phenotypes were examined for the presence of batch

effects. For each ArrayExpress accession number, all individual microarray cel files were

downloaded, including any microarray assays that did not exhibit the phenotypes in question

but were submitted under the same ArrayExpress identifier. For each experiment, we per-

formed principal component analysis (PCA) of the log2-normalised microarray expression

data. Where significant batch effects were detected, we used bioconductor’s ber package [4] to

Fig 2. Definition of an experiment exhibiting a phenotype of interest. EBIs ArrayExpress identifier: E-GEOD-24978.

https://doi.org/10.1371/journal.pone.0240824.g002
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correct for them. For example, if an experiment that exhibited the phenotype of interest had

sets of controls/mutants derived from different tissues, and that therefore exhibited significant

heterogeneity in pattern of gene expression, the tissue effect was used as a factor in the batch

effect correction.

Generation of the molecular signatures (linear-mixed effects model)

A random intercept linear mixed-effects model (LMEM) was used to generate normalised

residuals for each gene within the Affymetrix Genome 2.0 microarray, accounting for a num-

ber of consecutive principal components. Fixed and random effects comprised the principal

components and the different experiments, respectively, with gene-expression as the depen-

dent variable. The residuals were then used to perform a logistic regression to assess the statis-

tical significance of each gene. For the LMEM, the lmer function in R was used. The number

and nature of the underlying biological and technical factors that differ between the different

experiments are largely unknown. In order to determine how many principal components to

use, the molecular signatures for the two target phenotypes were generated using LMEM,

including a number of consecutive principal components to account for these biological/tech-

nical effects, e.g. sex, tissue. The consecutive principal components used started with using

LMEM with no principal components progressing up to a LMEM with the first 7 consecutive

principal components included (8 different models).

Gene Ontology (GO) enrichment analysis

The Wilcoxon rank sum test, as implemented in Catmap [5], was used to perform functional

analysis to test for significant enrichment of Gene Ontology categories. Ranks of genes were

based on the p-value derived from the logistic regression, irrespective of beta-coefficients. To

account for multiple hypotheses testing the Benjamini-Hochberg false discovery rate was used

(FDR). To assess if there was a significant enrichment of GO terms associated with the two tar-

get phenotypes of interest in the derived molecular signatures, we selected GO terms that we

considered representative of the two phenotypes (S1 and S2 Figs in S1 File).

Leave-one-out cross-validation

To assess how well the molecular signatures could be used to predict the target phenotype in

other experiments that exhibit a phenotype of interest, we used randomForest package in R

(default parameters with 1,000 trees). We used a leave-one-out cross-validation (LOOCV) in

order to calculate an area under the curve (AUC). Iteratively for all experiments we left one

experiment out and derived the molecular signature using the rest of the experiments that

exhibited the target phenotype. For example, one iteration comprised removing the controls/

mutants, part of the crol experiment (starvation-sensitive) and generating the molecular signa-

ture using the rest of the experiments (dhr96, mir14, p53 and rbf). Crucially, we derived the

residuals from the random intercept LMEM, along with consecutive principal components,

for all experiments that exhibited the target phenotype, and then left one experiment out. This

ensured that the model was corrected for underlying technical factors before performing the

LOOCV. The AUC was calculated using the class (control/mutant) probabilities derived from

the randomForest package, using the top 200 genes from the molecular signature (based on the

p-values from the logistic regression). We also tested a different number of top genes (from 50

to 3,000 genes, S6 and S7 Figs in S1 File for the starvation-sensitive and sterile phenotypes

respectively). In addition, we also formally tested if the mean of the class probabilities was dif-

ferent from 0.5 using a t-test, separately for controls and mutants, for the left-one-out
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experiment. The probability of 0.5 is the null hypothesis and it is equivalent to a random

assignment of the controls/mutants.

Predicting the presence of phenotypic expression in freely available data

Similarly to the LOOCV, we used the molecular signature (top 200 genes based on the p-value

from the logistic regression) for the starvation-sensitive and sterile phenotypes to predict the

presence of the phenotypes in all available data in ArrayAtlas (Affymetrix GeneChip Drosoph-

ila Genome 2.0 Array). Iteratively for each deposited experiment in ArrayAtlas, we first

derived residuals from a random intercept LMEM, including consecutive PCs, from the com-

bined log2-normalised data for the experiment and the experiments that were part of the two

phenotypes (starvation-sensitive and sterile). This ensured that we accounted for any technical

variability between experiments. These residuals were then used to derive the probabilities for

class (control/mutant) separation with the randomForest package in R. Each individual con-

trol/mutant sample within an experiment was assigned a class probability (control or mutant).

For each class (control or mutant) the probabilities were averaged across the number of sam-

ples, separately for controls and mutants. This mean probability was used to infer quantita-

tively the target phenotype.

Results

Experiments and expression data

Using the above protocol, we identified five and six experiments, respectively, with specific

perturbed genes for which gene-expression data for the starvation stress response defective

(FlyBase control vocabulary identifier FBcv:0000708) and the female sterile (FBcv:0000366)

target phenotypes were available. These were dhr96 (E-GEOD-18576), mir-14 (E-GEOD-

20202), rbf (E-GEOD-38430), p53 (E-GEOD-37404) and crol (E-GEOD-8775) for the starva-

tion sensitive phenotype and loj (E-GEOD-10940), ovo (E-GEOD-48145), pxt (E-GEOD-

29815), su(HW) (E-GEOD-36528), ttk (E-GEOD-42758) and vret (E-GEOD-30360) for the

sterile phenotype. Additional information can be found in S1 and S2 Tables in S1 File. Follow-

ing normalisation and excluding transcripts that did not match any known or predicted gene,

there were 12,630 genes left for analysis. The normalised gene-expression data are available

upon request.

GO-terms enrichment analysis

Figs 3 and 4 show the results for the GO-terms associated with the two target phenotypes

respectively (full numerical data are shown in S5 and S6 Tables in S1 File). Enrichment of star-

vation-related GO terms for the starvation-sensitive phenotype was observed for LMEM with

the inclusion of one to four PCs (Fig 3). In contrast, sterile-related GO terms were found to be

mostly enriched with LMEM without the inclusion of PCs (Fig 4). This suggests that there is

more inter-experiment variability associated with the starvation-sensitive phenotype as com-

pared to the sterile. All of the individual gene perturbation experiments that exhibited the ster-

ile phenotype comprised female flies and more homogeneous tissue used to derive the

expression data (S2 Table in S1 File), whereas the individual experiments for the starvation-

sensitive phenotype were mixed sex and the expression data were derived from a variety of tis-

sues (S1 Table in S1 File).

We also performed a GO enrichment analysis associated with individual control/mutant

experiments exhibiting the two target phenotypes (e.g. crol part of E-GEOD-8775). Ranks of

genes were derived using the limma package in R. Only two experiments showed any
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statistically significant evidence of GO-terms enrichment associated with the starvation pheno-

type (crol and p53; S3 Table in S1 File), whereas all of the experiments that were identified to

exhibit the sterile phenotype showed statistically significant enrichment of reproduction-

related GO terms (S4 Table in S1 File).

Fig 3. Top GO terms for the starvation-sensitive molecular signature. Red vertical line represents FDR p-value 0.05.

https://doi.org/10.1371/journal.pone.0240824.g003

Fig 4. Top GO terms for the sterile molecular signature. Red vertical line represents FDR p-value 0.05.

https://doi.org/10.1371/journal.pone.0240824.g004

PLOS ONE Predicting phenotypes using repository gene-expression data

PLOS ONE | https://doi.org/10.1371/journal.pone.0240824 October 26, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0240824.g003
https://doi.org/10.1371/journal.pone.0240824.g004
https://doi.org/10.1371/journal.pone.0240824


Removal of batch effects within an experiment

Only one experiment (loj), with the sterile phenotype, exhibited a significant batch effect. The

controls and mutants comprised two tissues (abdomen and head/thorax). We used the ber
package to correct for the batch effect using the tissue as a factor. We observed two clusters for

the first PC (89.34% variance explained) that separated the loj by tissue (S3a Fig in S1 File).

Correcting for the tissue batch effect eliminated the tissue separation and the loj controls/

mutants separated by the second PC (S3b Fig in S1 File).

Determining the number of PCs for unwanted variation

The maximum AUC for the leave-one-out cross-validation for the starvation sensitive pheno-

type was 97% with six consecutive PCs and 85% with LMEM with no PCs for the sterile pheno-

type (Figs 5 and 6).

Nevertheless, GO term enrichment analysis showed that the statistical significance of star-

vation-related GO terms disappeared (FDR p-value >0.05) when the first five or six PCs were

included in the LMEM (Fig 3). GO terms enrichment results for the sterile phenotype are

shown in Fig 4. Furthermore, PCA of the residuals of the starvation sensitive LMEM with five

or six PCs showed near complete separation of the controls and mutants (S4f and S4g Fig in S1

File). Taken together, these results suggest that the first four PCs account for biological/techni-

cal variability, that the overall molecular signature is enriched with starvation-related GO

terms, and the 5th and 6th PCs account for the starvation-sensitive phenotype. We hypothesise

that when we account for the first 5–6 PCs, the signal that is left is a form of global gene-

expression regulation following a gene perturbation. Thus, accounting for the first five or six

PCs results in a prediction of the class separation, rather than the manifestation of the pheno-

type. A gene perturbation disrupts the global gene-expression equilibrium and results in differ-

ential expression of compensatory gene mechanisms. In other words, control/mutant

experiments with seemingly different gene perturbations may result in a higher than expected

by chance overlap of differentially expressed genes, i.e. genes that are part of the compensatory

gene-expression regulatory network. In order to test this hypothesis, we performed 1,000 per-

mutations, whereby we chose five random control/mutant experiments from EBI’s ArrayEx-

press. The number of controls/mutants per experiment was matched to the number of

controls/mutants in the five experiments for the starvation-sensitive phenotype. Thus, the

number of controls/mutants in a randomly chosen experiment was reduced to match the

number of controls/mutants in S1 Table in S1 File. For each of these experiments we derived

normalised gene-expression values using the same procedure as for the starvation-sensitive

phenotype. We derived differentially expressed genes using the limma package in R. For each

of these random sets of experiments, we selected the top 200 genes and calculated the number

of genes that overlap within each set of experiments in a pairwise manner. For each of these

permutations we calculated the median of the -log10 of the p-value for each pairwise overlap

using hypergeometric distribution. We compared these results to the pairwise overlap of ran-

dom 200 genes as part of 1,000 sets of experiments. The distributions of the results for the ran-

dom 1,000 sets of experiments and for what is expected by chance are shown in Fig 7.

The results presented in Fig 7 clearly show that a random combination of sets of five experi-

ments exhibit a significantly greater number of differentially expressed genes that overlap

between the experiments as compared to purely by chance alone. This observation has been

also reported in humans [6]. Thus, for the leave-one-out cross-validation for the starvation-

sensitive phenotype we used the first four PCs to account for biological/technical variation.

For the sterile phenotype we did not use PCs (LMEM with 0 PCs). PCA graphs for the sterile

molecular signature LMEM with 0 to 7 PCs are shown in S5 Fig in S1 File. For the calculation

PLOS ONE Predicting phenotypes using repository gene-expression data

PLOS ONE | https://doi.org/10.1371/journal.pone.0240824 October 26, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0240824


of the AUC for the LOOCV we tested a range of top genes (from 50 to 3,000). For the starva-

tion-sensitive phenotype there was not a difference in the AUC with different number of top

genes, although choosing more genes resulted in a slightly higher AUC (50 genes 87.76%

AUC; 3,000 genes 90.31% AUC; S6 Fig in S1 File with 4PCs). The opposite was noted with the

sterile phenotype, fewer number of top genes resulted in higher AUC (50 genes 90.58% AUC;

3,000 genes 73.68% AUC; S7 Fig in S1 File with 0PCs). These trends could potentially reflect

the size of the transcriptional network involved in both phenotype, for example it has been

Fig 5. Starvation-sensitive phenotype, leave-one-out cross-validation AUC. AUC- Area Under the Curve; a through h LMEM with 0 to 7 PCs.

https://doi.org/10.1371/journal.pone.0240824.g005

PLOS ONE Predicting phenotypes using repository gene-expression data

PLOS ONE | https://doi.org/10.1371/journal.pone.0240824 October 26, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0240824.g005
https://doi.org/10.1371/journal.pone.0240824


previously reported that the starvation stress resistance involves transcriptional response of

~25% of the genome in Drosophila [7].

The mean distribution of the control/mutant class probabilities from the random forest for

both the starvation-sensitive and sterile phenotypes were significantly different from 0.5

(Table 1). The results in Table 1, along with the AUC for both phenotypes (Figs 5 and 6), show

that we can confidently predict the phenotypic manifestation of a separate experiment that

exhibits the phenotype of interest.

Fig 6. Sterile phenotype, leave-one-out cross-validation AUC. AUC- Area Under the Curve; a through h LMEM with 0 to 7 PCs.

https://doi.org/10.1371/journal.pone.0240824.g006
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Predicting freely available experiments for the presence of both phenotypes

In order to obtain freely available experiments we utilised EBI’s ExpressionAtlas (https://www.

ebi.ac.uk/gxa/home) instead of ArrayExpress. We used EBI’s ExpressionAtlas due to the avail-

ability of normalised gene-expression values for a large number of the already available raw cel

gene-expression data in ArrayExpress. This eliminated the need to normalise all of the avail-

able raw gene-expression data within ArrayExpress. For all experiments available in EBI’s

ExpressionAtlas (total number of control/mutant experiments at the time of conducting the

study: 211) we used the molecular signatures for the starvation sensitive and sterile phenotypes

to derive a mean probability separately for controls and mutants in an experiment. The mean

mutant probability was used to suggest a degree of phenotypic manifestation. Ranking of all

available experiments is given in S7 and S8 Tables in S1 File for the starvation-sensitive and

sterile phenotypes respectively.

Ranking EBI’s ExpressionAtlas experiments for the starvation-sensitive phenotype.

The top three ranked experiments were all already used to generate the molecular signature

(dhr96, crol and rbf), thus it is not unexpected that we can predict these experiments with the

Fig 7. Distribution of the pairwise overlap of genes in 1,000 random sets of five experiments, derived from

ArrayExpress, as compared to expected by chance. Y-axis- Median -log10 hypergeometric p-value for significance of

pairwise overlap.

https://doi.org/10.1371/journal.pone.0240824.g007

Table 1. One sample t-test for class probabilities (controls/mutants) in the two phenotypes following LOOCV.

Class Phenotype

starvation-sensitive p-value (μ = 0.5) Sterile p-value (μ = 0.5)

Controls 5.72x10-03 3.87x10-03

Mutants 5.84x10-03 3.10x10-03

https://doi.org/10.1371/journal.pone.0240824.t001
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highest accuracy. The p53 (E-GEOD-37404) and mir-14 (E-GEOD-20202) experiments are

not included in the EBI’s ExpressionAtlas datasets.

For the rest of the freely available experiments available in EBI’s ExpressionAtlas we found

no results from a direct lab-based assay of the starvation sensitivity. Nevertheless, for some of

the top-ranked experiments we found additional evidence that can be potentially used to sup-

port the results from our prediction. All three gene mutants (rbf120a, rbf120a wtslatsX1 and

wtslatsX1), part of an experiment (E-GEOD-24978) were ranked with mutant class probabilities

of 83%, 74% and 64% respectively. The two genes, rbf and wts regulate cell proliferation via the

p16 and Hippo tumour suppressor pathways. There is only a direct lab-based measurement of

the starvation-sensitive phenotype of rbf120a, which was used as part of the molecular signature.

We speculate that the wtslatsX1 and the double-mutant rbf120a wtslatsX1 may also exhibit starva-

tion-sensitive phenotype.

Several of the top-ranked experiments included fly lines from the Drosophila Genetic Refer-

ence Panel (DGRP) [8]. These included genes (esg, Pdcd4, mub, Gbs-70E) that were reported

to exhibit a reduced starvation resistance, tested at six weeks.

Ranking EBI’s ExpressionAtlas experiments for sterile phenotype. The top four ranked

experiments in the EBI’s ExpressionAtlas comprise four already used control/mutant experi-

ments for the sterile molecular signature (ovo (ovo and ovo/cako) and loj (head and thorax)),

thus it is not surprising that we can detect these with high accuracy. The rest of the experi-

ments, part of the molecular signature, were not analysed as part of EBI’s ExpressionAtlas (not

all experiments from ArrayExpress are analysed in ExpressionAtlas). Similarly to the starva-

tion-sensitive molecular signature we found no direct evidence that the top-ranked experi-

ments will exhibit the sterile phenotype. Nevertheless, there was additional evidence for some

of the top-ranked experiments. For example, experiment E-GEOD-55187 comprises sesb1

homozygous female mutants that are predicted to exhibit the sterile phenotype with mean

probability of 85% across the individual mutants. Sesb1 is listed as female sterile in flybase

(http://flybase.org/reports/FBal0015434-phenotypic_data_sub). Due to lack of information,

we could not verify whether the gene-mutant shown as sterile [9] is exactly the same as the

gene-mutants with the microarray data in EBI’s ArrayExpress [10]. Similarly, in experiment

E-MTAB-3546 [11], 3-week reproductive diapause under cold conditions (11C) was predicted

to exhibit the sterile phenotype with a mean mutant probability of 91% across the individual

mutants. Clearly, the mutant female flies are very likely to exhibit the sterile phenotype as they

were induced into a diapause that is associated with a reproductive arrest. The 10 and 40 days

aged dietary restricted female flies (E-GEOD-26726) also showed evidence of the sterile phe-

notype (84% and 79% respectively). There is a well-defined reduction in daily and lifetime

fecundity under dietary restriction [12], therefore it is more than likely that the 10 and 40 days

old flies will exhibit the sterile phenotype.

Discussion

In this paper we present a novel computational approach for integrating gene-expression data

for two specific phenotypes (starvation-sensitive and sterile) in Drosophila from the vast and

largely unutilised freely available public repositories. This integration is multi-layered with

phenotypic information derived from a species-specific database (FlyBase) and gene-expres-

sion from the largest repository of publicly available genomic data, the ExpressionAtlas at the

European Bioinformatics Institute. Crucially, we present an approach to utilise gene-expres-

sion data generated by completely independent groups across the scientific community.

The results of this proof-of-concept study show that it is possible to integrate seemingly dif-

ferent gene-expression microarray data using a combination of linear-mixed effect models and
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principal components analyses and predict a potential phenotypic manifestation with a rela-

tively high degree of confidence. Nevertheless, the applicability of this methodology to capture

a wide range of phenotypes and organisms requires a considerable amount of additional work

that is beyond the scope of this article.

The premise of our methodology is based upon the assumption that specific cellular and

physiological phenotypes are underlined by or associated with similar gene-expression

changes. In addition, the number of such gene-expression changes that are shared between dif-

ferent perturbations and are associated with a specific phenotype, is likely to differ between

different phenotypes. Currently, there is no simple way to derive a set number of gene-expres-

sion changes that describe a particular phenotype and this number is also likely to depend on

the nature of the phenotype. We used an empirically derived number of genes for the two phe-

notypes that we tested (top 200 genes, based on p-value for differential expression), although

this selection can potentially be automated using a different number of genes. Our approach

might not be directly applicable if a specific phenotype is underlined by independent biological

pathways or caused by mechanisms that do not result in changes in gene-expression. Never-

theless, additional genomic measurements can be incorporated as and when they become

available. Furthermore, our methodology relies on freely available gene-expression data, which

is only set to increase [13]. Thus, with the increase in repository data, our approach has a great

potential to estimate relative degree of independence of biological pathways that influence or

give rise to specific phenotypes.

Biological phenotypes are rarely binary features, although they often get binarised for ease

of use, for example gravitaxis defective phenotype (movement away from the source of gravity)

can be expressed as defective/normal or a more complex measure can be used to account for

the continuous nature of the phenotype [14]. Nevertheless, even with considerable efforts to

standardise experimental protocols and measurement assays, differences will be exhibited

between laboratories across the world. As such, it is difficult to utilise the continuous pheno-

type response measurements. In this study we only considered control/mutant type experi-

ments. For such experiments the measured phenotypes can be taken as relative with respect to

controls, thus minimising the differences in protocols. Nevertheless, for most such experi-

ments in Drosophila, there is no unified system/database that collects and archives the out-

comes of such measurements and currently these have to be extracted manually from the

corresponding manuscripts and assessment made on how similar the protocols are. Our meth-

odology of predicting potential phenotypic manifestation uses a machine learning approach,

that is random forest. This could potentially be used to infer the two phenotypes probabilisti-

cally, although it is unclear what the relationship is between the similarity in gene-expression

and the degree of phenotype manifestation.

Although our study utilises gene-expression microarray data and such type of data is clearly

superseded by RNA sequencing [13], we do not foresee any major challenges in adopting our

methodology to work with RNA-seq data. For example, raw RNA-seq counts can be relatively

easily transformed into transcripts per million (TPM) and log2 of TPM can be used in the lin-

ear-mixed effect models.

Our methodology relies on linear-mixed effect models accounting for unwanted biological

effects in the form of principal components. In order to estimate the number of PCs we utilised

Gene Ontology enrichment analysis, whereby we chose consecutive number of PCs to maxi-

mise GO enrichment. One of the potential limitations is that there might be some degree of

circularity when using GO terms to define phenotypic enrichment, since GO categories could

have been partially defined using similar data. The other limitation is that the combination of

PCs and linear-mixed effect model is likely to be overconservative, such that some variation in

the phenotype of interest maybe already included in the PCs. Other approaches, such as
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probabilistic estimation of expression residuals (PEER) [15] could be used to facilitate estima-

tion of unwanted factors.

The proof-of-concept study presented here is a novel approach of predicting the manifesta-

tion of two phenotypes in Drosophila from gene-expression data. While, similar attempts have

been previously performed [16–19], these studies rely on a single or a few well-defined datasets

with few measured phenotypes. Our approach goes beyond single studies and it is not

restricted to selective phenotypic measurements in a few datasets. The methodology described

here captures the diverse genetic background and gene-perturbations from all the publicly

available repository data and links them to phenotypic characteristics, thereby adding value to

already deposited and largely unutilised data.
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