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Abstract: Recently, several studies for lung regeneration have been reported. However, regenerating
the lung tissue by the transfer of any cells directly to the lung has been hardly successful. The aim of
this study was to evaluate the effect of fetal lung cells (FLCs) in a mouse model of lung emphysema.
C57BL/6 mice were stimulated with neutrophil elastase (NE) intra-tracheally (i.t.) to generate lung
emphysema. To collect fetal lung cells, C57BL/6-Tg (CAG-EGFP) mice were bred for 14 days. Before
delivery, the bred mice were euthanized, and fetal lungs were harvested from the fetal mice and
the cells were collected. The FLCs were transferred i.t. 24 h after the NE instillation. Four weeks
after the NE instillation, mice were euthanized, and the samples were collected. The mean linear
intercept (MLI) was significantly prolonged in the NE instillation group compared to the control
group. However, in the FLCs transfer group stimulated with NE, the MLI became shorter than the
NE-stimulated group without an FLCs transfer. This result shows that an FLCs transfer inhibited the
progression of lung emphysema. Additionally, motility of the mice was also improved by the FLCs
transfer. These results indicate that transfer of the FLCs, which were presumed to be progenitor cells
for lung tissue, may improve the emphysematous change.
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1. Introduction

In patients with chronic obstructive pulmonary disease (COPD), the destruction of
lung tissue leads to emphysematous changes, resulting in impaired gas exchange, which
causes chronic respiratory failure. As a result, dyspnea appears and their activity declines.
Currently, there is no treatment to improve emphysematous changes once they occur, and
hypoxia is treated only by the administration of oxygen.

Features of emphysema include the destruction of the alveolar walls, the loss of elastic
recoils, and the abnormal expansion of the airspace from the peripheral to the terminal
bronchioles [1]. The pathogenesis of emphysema involves alveolar macrophages, CD8+
T cells, and neutrophil-mediated inflammation, most commonly activated by cigarette
smoke [2]. These cells produce several variants of protease; among them, neutrophil elastase
(NE) has been reported as particularly important in the development of emphysema [3,4].
In fact, a previous study has shown that intra-tracheal (i.t.) administration of NE creates a
mouse model of emphysema that exhibits emphysematous changes in the lungs [4].

Although there are several studies that have focused on regenerative treatments of the
lung, the majority of such studies involving the transfer of cells directly to the lung have
not shown benefit. Nevertheless, two studies have reported that the intravenous transfer
of bone marrow cells or the i.t transfer of bone marrow-derived mesenchymal stem cells
improved lipopolysaccharide-induced lung injury in a mouse model [5,6]. However, the
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suspected mechanism might have involved the induction of proliferation and differentiation
of the host lung cells rather than the transferred cells themselves. Additionally, there are
other reports showing that the intravenous transfer of embryonic lung cells may repair
lung emphysema [7,8].

In the present study, we investigated whether the transfer of fetal lung cells (FLCs) di-
rectly into the lung in a mouse model of NE-induced emphysematous change (emphysema
model mouse) could trigger lung tissue regeneration or an improvement in the emphyse-
matous changes in the lung. The prenatal fetal lung is immature and extracted FLCs are
thought to be progenitor cells undergoing differentiation into lung tissue. Therefore, we
examined whether FLCs transferred i.t. into the emphysema model mouse could reverse
the emphysematous changes and regenerate lung tissue.

2. Materials and Methods
2.1. Animal

Male C57BL/6 mice were obtained from the Saitama Experimental Animal Supply Co.,
Ltd. (Saitama, Japan). All animal experiments were approved by the Animal Care and Use
Committee of the Showa University (approval number: 02094, approval date: 1 April 2020).

2.2. Establishment of Emphysema Model and FLCs Transfer

The mice were administered neutrophil elastase (NE) 10 U i.t. to generate the emphy-
sema model. To investigate the distribution of transferred cells within the lungs of recipient
mice, we used C57BL/6-Tg (CAG-EGFP) mice as FLC donors. The male and female donor
mice were bred for 14 days. The bred mice were euthanized before delivery of offspring,
and the lungs were harvested from the fetal mice. The fetal lung tissue was homogenized
through a 70-µm mesh in ice-cold phosphate-buffered saline. The homogenate was washed
and the cells were collected. In twenty-four hours (24 h) after the NE application, the FLCs
were transferred 2 × 106 cells/mouse i.t. into the emphysema model mice. FLCs are whole
fetal lung cells that include several kinds of immature cells that are expected to differentiate
into each structure of the lung.

2.3. Cellular Analysis in BALF

At 1 week and 4 weeks after NE intratracheal instillation, the mice were euthanized
and bronchoalveolar lavage (BAL) was performed three times per mouse (0.35 mL/time)
with normal saline. The BAL fluid (BALF) was centrifuged, and the cells were washed and
re-suspended in the normal saline. The total number of cells was counted by hemocytometer
with Turk solution (Wako Pure Chemical Industries, Ltd., Osaka, Japan). GFP-positive cells
were observed by fluorescence microscopy.

2.4. Analysis of Lung Histopathology

After performing BAL, the lungs were removed from the chest and inflated with
500 µL of 10% formalin in PBS, followed by continuous inflation for 24 h at 10 cm H2O
pressure. The lung tissues were dehydrated in ethanol, embedded in paraffin, sectioned
(5 µm), and stained with hematoxylin–eosin staining. For the evaluation of emphysema,
mean linear intercept (MLI) in three lung sections per mouse was measured as previously
described [9]. MLI of the alveolar space was measured by drawing random test lines on
sections of the lung and measuring the lengths separated by the alveolar septa; MLI is
expressed as the mean length of the lines between sections. FLOVEL Filing System was
used to evaluate the MLI (FLOVEL, Co., Ltd., Tokyo, Japan).

2.5. Investigation of Motility by FST

Forced swim test (FST) was performed at 4 weeks to investigate the motility function
of the mice. The mice were allowed to swim in the aquarium for 6 min and the motility time
was measured as previously described [10]. Motility time was defined as how long the mice
moved their limbs. We measured the time by taking videos while the mice were swimming.
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2.6. Statistical Analysis

Differences between the two groups with NE administration, i.e., transfer of fetal
lung cells (FLCs) (+) and (−), were analyzed using an unpaired Student’s t-test. The
significance of the differences among the three groups consisting of the two groups with
NE administration and one without NE administration was determined by analysis of
variance (ANOVA) with Bonferroni correction. All experiments were performed at least
twice with 4 or more animals per group. Data are expressed as mean ± SEM, and p < 0.05
was considered to indicate significance.

3. Results and Discussion

The number of total cells in the BALF was significantly increased in the FLCs-transferred
group (n = 8) compared with the non-transferred group (n = 7) at 1 week after NE instil-
lation (number of total cells: 5436 ± 419 vs. 2936 ± 231 (mean ± standard error of the
mean); p < 0.001, n = 8 and 7, respectively, Figure 1A). In contrast, there was no significant
difference in cell counts between the transferred and non-transferred groups at 4 weeks
after NE instillation (number of total cells: 3471 ± 571 vs. 3017 ± 368, p = 0.518, n = 7 and 6,
respectively, Figure 1A).
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Figure 1. Analysis of total number of cells in the BALF at 1 week and 4 weeks after NE administra-
tion. (A) Representative slides of BALF total cells showing under a fluorescence microscope from
1 week after the NE administration with or without FLCs transfer. (B) * p < 0.05, n = 6–8. BALF:
bronchoalveolar lavage fluid, NE: neutrophil elastase, FLCs: fetal lung cells, sac: sacrifice.

This result suggests that FLCs remained in the alveolar space at 1 week and had not
yet engrafted into the alveolar wall or lung parenchyma. At 4 weeks, as the FLCs had
likely engrafted into the alveolar wall or lung parenchyma, the number of total cells and
monocytes observed in the BALF of the FLCs-transferred group decreased to the number
comparable with the non-transferred group. Fluorescence microscopy revealed that a large
number of GFP-positive BALF cells derived from the transferred FLCs were observed at
1 week (Figure 1B), whereas these cells were scarcely present at 4 weeks.

Histological evaluation of emphysema, using the measurement of MLI, revealed
no significant difference among the three groups regardless of NE administration and
FLCs-transfer at 1 week. However, at 4 weeks, the instillation of NE showed a significant
increase in the MLI compared to the non-instillation group (Figure 2), which confirmed
that the intratracheal instillation of NE caused the destruction of the alveolar walls and
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induced emphysematous changes as previously reported [4]. In comparison between the
NE-administered groups, the MLI was significantly shorter in the FLCs-transferred group
at 4 weeks (Figure 2). These findings might suggest that the transfer of FLCs inhibited the
destruction of alveolar walls and the development of emphysema.
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Figure 2. Representative lung sections showing H&E staining from control and 4 weeks after NE
administration with or without FLCs transfer. The size of the alveolar space was evaluated by
measurement of MLI. * p < 0.05, n = 8 for each. H&E: hematoxylin and eosin, Ctl: control, NE:
neutrophil elastase, FLCs: fetal lung cells, MLI: mean liner intercept.

Attempts were made to identify the origin of the cells that reconstructed the damaged
alveolar structure by employing the green mouse as the donor of embryonic cells obtained
from the lung tissue. We hypothesized that the cells having grown at the damaged alveoli
could be derived from the donor embryonic cells, which would be recognized as green
under a fluorescence microscope. However, we were not able to reveal if the cells were
derived from the donor since the green was not bright enough to distinguish the cells of
the donor of green mice from the cells of the recipient of non-green mice. Briefly, under
fluorescence microscopy, the GFP-positive cells appeared seeming to have aggregated
mainly in the lung parenchyma at 1 week and in the alveolar walls at 4 weeks (Figure 3).
As mentioned above, some uncertainties were noted. One is due to an unclear distribution
of transferred cells because of the weakness of fluorescence. For this reason, not only
did the transferred cells themselves proliferate and repair the emphysema, but it is also
possible that the host lung cells were stimulated by the transferred cells to repair the
emphysema. Because FLCs were transferred 24 h after the elastase instillation, which is
before the emphysematous change was established, the mechanisms of the improvement
of emphysema might not only be caused by the direct contribution of FLCs but also by
several indirect factors such as the inhibition of proteolysis or other anti-inflammatory
effects. However, the possibility that the FLCs might be a source of anti-protease action is
unlikely since alpha1-anti-trypsin (AAT), the major physiological proteinase inhibitor, is
produced by liver hepatocytes in a steady-state manner [11]. For the characteristics of FLCs,
Yamamoto et al. reported that fetal mouse lung mesenchymal cells are able to differentiate
to vascular encothelia, osteogenic and chondrogenic cell lineages by various types of stimuli
in vitro [12]. Moreover, Shibuya et al. reported that whole fetal lung culture expressed
key genes such as E-cadherin and collagen-4 and established recapitulating branching
morphogenesis. Additionally, the culture of mesenchyme-free epithelium rudiments, were
able to generate new branches [13].
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Figure 3. Representative lung sections showing under a fluorescence microscope from 1 week
or 4 weeks after the NE administration with or without FLCs transfer. NE: neutrophil elastase,
FLCs: fetal lung cells sac: sacrifice. White box shows the enlarged part and the arrows indicate
GFP-positive cells.

The investigation of motility by FST showed a smaller amount of exercise in the
NE-administered group compared with the non-administered group at 4 weeks (motility
time in 6 min: 202.2 ± 9.32 s vs. 257.3 ± 19.9 s; p = 0.040; n = 6 for each, Figure 4). The
transfer of FLCs significantly improved the amount of exercise in the NE-administered
groups (motility time in 6 min: 257.8 ± 0.12 s vs. and 202.2 ± 9.32 s; p = 0.049; n = 6 for
each, Figure 4). This result indicates that FLCs-transfer could increase exercise capacity, and
further suggests that this approach might reduce the extent of emphysematous changes, as
reflected in the relatively larger amount of the exercise.
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Figure 4. Analysis of motility time in 6 min at 4 weeks after the NE administration with or without
FLCs transfer. * p < 0.05, n = 6 for each. NE: neutrophil elastase, FLCs: fetal lung cells.

As results, the fact we have confirmed is that the alveolar damage by elastase in our
murine emphysema model has partially reconstituted by transferring embryonic lung
cells, and the pulmonary function of oxygenation has been assessed to be improved by
measuring the duration of exhaustion in water.

This study has some limitations. First, the study was based on an NE-induced model
with young mice, which displays emphysematous changes without the accompanying
chronic inflammation caused by cigarette smoke and/or immune aging. Future studies aim-
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ing to validate the present findings should involve other emphysema models. Second, FLCs
do not constitute a single cell type, and the involvement of individual cell types remains
unclear. It has been shown that lung progenitor cells were purified from mouse embryonic
stem cells, which might be the next candidate cells for transfer [14,15]. Additionally, instead
of transferring FLCs, future studies might utilize induced pluripotent stem (iPS) cells or
other immature cells before their differentiation into specific cell types. Third, respiratory
function was analyzed by FST in this study. However, it might be better to measure the
diffusing capacity for carbon monoxide (DLCO), as previously reported [16], or measure
other respiratory functions such as static compliance by using a plethysmograph chamber
(e.g., Buxco Electronics Inc., Troy, NY, USA). This would be another important future study.

Finally, in the present study, we attempted to improve the emphysematous changes
by transferring FLCs, but this method is difficult to translate directly into a clinical ap-
proach. To apply the results to clinical practice, it is important to investigate the molecular
characterization of the FLCs and identify which are the key molecular factors involved in
lung regeneration.

4. Conclusions

In conclusion, using a murine emphysema model, we have shown that the transfer of
FLCs, presumed to be progenitor cells of the lung tissue, could improve emphysematous
changes in the lung. This improvement was observed in histological specimens and exercise
capacity. These preliminary findings suggest that COPD patients might benefit from the
transferring of immature lung progenitor cells directly into the airway or alveoli, where the
transferred cells might support the improvement of emphysema. Moreover, it is expected
to recover the respiratory failure and increase activity.
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