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Abstract

HIV-1 protease is one of the main therapeutic targets in HIV. However, a major problem in treatment of HIV is the rapid
emergence of drug-resistant strains. It should be particularly helpful to clinical therapy of AIDS if one method can be used to
predict antivirus capability of compounds for different variants. In our study, proteochemometric (PCM) models were
created to study the bioactivity spectra of 92 chemical compounds with 47 unique HIV-1 protease variants. In contrast to
other PCM models, which used Multiplication of Ligands and Proteins Descriptors (MLPD) as cross-term, one new cross-
term, i.e. Protein-Ligand Interaction Fingerprint (PLIF) was introduced in our modeling. With different combinations of
ligand descriptors, protein descriptors and cross-terms, nine PCM models were obtained, and six of them achieved good
predictive abilities (Q2

test.0.7). These results showed that the performance of PCM models could be improved when ligand
and protein descriptors were complemented by the newly introduced cross-term PLIF. Compared with the conventional
cross-term MLPD, the newly introduced PLIF had a better predictive ability. Furthermore, our best model (GD & P & PLIF:
Q2

test = 0.8271) could select out those inhibitors which have a broad antiviral activity. As a conclusion, our study indicates
that proteochemometric modeling with PLIF as cross-term is a potential useful way to solve the HIV-1 drug-resistant
problem.
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Introduction

Acquired immunodeficiency syndrome (AIDS), caused by

human immunodeficiency virus (HIV), is one of the most fatal

diseases to threat human life for its infectivity and high mortality.

Since its recognition in 1981, more than 60 million people have

been infected with HIV around the world, and approximately 25

million people have died of AIDS. Nowadays, more than 34

million are living with HIV infection [1,2]. Currently, the main

strategies for treating AIDS are through disrupting one or several

key steps of HIV life cycle to control the replication rate of HIV

virus.

HIV-1 protease is one of the main therapeutic targets in HIV

and it is a dimeric protein composed of two identical 99-residue

chains. The protease cleaves the Gag-Pol polyprotein into

structure proteins and enzymes, which is a necessary step for the

generation of new infectious virus particles, and nine of the twenty-

eight FDA-approved anti-HIV drugs in current use target the

HIV-1 protease. However, mutations were found in the protease

soon after the HIV protease inhibitors were introduced, and the

high mutation rate of HIV-1 protease allows the virus to escape

from the antiviral therapy [3]. So it is necessary to acquire a

reasonable method to predict antivirus capability of compounds

for a wide spectrum of HIV.

To date, for experimental methods, high-throughput screen is

mostly used to filter novel compounds against all kinds of targets as

well as HIV mutated variants; for in silico methods, molecular

docking [4,5,6], pharmacophore models [7,8], quantitative struc-

ture-activity relationship (QSAR) [6,9,10,11] etc are widely used to

virtually screen antiviral compounds against HIV mutated

variants. However, these methods are limited to the study of the

molecular recognition of one series of ligands interacting with

single target. In addition, the experimental assays are not only

cost-consuming but also limited by the repertoire of compounds

[12]. What the previous methods obtained are only suitable for

single variant rather than an overall bioactivity profile of

compounds’ activity against series of variants. Although several

methods have been proposed on multi-target, like Liu et.al

[13,14]_ENREF_13_ENREF_13 applied multi-task learning in

QSAR to analyze and design the novel multi-target HIV-1

inhibitors as well as HIV-HCV co-inhibitors; Ragno et.al [5], De

Martino et.al [15] and Sotriffer et.al [16] used cross-docking to

gain insight on the mode of action of new anti-HIV agents against
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both wild-type and resistant strains, in such multi-target QSAR

models, there are no explicit descriptions for targets, especially for

the interaction information of target-ligand pairs [13,14]. On the

other hand, it is well known that docking is time-consuming, and

the accuracy and versatility of the scoring functions are the main

issues for the current docking algorithms [17,18,19,20,21].

More recently, proteochemometric modeling has been widely

used to study the mechanisms for molecular recognition of series of

proteins, and widely applied in multiple variants- [22,23,24],

superfamily- [25,26], kinome- [27], as well as proteome-wide

interaction [28,29,30]. This method combines both the ligand and

target descriptors, and then correlates them to the activity data.

Therefore, PCM models can be considered as an extension of the

QSAR models, which are only based on the ligand information.

So far proteochemometrics have been successfully applied to HIV-

1 protease [23,24] and reverse transcriptase [22] to analyze drug

resistance over the mutational space for multiple variants and

multiple inhibitors.

However, in most of previous proteochemometric modeling,

cross-terms were derived from Multiplication of Ligand and

Protein Descriptors (MLPD) [23,24,25,26,31]. Cross-term is an

additional introduced term. Although it was introduced to account

for the complementarity of the properties of the interacting entities

and it can describe the two entities simultaneously, the significance

is not easy to understand. In addition, a lot of descriptors will be

generated by MLPD so that it is computationally time-costive and

with much redundancy. To address this issue, here we presented a

new cross-term protein-ligand interaction fingerprint (PLIF)

[32,33,34,35], which describes the interaction of a protein’s

residues with its ligand. In our study, we used PLIF to construct

PCM models to analyze bioactivity profiles of series of inhibitors

against series of HIV-1 protease variants comprehensively.

Results and Discussion

Kernel Selection
Our PCM modeling was performed based on support vector

regression (SVR). To select an effective kernel function for SVR,

10-fold cross-validation was first performed based on all the data

set with all the four kernel functions in choices. The results of

Q2
CV of each model with different combinations of descriptor

blocks were listed in Table 1. From the table, the results show that

most of the models run with Normalized Poly Kernel function

obtained better predictive ability than those with the other three

kernel functions. The paired t-test also showed that Normalized

Poly Kernel function was more suitable for this dataset in PCM

modeling (p-values are 0.0006827, 8.652e-06, 0.0301, compared

with Poly Kernel function, Puk function and RBF Kernel function

respectively). Therefore, Normalized Poly Kernel function was

selected here.

Support vector regression has a number of advantages over the

conventional linear regressions, especially for its robustness to

avoid overfitting [28,36,37]. By the use of the non-linear kernel,

SVM projects the data into a high-dimensional feature space and

correlation is then performed in this hyperspace. The selection of

the kernel function for SVR is very important because we may

construct learning machines based on how this inner-product

kernel is generated. The four kernels (summarized in Table 2) are

implemented in SMOreg of Weka and commonly used in support

vector machine. In previous SVM classification studies, experi-

ments were carried out using two to four of these kernels for

comparison. In different studies, different kernel was adapted

[38,39,40]. Therefore, a kernel that performs well on one dataset

does not necessarily perform well on another one. In our

regression analysis, Normalized Poly Kernel indicated the best

predictive ability among others.

Development and evaluation of the PCM models
With the selected Normalized Poly Kernel function, nine PCM

models with different descriptor combinations were created from

all the datasets. 20 ligand-protein pairs behaved as outliers (Z-

score. = 2.0 in no less than five of these nine models) , thus they

were removed (see Table S3).

Diverse Subset method was used to split the remaining dataset

into a training set (95 inhibitor-protease pairs) (see Table S1) and

a test set (45 inhibitor-protease pairs) (see Table S2). The training

Table 1. Q2
CV of each model with different combinations of descriptor blocks.

Models with different descriptor combinations Normalized Poly Kernel Poly Kernel Puk RBF Kernel

GD6P 0.6429 0.3643 0.1586 0.2988

DLI6P 0.6327 0.2054 0.2511 0.4221

PLIF 0.5572 0.5727 0.1627 0.5475

GD & P & GD6P 0.6476 0.3615 0.1581 0.2916

GD & P & PLIF 0.7022 0.3572 20.0214 0.6988

GD & P 0.6623 0.5702 0.2759 0.6731

DLI & P & DLI6P 0.6273 0.2243 0.2509 0.4155

DLI & P & PLIF 0.6731 0.3475 0.0306 0.6880

DLI & P 0.6095 0.5195 0.3831 0.6544

doi:10.1371/journal.pone.0041698.t001
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set was used to create models and the test set was used to evaluate

the performance of different models with different descriptor

combinations. The obtained goodness-of-fit (R2) and predictive

ability (Q2
test) of models were illustrated in Table 3 and Figure 1.

As a result, nine new PCM models were obtained, and six of them

achieved reasonably good predictive ability (Q2
test.0.7). The

results indicate that the SVR with the selected kernel, as well as the

data partition strategy etc are all suitable for the present study.

Performance of PLIF as Cross-terms in
Proteochemometric Modeling

From Table 3, we found that when including the PLIF cross-

terms, the models obtained better predictive abilities than that of

the models without PLIF. For the comparison purpose, we also

used the conventional cross-terms MLPD to build PCM models,

which is commonly used in previous proteochemometric modeling

studies [22,23,24,25,26]. Obviously, for each kind of ligand

descriptors, the newly introduced cross-terms PLIF outperformed

the conventional MLPD whether we used only the cross-terms or

the combinations of ligand, protein descriptors and cross-terms

blocks to create models (see Table 3).

Cross-terms are influenced by both the ligand and the target

part [31]. They are intended to describe the properties of the

interface between ligand and protein. PLIF is a kind of interaction

fingerprint which is calculated from the ligand-target complexes

and directly describes the interaction of ligand with protein from

hydrogen bonds, ionic interactions, and surface interactions [33].

Therefore, PLIF is inherent to be a suitable cross-term with no

surprising that the model performance would be improved by

using PLIF as cross-terms. In contrast, MLPD is derived by

multiplying ligand and protein descriptors, which is not an

essential reflection of the ligand-protein binding. In addition, our

results also displayed that the use of MLPD as cross-terms could

not improve the model performance significantly as PLIF did, and

sometimes even deteriorate the predictive ability. Such result is

probably explained by that the PCM models in this study were

created using support vector machine, which is a non-linear

machine learning method, which is actually expected to fulfill the

same purpose as the MLPD does. Therefore, we may conclude

that only when a suitable cross-term such as PLIF is used in

proteochemometric modeling, the model performance can be

improved significantly.

Bioactivity Spectra of HIV-1 Protease Inhibitors
Bioactivities of the four first-generation and four second-

generation inhibitors against the 47 protease variants were

predicted using our selected best PCM model. The results (shown

in Figure 2) display that the predicted activities of the second-

generation inhibitors are higher than the first-generation ones for

most variants. The average predicted values of the second-

generation ones are also higher than that of the first-generation

ones. Furthermore, the number of proteins for the eight inhibitors

whose predicted activities are higher than zero is 10 for

Saquinavir, 15 for Ritonavir, 15 for Indinavir, 12 for Nelfinavir,

22 for Darunavir, 23 for Tipranavir, 21 for TMC-126 and 25 for

XV638 respectively.

As we all know, the arrival of the early HIV-1 protease

inhibitors was a pivotal moment in the development of antiret-

roviral therapy. However, the rapid emerging resistance to the

first-generation of protease inhibitors occurred, which brought a

substantial and persistent problem in the treatment of AIDS.

Hence, to inhibit these drug-resistant HIV protease variants,

second-generation approaches have been developed. As a result,

the second-generation inhibitors should have a broader antiviral

activity. Meanwhile, all the above-mentioned results also indicate

that the second-generation inhibitors are potent against a wider

spectrum of protease variants. Thus it can be seen that our derived

model provides a useful way to discovery novel inhibitors which

have a broad antiviral activity.

Conclusions
To sum up, we have successfully applied proteochemometric

modeling in the study of the bioactivity spectra of HIV-1 protease

inhibitors and introduced a new cross-term PLIF into proteo-

chemometrics. Our results showed that when cross-terms were

introduced into proteochemometric modeling, the newly intro-

duced cross-term PLIF could always improve the model perfor-

mance significantly. In addition, we also found that PLIF had a

better predictive ability than that of the conventional MLPD.

Furthermore, our best derived model shows the ability to discover

novel inhibitors with broad antiviral activity. Our study indicates

that PLIF could improve the resolution and predictive ability of

the PCM model and consequently have potential application to

solve the HIV-1 drug-resistant problem.

Materials and Methods

Data set
To create PCM models with PLIF, protein-ligand complexes of

HIV-1 protease variants with their inhibitors and the correspond-

ing activity values were collected. Activity is described with Ki

value which is an inhibition constant and less susceptible by the

experiment circumstances than the others such as IC50, EC50 and

Table 3. Goodness-of-fit (R2) and predictive ability (Q2
test) of the obtained models.

Models with different descriptor combinations GD DLI

R2 Q2
test R2 Q2

test

PLIFa 0.9621 0.7470 0.9621 0.7470

MLPDa 0.9700 0.7101 0.9722 0.6702

L & P & PLIFb 0.9716 0.8271 0.9731 0.7929

L & P &MLPDb 0.9696 0.7129 0.9727 0.6612

L&Pc 0.9350 0.7298 0.9241 0.6134

aModels created using only cross-terms.
bModels created using ligand and protein descriptors with cross-terms.
cModels created using ligand and protein descriptors.
doi:10.1371/journal.pone.0041698.t003

PCM Modeling by Introducing PLIF
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etc. As a result, 160 protease-ligand complexes with inhibition

constants (Ki) were retrieved from PDB database, including 92

chemical compounds and 47 HIV-1 protease variants. Inhibition

constants of the 160 unique inhibitor-protease pairs were collected

from the literatures (see Table S1, S2 and S3). More recent

studies suggest that not only the active-site mutations but also

Figure 1. Graphical illustrations of the goodness-of-fit and predictive ability of the obtained models with the selected kernel.
Goodness-of-fit is shown as red solid circles, and predictive ability is shown as blue solid circles. The predicted versus measured activity values using
different combinations of descriptor blocks, i.e. GD6P (a), DLI6P (b), PLIF (c), GD & P & GD6P (d), GD & P & PLIF (e), GD & P (f), DLI & P & DLI6P (g), DLI
& P & PLIF (h), DLI & P (i) are shown in the figure.
doi:10.1371/journal.pone.0041698.g001

PCM Modeling by Introducing PLIF
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distant mutations may influence the drugs’ ability to inhibit the

protease [41], thus all the mutations in the variants should be

taken into consideration in the design of the inhibitors. The

fragment 501–599 of P03366 protein was considered as a wild-

type protease, and all of the proteases in the 160 complexes were

aligned to the wild-type. As a result, the number of the sequences

of mutated proteases differing from the wild-type sequence ranges

from one to twenty-one (5.17 on average). In all the data set, 69

compounds are collected with Ki value for only one type of HIV-1

protease variant, and there are 22 protease variants which only

have one ligand with collected Ki value for each of them.

The data set was divided into a training set (67%) and an

external test set (33%) according to the Diverse Subset partition

strategy built in MOE [33], which is used to rank entries in a

database based on the distance of their sequences from each other.

The general framework for our proteochemometric modeling is

presented in Figure 3.

Figure 2. Predicted inhibitory activity (pKi) of the selected eight compounds against 47 proteases. Red, pink, brown, orange circles
stand for the first-generation inhibitors, i.e. Saquinavir, Ritonavir, Indinavir, Nelfinavir respectively; Darkgreen, cadetblue, cyan, blue triangles stand for
the second-generation ones, i.e. Darunavir, Tipranavir, TMC-126, XV638 respectively. The lines indicate the average values for each of them.
doi:10.1371/journal.pone.0041698.g002

PCM Modeling by Introducing PLIF
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Numerical Descriptions for Proteochemometric Modeling
Description of Proteases. Of the 99 amino acids in each

protease monomer, 48 positions were found to be mutated in the

data set. Mutated positions were coded using the five z-scale

descriptors, z1–z5, of amino acids derived by Sandberg et al [42].

The five z-scales are the principal components of 26 computed

and measured physicochemical properties of amino acids, and

represent essential hydrophobicity/hydrophilicity (z1), steric bulk

properties and polarizability (z2), polarity (z3), and electronic

effects (z4 and z5) of amino acids. In this way, the varying parts of

protease sequences were represented by 4865 = 240 protease

descriptors.

Description of Protease Inhibitors. The inhibitors were

represented with two typical kinds of feature space respectively, i.e.

32-dimensional general descriptors (GD) and 28-dimensional

Drug-Like Index (DLI). The two sets of descriptors are widely

applied in describing organic compounds, and they describe

compounds from the views of intrinsic characteristics and drug-like

properties respectively. GD includes atomic contributions to logP,

molar refractivity, and atomic partial charge [43]. These

descriptors characterize physical properties of compounds. They

were successfully used to build reasonably good QSAR/QSPR

models of boiling point, vapor pressure, free energy of salvation in

water, water solubility, receptor class, activity against thrombin/

trypsin/factor Xa, blood-brain barrier permeability and com-

pound classification etc. On the other hand, DLI characterizes the

hierarchy of drug structures in terms of rings, links, and molecular

frameworks [44]. DLI was initially used to rank compounds in a

library to select drug-like compounds. In contrast to GD, DLI

characterizes simple topological indices of compounds. Therefore,

the obtained models will be validated with the two sets of features

respectively.

Protease-Inhibitor Cross-terms. Interaction fingerprints

have been developed to enhance the representation and analysis

of three-dimensional protein-ligand interactions, such as SIFt

(structure interaction fingerprint) [45], APIF (atom-pairs-based

interaction fingerprint) [46], Pharm-IF (pharmacophore-based

interaction fingerprint) [32], PLIF (protein-ligand interaction

fingerprint) [32,33] etc. Additionally, MM-PBSA/GBSA

[47,48,49,50] can also generate protein-ligand interaction spectra,

which is based on the binding energy. Here, protein-ligand

interaction fingerprints were calculated as protease-inhibitor cross-

terms using the functions built in MOE [33]. PLIF summarizes the

interactions between ligands and proteins using a fingerprint

scheme. The interactions are classified into six types: sidechain

hydrogen bonds (donor or acceptor), backbone hydrogen bonds

(donor or acceptor), ionic interactions, and surface interactions in

which a residue may participate. Setting the ‘‘Maximum # Bits’’

as 1000, and using the other default settings, raw protein-ligand

interaction data were calculated, and then fingerprint bits were

generated. Finally, totally 46 descriptors were extracted whose

values represented the strength of the corresponding interaction

with the ligand (these 46 descriptors were listed in Table S4). In

order to assess the efficiency of introduction of PLIF, MLPD (GD:

Figure 3. General framework for our proteochemometric modeling.
doi:10.1371/journal.pone.0041698.g003
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326240 = 7680 cross-terms or DLI: 286240 = 6720 cross-terms)

was also adopted for a complementary comparison.

Preprocessing of data
Prior to the calculation of MLPD and further building PCM

models, all descriptors were mean centered and scaled to unit

variance. The dependent variable (Ki) was logarithmically trans-

formed and also mean centered and scaled to unit variance prior

to the use in the computations..

Proteochemometrics Modeling
Selection of Kernel of Support Vector Regression. All

models were created using support vector regression (SVR) built in

the Weka [36] suit (Weka implementation ‘‘SMOreg’’), which is a

collection of machine learning algorithms for data mining tasks.

The kernel of SMOreg implemented in Weka consists of

Normalized Poly Kernel (normalized polynomial kernel), Poly

Kernel (polynomial kernel), Precomputed Kernel Matrix Kernel,

Puk (Pearson VII function-based universal kernel), RBF Kernel

(Radial Basis Function kernel), String Kernel. Since Precomputed

Kernel Matrix Kernel is based on a static kernel matrix that is

read from a file, and String Kernel can’t handle multi-valued

nominal attributes, the kernel was selected from the left four

nonlinear functions. The SMOreg algorithm was run with no

normalization/standardization on each of the four kernels. The

efficacy of the four kernels was assessed by Q2 (predictive ability)

with 10-fold cross-validation.
Model Induction and Validation. We used nine different

combinations of descriptor blocks, i.e. three kinds of cross-terms

(PLIF, MLPD of GD6P, MLDP of DLI6P), two combinations of

ligand and protein descriptors without cross-term (GD & P, DLI &

P), and four combinations of ligand, protein descriptors with cross-

terms (GD & P & PLIF, GP & P & GP6P, DLI & P & PLIF, DLI

& P& DLI6P) to create models from all the datasets with the

selected kernel. The Z score method was adopted for the detection

of outliers [51,52,53]. Any pair is considered as an outlier with

removing, if it shows a value of Z-score no lower than 2.0 in no less

than five of these nine models. Then the left datasets were split into

a training set and a test set. We created nine new models with the

training set and assessed the models performance with the external

test set. At last, the derived models were quantified by the

goodness-of-fit (R2) and predictive ability (Q2
test).

Finally, we selected four first-generation inhibitors, which are

the first four drugs (Saquinavir, Ritonavir, Indinavir and

Nelfinavir) [54] approved by Food and Drug Administration

(FDA), and four second-generation ones, of which two (Darunavir

[55] and Tipranavir [56]) are the most recently approved drugs

[54] and the other two (TMC-126 [57] and XV638 [58]) are

reported to be extremely potent against a wide spectrum of HIV. If

there were no experimental complexes for the eight inhibitors

against the 47 protease variants, these inhibitors were docked into

the protease to derive complexes and generate PLIFs using MOE

(presented in Table S5). Subsequently, the best derived model

was used to predict their bioactivity spectra.

Supporting Information
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proteochemometric models.
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Table S4 PLIFs for all the experimental complexes.
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Table S5 PLIFs for the eight inhibitors against all the
proteases.
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