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Abstract

Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial
pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a
largely unsampled ‘reservoir’ host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by
Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this
study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number
Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences
that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole
herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic
divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts.
Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent
transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple
outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution,
directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time
of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology
even where detailed contact data are not available, and that more extensive sampling and analysis will allow for
quantification of the extent and direction of transmission between cattle and badgers.
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Introduction

The application of whole genome sequencing (WGS) technol-

ogy to infectious bacterial diseases has resulted in unprecedented

advances in our ability to resolve epidemic data at the global scale

[1,2], provided new insights into within-host replication processes

[3], and been used to corroborate the importance of exhaustively

identified transmission chains and social drivers of transmission

[4,5]. However, evidence of its value when observing fine scale

transmission dynamics in a partially sampled population is thus far

limited to some tantalising observations [1] with as yet no

quantitative evaluation of the underlying contact processes using

nonlinear mathematical models. Such evaluations are particularly

important where the sampling is biased, such as when the

epidemiology involves an unobserved ‘reservoir’ host. Interpreta-

tion of sequence data at this scale is further complicated by the lag

between the time of transmission and the time of sample

collection, which can be considerable, especially for pathogens

with extended latent periods. Comparing genetic data with

mathematical models based on epidemiological contact data

should allow us to develop more general transmission principles,

and to compare and contrast the types of information that these

different data sources provide. Combining mathematical models

and pathogen sequence data has been an area of increased

attention in the epidemiology of fast-evolving RNA viruses [6–9],

but is as yet largely unexplored for bacteria, particularly for TB

and other slow growing mycobacteria, where transmission

intervals and routes tend to be more uncertain and evolutionary

rates are slower, warranting more extensive sequence information.

While this presents a unique set of challenges, WGS now offers

promising research solutions to this problem.

Mycobacterium bovis is the causative agent of bovine tuberculosis

(bTB), an important disease of both livestock and wildlife with
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severe socio-economic consequences and impacts on animal

health. Historically, it is believed to have been a major contributor

to human TB cases worldwide, and it remains a zoonotic concern

in both developed and developing countries [10,11]. While most

countries that employ well developed test and slaughter programs

have eliminated bTB from their livestock, the control of M. bovis

has proven problematic in Britain and Ireland, with the Eurasian

badger (Meles meles) implicated as an important wildlife reservoir of

M. bovis [12]. However, despite considerable research efforts, the

role of badgers in the transmission of M. bovis remains

controversial both on scientific and socio-political grounds [13,14].

Genotyping of M. bovis from cattle and badgers based on

spoligotyping and Variable Number Tandem Repeat (VNTR)

typing has provided considerable insight into the epidemiology of

M. bovis. In particular, the spatial clustering of genotypes in isolates

from British and Irish cattle is indicative of a locally driven

transmission process [15,16]. However, neither marker has the

resolution to identify fine scale transmission patterns such as

occurs at the individual herd level. Links between cattle and

badgers have been identified via analysis of genotype associations

and statistical analyses of observed outbreak data [17], however

direct evidence of transmission chains linking the two hosts at a

local farm scale remains lacking. Here, we exploit the resolution of

WGS to address these questions, using samples from badgers and

cattle collected from a group of neighbouring farms in Northern

Ireland (NI) with a decade-long history of repeated bTB outbreaks.

The epidemic of bTB in Northern Irish cattle is particularly well

described: annual ‘tuberculin’ testing of the entire cattle popula-

tion creates a uniform sampling framework, and the majority of M.

bovis isolates are now genotyped [16]. Between 2003 and 2010, this

amounted to 10596 isolates from cattle, which either had a positive

tuberculin test (a ‘‘reactor’’) or were identified by post mortem

testing of non-reactors. These data revealed 193 VNTR types

within NI, with three types accounting for over 50% of sampled

bacteria. M. bovis isolates from badgers are encountered at a lower

frequency via an ongoing road traffic accident (RTA) survey, but

their VNTR types show strong spatial associations on a regional

scale with those found in cattle (R. Skuce, unpublished data).

Complementing this extensive information on the pathogen are

detailed demographic and network data: cattle locations and

movements are recorded on an individual, daily basis, and

retained on a centrally held database that can be cross-referenced

with the M. bovis sample data. This combination of bacterial

testing and cattle life history data provides an ideal test bed for

analysing the transmission patterns reflected in WGS data.

In this study, we used whole genome sequences of M. bovis and

mathematical modelling to analyse the transmission between and

within cattle farms and the potential role of badgers in this system.

A spatial cluster of five farms with recently recorded bTB

breakdowns (i.e. herds with one or more reactors, or identified

abattoir cases) due to VNTR type 10 was identified. This genotype

is a single locus variant of VNTR type 1 (the second most common

type, representing 19.2% of identified genotypes from 2003 to

2008) that is as yet of low prevalence. Type 10’s relatively recent

emergence means that an identifiable common source is more

likely than with more broadly distributed, longer established

genotypes. VNTR type 10 breakdowns had a median duration of

eight months and a median of four cases each. Median breakdown

size across Northern Ireland during the study period was two

cases, with a median duration of seven months. Our sequence data

are derived from M. bovis isolates from 26 cattle from the years

1999 to 2010, and 5 isolates from 4 road-kill badgers (including

two from the same badger) collected from within the farm cluster

between 2004 and 2007 (Figure 1).

Based on WGS and anonymised cattle data for these 31 isolates,

our study aimed to i) determine the amount of genomic divergence

among M. bovis isolates within and among herd outbreaks,

including subsequent outbreaks affecting the same farm; ii)

compare this to genomic diversity seen among badger isolates

sampled from the same spatial area and time period as cattle; iii)

test whether genetic distances among isolates correlate with either

spatial distance among farms or the probability of past movement

events connecting them; iv) compare the genetic results to

independently obtained contact structures identified by fitting

network and transmission models to the herd history data.

Results

WGS from the 31 bTB isolates revealed a total of 39

polymorphic sites, of which 7 were shared amongst two or more

isolates (Table S2 in Text S1). One of these shared polymorphisms

was identified as potentially unreliable and thus excluded from the

final data set (see Materials and Methods). Because M. bovis is

believed to be clonal [15] these genome-wide data can be

combined to establish the phylogenetic relationships among

isolates (Figures 2 & S1). Using the known sampling dates, we

found an increase in genetic divergence from the tree root through

time, consistent with a molecular clock (Figure S2). The estimated

evolutionary rate was 3.40 (CI: 0.87–5.93)61028 substitutions per

site per year (equivalent to 0.147 substitutions per genome per

year), about an order of magnitude lower than within-host

mutation rates recently estimated for M. tuberculosis using WGS [3].

The inferred phylogeny revealed that most outbreaks involved

genetically distinct isolates (Figure 2) demonstrating the suitability

of WGS to track M. bovis spread at the herd level. The more

extensively sequenced outbreaks were dominated by a single

common genotype (see below). Repeated outbreaks within the

same herd tended to involve closely related isolates falling into the

same genetic lineage (e.g. Herd 1: 1999/2004; Herd 5: 2008/

2010). The exception was Herd 3, which fit this pattern from 1999

to 2004 and from 2007 to 2010 but with distinct lineages causing

Author Summary

Whole genome sequencing (WGS) offers the potential for
unprecedented insight into infectious diseases spread at
the individual-to-individual level. However, this potential
can be compromised when a poorly sampled ‘reservoir’
population contributes to transmission, as strong biases in
the obtained data are inevitable. Therefore WGS data must
be corroborated with epidemiological data in well-
described systems, in order to enhance our confidence in
their broader use. The epidemic of bovine tuberculosis
(bTB) in British and Irish cattle has both economic and
animal health importance; it also involves a management
host (the cattle) whose demographic history is exception-
ally well-documented, and with a reservoir host (the
badgers) whose role in bTB spread has defied decades of
study and observation. Here, we show that the observed
spatial patterns provide a good match to M. bovis WGS
data, but cattle movement networks and within-herd
transmission patterns generated by mathematical models
do not. Thus WGS offers considerable promise for
revealing basic principles about bTB maintenance in
British cattle and the role of badgers, as well as suggesting
that similar approaches combining mathematical models
and WGS data could be useful for the study of human TB
and other infectious diseases where sampling biases are
known to exist.

WGS Analysis of bTB Transmission Patterns in GB
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outbreaks during those two periods. Though few badger isolates

were available, their genetic distances from cattle isolates were

small and comparable to those observed among cattle isolates; two

of the five M. bovis genomes sequenced from badgers were

genetically indistinguishable from those seen in cattle during the

same year. No M. bovis sample taken from a badger was more than

four mutational steps away from the nearest cattle isolate.

Interestingly, the two isolates from different tissues of the same

badger were separated by five mutational steps, as great a genetic

distance as found across different cattle in serial outbreaks within

the same cattle herd. This suggests either multiple infections of the

same animal or a long-term infection that had allowed for within-

host divergence to evolve. In contrast, isolates collected during a

series of four outbreaks in Herds 3 and 5 between 2007 and 2010

showed little divergence, with 9 out of the 20 genomes being

indistinguishable based on our data, despite the considerable

timeframe involved.

Outbreaks could be epidemiologically linked through local

transmission, which may for example involve badgers, unobserved

infections in cattle, environmental contamination or contiguous

contact between farms. Alternatively, transmission may be due to

the network of livestock movements that connects the five farms

through shared links to other farms. We compared the number of

mutations separating isolates to two proxy measures of epidemi-

ological distance, 1) the Cartesian distance between the main

holding locations of cattle herds, and 2) one minus the relative

probability that herds had been connected by movement of

infected cattle, called here a ‘‘network separation’’ (see Materials

and Methods for our definition of this).

As there is a strong genetic and spatial autocorrelation for

samples obtained from single herds, we compared only across

herds, while noting that this does not completely eliminate the

dependence problem. We found a positive relationship between

the pair-wise Cartesian distance among farms and the smallest

genetic distance among their bTB isolates (Figure 3A), consistent

with at least one of the possible local transmission mechanisms

being important. As would be expected, where different lineages

are considered as separate outbreaks (e.g. the two lineages

Figure 1. Main holdings associated with herds in the dataset and badger locations by year. Herd locations indicate centroids of main
holdings, and do not include isolated land parcels or rented land.
doi:10.1371/journal.ppat.1003008.g001

WGS Analysis of bTB Transmission Patterns in GB
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associated with Herd 3), there was a much poorer correlation

(R2 = 0.444) for the earlier outbreaks compared to the later ones.

To construct the cattle network, life history data were extracted for

all cattle in the database from 01/01/1990 to 31/12/2010 as well

as all farms in NI recording a breakdown due to VNTR type 10

between 1999 and 2010, amounting to 58 herds, 3321 cattle and

14258 recorded individual tuberculin test results from 29/07/

1993 to 09/12/2010, plus records of post-mortem examination for

tuberculous lesions and subsequent confirmatory tests including

histology and culture. The movement network included move-

ments amongst all herds in this group of 58 farms. The resulting

network was highly connected, including our five farm cluster

(Figure S3). The only two farms directly connected through

recorded cattle movements were Herds 3 and 5 but this reflected a

single animal and, in the absence of further indirect contact,

corresponded to a high network separation. In contrast, other farm

pairs were much more strongly connected through indirect

contact, generally involving one or two intermediary farms.

However, these reduced network separations correlated only

weakly with genetic distance (Figure 3B).

Because of the indeterminate and potentially long timescales for

M. bovis transmission, the relationship between dates of sampling

and dates of transmission are uncertain. Fitting a mathematical

model of transmission to the observed life history data allowed us

to compare likely epidemiological processes to the observed tree

structure, in order to analyse dynamics at the within-herd,

individual animal level. The long period from 2007/8 to 2010

during which no reactors were identified in Herds 3 and 5,

combined with the large scale depopulation that occurs following

identification of a breakdown (all test reactors are slaughtered and

herds are tested every two months until two consecutive clear whole

herd tests are achieved), would suggest multiple introductions of

infection into these herds. In contrast, the ‘flat’ genetic structure for

the same outbreak, with no obvious chains, would suggest one

outbreak from a single source. We therefore asked whether the

recorded cattle life history and movement data, interpreted in the

context of a simple nonlinear model, are consistent with the

observed genetic signature. We constructed a compartmental model

of transmission, assuming all animals were in one of four states:

susceptible to disease (S), exposed (E), potentially test positive but

not yet infectious (T) or infectious (I) [18]. Exploiting the explicit

animal life histories in all five herds (Figure 4), plus import/export

data from the remaining 53 herds in the group, state probability

distributions for each animal were generated based on the known

dates of bTB detection [6,19]. Mechanisms other than direct

transmission among identified reactors were accounted for with a

single external force of infection function ‘aext’, corresponding to the

suite of possible local forces as described above, and a fitted force of

Figure 2. Maximum likelihood network of M. bovis genomes with tips arranged according to sampling date. Position of other nodes is
simply shown for convenience and does not reflect known branch times. Black circles represent single nucleotide polymorphisms separating
sequences, dashed lines indicates branches without mutational events. The size of the circle proportional to the number of isolates sharing the same
sequence.
doi:10.1371/journal.ppat.1003008.g002

WGS Analysis of bTB Transmission Patterns in GB
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infection due to latent or hidden infections, where each non-reactor

is assumed to contribute to the overall force of infection in

proportion to the calculated probability that itself had been infected.

The overall force of infection was calculated assuming homoge-

neous, density dependent mixing within each herd and with

contacts between herds via recorded cattle movements. A best-fit

model was determined using a likelihood-based Markov Chain

Monte Carlo approach (further details in the Materials and

Methods section below and in Figures S4 to S6, including posterior

distributions for all parameters) [20].

Figure 3. Genetic versus spatial and network distances. On both axes, all values are scaled to the maximum value for herd-to-herd
interactions. On the x-axes, the minimum number of SNPs differentiating isolates from the two herds (X-Y). In panel (A) above, spatial distance versus
genetic distance between herds (black squares). On the y-axis, the cartesian distance between the main holdings of two herds (X-Y) showing a high
level of correlation with genetic distance (R2 = 0.720). For reference, the equivalent data for the badger isolates (not fitted) are shown as unfilled
circles and diamonds for badger-badger and badger-herd relationships, respectively. Panel (B) below, network separation versus genetic distance
between herds. On the y-axis, the network separation defined as (12pij), where pij is the probability that herds i and j and linked via cattle movements
through the network, considering all possible pathways through any herd from which the same genotype of M. bovis has been isolated, and panimal is
the per animal probability of contact that best explains the genetic distance data. The best fit value (panimal = 1.3561023) shows a poor correlation
with genetic distance (R2 = 0.094).
doi:10.1371/journal.ppat.1003008.g003

WGS Analysis of bTB Transmission Patterns in GB
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The considerable overlap in cattle life histories (Figure 4) could

have potentially allowed for long within-herd epidemics. However,

the probabilities of a transmission chain linking cattle-based

isolates suggest that while cattle-to-cattle transmission can likely

explain some maintenance of individual genetic lineages (at its

peak, the cattle to cattle force of infection was calculated to be

roughly 506 that from hidden sources), new outbreaks are usually

better explained by an unspecified ‘reservoir’ (Figure 5). In

particular, despite similar overlaps in reactor life histories across

the entire recorded history of Herd 3, and similar observed genetic

distances, the earlier outbreak is epidemiologically distinct from

the later outbreak in 2007 to 2010, with separate introductions

suggested for 1999 and 2004 unless at least one particular

individual had an uncharacteristically long infectious period. In

contrast, the 2007 to 2010 outbreaks in Herds 3 and 5 are well

supported by cattle-to-cattle transmission alone. Herds 3 and 5 are

the only ones recorded as having directly traded with each other,

however our herd-to-herd analysis suggests that this link was

Figure 4. Life histories of all cattle with from which Mycobacterium bovis samples of VNTR type 10 were obtained. Showing all
individuals residing within the five study herds at some time from 1994 to 2010. Cattle residence times indicated by the length of the horizontal bars
(each bar representing a single animal). In black, all cattle from which sequences are derived (herd indicated by surrounding type). Test dates on
which one herd received a whole herd test are indicated by vertical dashed lines. Herd colours correspond to colours in Figure 1 (1 – pink, 2 – purple,
3 – blue, 4 – orange, 5 – red).
doi:10.1371/journal.ppat.1003008.g004

WGS Analysis of bTB Transmission Patterns in GB
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unlikely to have connected the outbreaks in the two herds

(Figure 3). All other herds appear only linked by the external force

of infection, which was of the same order of magnitude as the force

of infection due to a single infectious animal (see parameter

estimates in Figure S5). Correlations between genetic distances

and network distances are poor (Spearman rank correlation

coefficient r = 20.326) with any correlation due to between- rather

than within-herd differences, indicating that the WGS data are not

of sufficient resolution to make inferences on transmission chains

at the within-herd scale.

Discussion

Measuring genetic variation at the whole genome scale enabled

us to genetically distinguish most isolates of M. bovis. This is

particularly notable given the small spatial extent of the study

cluster, with no two farms being more than 5 km apart. Compared

to traditional typing methods, for which the same genotype may

be distributed over many hundred square kilometres and only

broad associations can be rigorously defined [21], WGS affords a

level of resolution for epidemiological studies previously limited to

rapidly evolving RNA viruses [6–8].

In addition to most isolates and outbreaks being genetically

unique we found that subsequent outbreaks on the same farm

tended to involve the same genetic lineage previously detected in

that location. This indicates that lineages are commonly able to

persist locally within the direct environment of a farm, although

the mechanisms for this are not yet clear. Results of our

mathematical models based on individual cattle histories indicate

that persistence on a farm is overall poorly explained by ongoing

Figure 5. Probabilities of pairwise transmission pathways amongst infected cattle with sequenced isolates. The weighted, directed
network shows the probability that a transmission path exists between cattle with sequenced isolates that does not pass through other sequenced
isolates. Infection events poorly explained by transmission amongst reactor cattle are therefore more likely to be caused by a ‘reservoir’, which
potentially encompasses infected badgers, between-herd interactions, latent infections, or environmental contamination. Sequences belonging to
the same herd are surrounded by dashed outlines.
doi:10.1371/journal.ppat.1003008.g005

WGS Analysis of bTB Transmission Patterns in GB
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transmission within herds. In the cases of Herds 1 and 3 for

example, the model identified independent introductions for

subsequent outbreaks (Fig. 5), despite the fact that these serial

outbreaks involved the same genetic lineage (Fig. 2). Based on

these findings, the detected infections (including unsequenced

reactors) are insufficient in explaining local persistence on farms,

instead suggesting a number of possible alternative mechanisms,

such as re-introduction of the same lineage from neighbouring

herds, environmental persistence, or alternative hosts. In contrast,

and despite the relative simplicity of the modelling approach used,

the persistence of the outbreaks in Herds 3 and 5 from 2007 to

2010 are consistent with lineage persistence resulting from

extensive within-herd transmission, despite the multiple clear

whole herd tests that would have occurred in between dates for

reactors. While forward simulations were used to corroborate the

robustness of our modelling approach, any extrapolation of our

results for bTB epidemiology in general must be viewed with

caution, both because of the small size of the dataset and because

some of the modelling assumptions (in particular the assumption of

explicitly time dependent generation times, see supplementary

information) were not intended to be mechanistic descriptions of

the underlying transmission process. Nevertheless, the fact that

such a parsimonious model identifies a cattle-only contact

structure largely consistent with the observed phylogeny generates

confidence in our results.

In addition to local persistence, we also found evidence for the

introduction of new genetic lineages onto farms and our analyses

allow us to partially resolve how these introductions occur.

Though cattle movements are a known risk for between-herd

spread of bTB in Britain [22,23], they do not appear to be

important for the events observed here, as the probabilities of

transmission amongst herds involved in the extensive network of

all observed VNTR10 outbreaks only poorly predict the genetic

divergence amongst isolates. In contrast, we found Cartesian

distance to be a good predictor of genetic distance among isolates

at a very fine scale. Though the small sample size means that

inferences regarding between-herd contacts should be viewed with

caution, these results are consistent with the relatively low

importance accorded to movements compared to local risk factors

in bTB endemic areas that was previously observed at a national

scale in GB [23], and suggests that a more extensive analysis of the

balance between local spatial and network processes would be

merited. As it stands, the most parsimonious explanation for these

outbreaks involve a local transmission process that could be due to

a number of causes. A non-exhaustive list of these includes both

cross-boundary contact or unrecorded local movements between

herds and transmission from a common badger reservoir (where

the interaction is spatially localised, consistent with the badger’s

stable social structure and strong territoriality [24]), or a

combination of these factors. While our sample size for badgers

is low, the badger-derived sequences are remarkably similar to

those in cattle, demonstrating very recent cross-over events

between the two populations, or alternatively recent infections

from a common source, such as the environment [25]. The

demonstration of a high M. bovis diversity in a single badger

suggests either a lengthy infection in that badger, or multiple

exposures to different sources of infection.

Although our current estimate for the rate at which M. bovis

genomes evolve must be considered preliminary, it is considerably

slower than the rate observed in M. tuberculosis [3]. Should it be

confirmed, this has obvious implications for the level of temporal

resolution that WGS can provide for unravelling epidemiological

dynamics for bTB. In our current data, we were unable to

genetically resolve relationships among multiple isolates stemming

from the same outbreak for example and saw serial outbreaks

commonly involving identical genotypes. This is corroborated by

the poor correlation between the genetic distances and our

estimates of the within-herd contact structure. However, apart

from limiting opportunities for molecular epidemiological infer-

ence, these observations may also hold clues with respect to M.

bovis biology and transmission. A recent study conducting

experimental infections with M. tuberculosis in primates, found

mutation rates to be equivalent during latent and active infections

and proposed oxidative damage as a potential mechanism [3]. If

this is relevant to M. bovis, one could hypothesise that the slower

rates of evolution seen here at the population level, could be

caused by the bacterium spending extended periods outside the

host, in the environment. Future studies and analyses are needed

to obtain more accurate estimates for the genomic rate of

evolution in M. bovis and to test for potential rate heterogeneity

and its underlying factors.

While cattle movements and long-term, hidden persistence

within herds have both been shown to contribute significantly to

herd breakdowns [22,23,26], these previous analyses were aimed

at the identification of statistical associations; here we have shown

that WGS data are able to identify local interactions as the

principle culprit in specific herds. This makes WGS both a

valuable tool for forensic epidemiology, and an aid in the

construction of improved mathematical and statistical models of

disease dynamics. In contrast, the poor correlation between

network and genetic distance at the within-herd level suggests

important limits to the resolution that WGS can provide for this

system. The local effects identified here may be due to the local

infected badger population, but are also consistent with local herd-

to-herd spread. Our simplified modelling approach was chosen to

maximise the use of available epidemiological contact data, but at

the expense of a more detailed exploration of the possible

hypotheses regarding the sources of transmission. However, it is

likely that WGS based on more extensive sampling will allow for

more sophisticated approaches, that could be used to directly

estimate the role of badgers in the maintenance of bTB in British

and Irish cattle. While insights into particular disease problems will

depend on many factors we cannot consider here, our study

supports the proposition that WGS data alone can provide insight

into the impacts of unobserved populations on observed epidemics

even in the absence of detailed transmission chain information, for

M. bovis, other members of the M. tuberculosis complex, and other

pathogens involving reservoir hosts.

Materials and Methods

VNTR typing
M. bovis is a member of the closely related Mycobacterium

tuberculosis complex, which consists of several species with a shared

ancestry [27] but which have evolved marked but not absolute

host preferences [28,29]. On a global scale, the M. tuberculosis

complex can now be subdivided into discrete lineages, which show

strong phylogeographical localisation to regions [30,31]. VNTR

profiling is a genotyping technique based on determining the copy

number of a series of short, simple DNA repeats, originally

identified by genome analysis [32]. However, while mutations in

VNTR type have been observed within the timescale of

observation at the regional level, in most cases, probable

transmission events are associated with the same VNTR-type,

therefore requiring finer resolution typing to order the members of

these groups.

Herd-level M. bovis genotyping has been performed by the Agri-

Food and Biosciences Institute, Belfast, UK since 2003, as follows.

WGS Analysis of bTB Transmission Patterns in GB
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The first (disclosing) M. bovis isolate from all bovine TB herd

incidents was subjected to genotyping (eight-VNTRs and spoligo-

typing convention). Heat-inactivated M. bovis cell lysates were used

directly as PCR-ready templates. VNTR profiling, spoligotyping,

nomenclature, reference strains and quality control were as

described [32]. The inferred tandem repeat copy number at each

VNTR locus was used to produce a concatenated multi-locus

VNTR profile (a string of integers), which was then simplified to a

number indicating the prevalence of that profile. Genotype 001

(SB0140), with a spoligotype of SB0140, was the most prevalent in

Northern Ireland when surveyed in 1999 to 2003 [32].

Spoligotypes were named according to an agreed international

convention (www.mbovis.org).

Datasets
Anonymised records of cattle tuberculin tests, farm locations

and cattle movements among them were drawn from the Animal

and Public Health Information System (APHIS), a database

containing details of all cattle in Northern Ireland that is

administered by the Department of Agriculture and Rural

Development [33]. The locations (main farm building) of 58

herds that had a breakdown with VNTR type 10 between 1999

and 2010 were extracted from APHIS. A cluster of five of these

herds was selected based on their spatial clustering and the

proximity of badger-derived isolates of type 10. The life histories of

all 3299 cattle that passed through them since 1995 were

compiled, comprising birth and death dates, and the dates of

movements into and out of the cluster herds. These animals

underwent routine bTB skin testing every year and the lifetime test

history of each animal was extracted, containing the dates and

results of all tuberculin tests (a total of 14258 individual test

results). Results of post-mortem examination for tuberculous

lesions and any subsequent confirmatory tests (laboratory based

histology, culture and VNTR typing) were also incorporated.

Cattle movement was investigated by extracting a broader

dataset, comprising all herds that animals passing through the 58

VNTR 10 herds had also visited (a total of 14 096 herds, excluding

livestock markets). All cattle movements among the expanded set

between 1992 and 2010 were extracted, a total of 5,875,510

individual animal movements.

DNA extraction and sequence analysis
M. bovis was isolated and confirmed from suspect bovine

granulomatous tissue using standard protocols. Confirmed cultures

were grown to single colonies on LJ slopes and single colonies were

amplified for DNA extraction using the standard CTAB and

solvent extraction protocol [34]. Extracted DNA was sequenced at

the Sir Henry Wellcome Functional Genomics Facility at the

University of Glasgow using an Illumina Genome Analyser IIx.

Pair-end reads of 70 bp in length, separated by an average of

about 350 bp, were trimmed from both ends based on phred

quality scores so as to result in an error rate of 0.001 or less for

each base call in the remaining sequence. Reads were mapped to a

published UK reference genome (AF2122/97) [35] using the

Geneious assembler under the ‘‘medium-low sensitivity’’ option,

allowing for a maximum of 10% gaps and mismatches per read

[36]. The reference sequence belongs to the same spoligotype

(SB0140) as VNTR type 10 and shares identical repeat numbers

with it for four out of eight loci used for typing. Mapping resulted

in greater than 99% genome coverage with at least 16 and an

average read depth of 60–1126 for all isolates (see Table S1 in

Text S1 for full details). Consensus sequences were generated from

the mapped contig based on the quality score sum for each

position. A cumulative quality score threshold of 60 (correspond-

ing to an error probability of 1 in 1,000,000) was applied to each

position to ensure that accuracy of the final consensus sequence

was dependent on both quality and read depth, rather than read

depth alone. Below this threshold, the consensus base call was

scored as unknown (‘‘N’’). Alignment of consensus sequences was

carried out using Mauve [37], as implemented within Geneious,

assuming collinear genomes and with automatic calculation of

seed weight and of the minimum Locally Collinear Blocks (LCB)

score. Regions that were difficult to align or which contained .3

consecutive columns of unknown bases or gaps were removed

from the final alignment. Similarly, sites that were polymorphic

solely due to one or more sequences having ambiguity base calls

were removed; this was the only context in which ambiguities were

observed. The final alignment, which still represented 99.2% of

the reference genome, thus only contained dimorphic single site

polymorphisms situated within otherwise invariable regions.

After stripping identical sites, a total of 39 SNPs were identified

(38 substitutions, 1 deletion, Table S2 in Text S1), of which seven

were shared between two or more sequences. All SNPs were

examined to confirm their validity before further analysis. Of

particular concern was the potential inclusion of spurious SNPs

associated with repeat regions in the genome for which mapping

may be unreliable. While four of the SNPs were found to fall either

in or close to potentially problematic regions, the reliability of the

mapping and SNP calling could be confirmed in all four cases (see

Supplementary Materials). All SNP calls were supported by at least

386coverage, with high consistency among reads (usually.95%).

The only exception to this was a SNP in position 221927 (G2.A),

for which consensus calling was ambiguous in one of the four

isolates in which it occurred (Herd5_E_2010, 926, A: 64%, G:

36%, Table S2 in Text S1). Preliminary analyses further showed

that the phylogenetic information provided by this site was in

conflict with that of other informative positions (which were in

complete agreement). Because these observations raised doubts

about the reliability of scoring this SNP as well as about the

information it provided, the site was removed from the data set.

The final data set was used to generate a maximum likelihood tree

using phyml [38] under a Jukes-Cantor model using a heuristic

search and the reference genome for outgroup rooting.

All sequence data generated for this project are available from

the European Nucleotide Archive (http://www.ebi.ac.uk/ena/)

under accession number ERP001418.

Modelling of transmission chains
Using the anonymised life history data of the herds containing

genotyped isolates, we adapted a method previously used to study

foot and mouth disease virus epidemiology and transmission

phylodynamics at the between-farm scale [6,19]. All cattle were

assumed to be in one of four states that reflect the critical points in

the cattle infection process [18,39–41]: susceptible (S), exposed (E),

where an animal is infected but neither tests positive nor infects

others, potentially test positive (T), where the animal can test

positive but is not yet infectious and infectious (I), with a constant

transition rate from the E to T states and from the T to I states.

States T or I can be truncated by a positive test. Knowing the

dates each reactor (an animal that tests positive) was detected, we

use the transition rates to determine the set of distribution

functions for each animal describing the probability of being in

each of the four infection states at any time in its life. We used

these distributions to determine the likelihood of the observed

pattern of reactors in the cluster of herds.

This key simplification (conditioning on the observed test data)

is less rigorous than an approach where the likelihood is integrated

forward across all possible dates of infection and the observed data
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is treated as a random variable. However the latter approach

would have been computationally prohibitive for our system. The

simplification implies that mean generation times are consistent

over the observed timeframe, even though they would naturally be

expected to contract over the course of an epidemic [42]. The

assumption is expected to be reasonable if the disease is in an

endemic state, or an endemic state is rapidly reached after the

initial introduction, where ‘rapid’ is relative to the observed

timescale – i.e. the distribution across states is ‘quasi-stationary’,

with E and T proportional to the reciprocal of their respective

transition rates, i.e. 1=s and 1=c respectively. Though observation

of our incidence data suggested this to be likely, to test this

assumption, we allowed the proportion in state I at the time of

detection to vary over the course of the epidemic, with probability

QI (t) that it is infectious (i.e. in the I state) and 1{QI tð Þð Þ for being

in the T state, where t is the time since the genotype was initially

detected. Here, we have assumed that QI (t) has the form

QI (t)~atzb, where a and b are fitted constants and QI (t) is a

probability with range [0…1].

We assumed that all cattle are equally infectious if in state ‘I’ but

that an infected animal does not contribute to further infection

after it is detected; most reactor cattle are removed from the herd

within days of being identified. All infection is caused by either

infectious cattle or by a reservoir (either undetected infected cattle

within the herd or external, probably local, factors).

At this population scale, we assumed that the probability of a

false positive is negligible. To account for untested and undetected

contributions to the epidemic, we assumed all test-negative/

untested cattle to have a fitted probability of being infectious.

The date(s) of an animal ‘‘i’’ having a positive test is denoted as

ti
z

, at which it may be infectious with a probability

QI t{toutbreakð Þ, where toutbreak is the time the outbreak was

initially detected in the herd and t is equal to ti
z at the point of

evaluation. We assumed that a reactor in the infectious state

became infectious (i.e. moved from the test sensitive state) within a

maximum of TI days prior to the positive test. TI is the maximum

infectious lifetime of the animal prior to detection. Because a

uniform test is applied to all cattle over 6 months of age on an

annual basis, the date of first test after infection would fall in the

range of 0 to 1 year; therefore we assume that the duration of the

effective infectious period is uniform. This has the (conservative)

effect of minimising the potential duration of cattle-only transmis-

sion chains since it does not allow for long infectious periods. The

probability that a reactor was infectious at any time prior to the

date it tested positive is:

Pi
I tð Þ~ QI ti

z
{toutbreak

� �
t{(ti

z
{TI )

TI

� �
, twtz{TI

0, otherwise

8<
:

All other model states were assumed to be exponentially

distributed. The probability that an individual is test sensitive at

a given time t is therefore

PT
i tð Þ~ 1{QI tzi {toutbreak

� �� �
e
{c tz

i
{t

� �
z

QI tzi {toutbreak

� � ðtz
i

t

dPI
i t0ð Þe{c t0{tð Þdt0,

where c is the transition rate from the T to the I states in the

forward SETI model. The parameter c determines the duration of

the state T and therefore the time when the backwards T to E

transition occurs, conditional on the backwards transition from I

to T and the time of detection ti
z

. The first term accounts for the

animal being in the potentially test positive state at ti
z

and the

second term accounts for the animal being infectious at tz. Here,

dPi
I t0ð Þ is the increase in PT

i that occurs due to transition from PI
i

at time t9. Similarly the probabilities of being in the exposed and

susceptible states are

Pi
E tð Þ~ 1{

ðti
z

t

Pi
T t0ð Þe {s t0{tð Þð Þdt0

 !
e{s ti

z
{t

� �
,

Pi
S tð Þ~1:0{ Pi

E tð ÞzPi
T tð ÞzPi

I tð Þ
� �

where s is the transition rate from the E to the T states in the

forward-in-time model. The forward-in-time transition from the S

to the E state is determined by b and is estimated via the calculated

force of infection based on the probabilities of being in the I state.

It is incorporated directly into the calculation of the likelihood as

described below.

A similar approach was used for animals identified by a post

mortem test in which case tzi is the date the animal was post

mortem examined. We assumed further that post mortem testing

only identifies the same infection classes as the standard tuberculin

test (i.e. only T or I class individuals are detected).

We calculated the probability that an animal became infected

by considering the forces of infection on it during its lifetime. The

life history of each animal that resided in the cluster between

January 1990 and 31 December 2010 was converted into a lookup

table of the herds in which it resided in fortnightly time steps. If an

animal moved between herds in a time step it was treated as

belonging to both herds since it can contribute to an outbreak in

both herds during that step. Animals born into a herd are added to

the lookup table for that time step and conversely death results in

an animal being removed from the lookup table – movements

back to the herd cluster via other herds are also retained. Using

this lookup table we were able to calculate the probability an

animal became infected in each period.

We calculate the probability that an animal would have become

infected at any time t, P
Inf
i tð Þ, given that is was a known reactor

based on the force of infection calculated from the model. If an

animal was a reactor, then the incremental probability dPi
Inf tð Þ

that an animal, i, was infected by all sources over the time interval

t, t+dt is therefore given as

dP
Inf
i tð Þ~PS

i tð Þ azb
X

j=i
Pj

I tð Þ
� �

dt, ð1Þ

calculated using the explicit infection histories. If the animal never

tested positive then

dP
Inf
i tð Þ~ 1{

ðt

0

dP
Inf
i tð Þ

� �
azb

X
j=i

Pj
I tð Þ

� �
dt, ð2Þ

i.e. we consider the probability that an animal was infected despite

never testing positive. Young calves destined for slaughter at a

young age are test exempt and are considered to be a negligible

risk due to their short lifespan; they are therefore excluded from

the analysis. The parameter b is the transmission rate from a

contact with an infected animal in the same herd at the same time

(the summation is over animals in the same herd at t). The

reservoir term, a, can be written as a~aextzPlatentN(t) i.e. a

combination of any external forces of infection, aext, (e.g. infected

wildlife) that is represented by a fixed rate and N tð Þ, the fraction of

WGS Analysis of bTB Transmission Patterns in GB

PLOS Pathogens | www.plospathogens.org 10 November 2012 | Volume 8 | Issue 11 | e1003008



herd at t that never tested positive, for which the contribution of

latent infections is summarized by the probability Platent.

We calculated the probability each animal was infected during

its lifetime by integrating dPi
Inf tð Þ over the animals’ entire life

(approximated by a summation over fortnightly time steps) and

thus calculate the likelihood for the model as:

L~ P
reactors

Pi
Inf P

non{reactors
1{Vð ÞPi

Inf zV 1{Pi
Inf

� �� �
Here, V is the fitted sensitivity of the test for bTB infection.

Consistent with the low number of reactors in officially TB free

countries such as Scotland, the test specificity is assumed to be

effectively 100%. Using L, we used the Metropolis-Hastings

algorithm to derive the posterior distributions over the parameter

space defined by b,s,c,V,aext,Platent,a,b,TIð Þ. The length of burn-

in for the MCMC simulations was checked using multiple MCMC

chains with dispersed starting points, perturbing a subset of the

parameters at each step in the chain (further descriptions in the

supplementary information, and Figures S4 and S7 for the

evolution of the MCMC chains and the posterior distribution of

the parameters). Prior distributions were chosen to be uniform,

with ranges b~ 1|10{5,0:01
� 	

, s~ 6hours,4months½ �,
c~ 4months,1year½ �, V~ 0:5,0:85½ �, aE~ 1|10{5,2|10{2

� 	
,

Platent~ 1|10{5,2|10{2
� 	

, a~ {0:1,0:1½ �, b~ 0:2,0:8½ � and

TI~ 50days,1:5years½ �, based on the parameters estimates previ-

ously reported in various field and experimental studies [43–45].

A running sum of the probability of a transmission event

(bPS
i (t)PI

j (t)) was retained, ignoring potential transmissions that were

incompatible with the phylogenetic tree (for example between animals

with isolates in different clades of the tree, excluding these animals

from being linked by transmission). We used a modified Dijkstra’s

algorithm [46] to identify all possible infection paths between cattle for

which we have isolates. Each link ‘‘i’’ in a defined chain has a

probability pi of being associated with transmission, so that the

probability of that transmission chain occurring is given by the

product of the pi’s. Then the probability that a path will exist between

two individuals A and B is simply the probability that at least one of the

identified possible chains will connect the two, and therefore

PAB~1{ P
all chains

1{ P
i[chain

pi

� �
,

The calculation included all chains that do not pass through another

sequenced isolate, and for computational convenience, we have

limited the calculation to chains of less than three individual

intermediate cattle. In order to test our assumptions, we ran forward

simulations of a SETI model, based on the most likely parameter

values of the posterior distributions from the outbreak data analysis.

Applying our estimation approach to the simulated outbreak data

confirmed that all the input parameter values fell within the 95%

credible intervals of their corresponding posterior distributions

derived from the original analysis of the data (not shown).

Identifying the best-fit network distance between herds
Similar to the approach described above, all paths amongst Herds

1 to 5 that do not pass through the remaining herds were calculated.

The link strength probability between Herds C and D was taken to be

PCD~1{ P
all chains

1{ 1{panimalð Þnlinkð Þ,

where the product considers any direct path (only between Herds 3

and 5), all chains of path length 2 (i.e. with one intermediate), or

where these do not exist, chains of path length 3. The parameter nlink

is the number of cattle moved between pairs of premises in the chains.

The ‘network separation’, defined as {12PCD}, was used as a

measure of within-herd network distance, and this was plotted against

the minimum genetic distance between the two herds. The value of

panimal (i.e. the relative weighting assigned to each animal moved,

where 0,panimal,1) was set to optimise the R2 value (Figure 3B).

Supporting Information

Figure S1 Maximum likelihood tree of 31 M. bovis
genomes based on 38 concatenated SNPs. Tree search was

conducted in phyml under a Juke-Cantor model and reference

sequence AF2122/97 was used as an outgroup (removed for

clarity) to establish the root node.

(EPS)

Figure S2 Accumulation of genetic changes in M. bovis
genomes through time. Genetic divergence of 31 cattle and

badger isolates from the root node (measured in substitutions per

genome) increases with sampling date, consistent with clock-like

evolution. The estimated slope corresponds to an evolutionary rate

of 3.40 (CI: 0.87–5.93)61028 substitutions per site per year. To

improve visibility, points were jittered randomly.

(EPS)

Figure S3 Network of contact via cattle movements
amongst all cattle herds in Northern Ireland where
breakdowns due to VNTR type 10 have been identified.
Herds from which sequenced isolates were derived are indicated in

red and number as in Figure 1. All other herds in yellow.

(TIF)

Figure S4 Evolution of the Gelman-Rubin shrink factor
for the Markov Chain Monte Carlo chains (burn-in
period removed). Each chain (6 in total) was started at a

different point in the parameter space of the model. At each step in

the chain we perturbed the set of parameters to make the next step

and if accepted, calculate the log-likelihood for the model. The

potential scale reduction factor is calculated as ,1.01 after a long

burn in phase indicating convergence has been reached.

(TIF)

Figure S5 Posterior kernel density estimates. Illustrated

are the distributions obtained from the MCMC chains after the

burn-in period was removed. Convergence towards optimum

values in all parameters is observed, with considerable mixing of

the parameters. Here b,s,c are the transition rates from the

susceptible to exposed, exposed to test sensitive and test sensitive to

infectious states respectively, aext,Platent are the external and

internal (latently infected animals within the herd) reservoir terms

respectively, TI is the length of the infectious stage and a and b

inform the probability QI that a reactor animal was infectious

(rather than test sensitive) at the time of a positive test, according

to the form QI~atzb. Mean posterior values with 95% credible

intervals (b = 3.52 [2.27, 4.77]61023 fortnight21 s = 0.387 [0.382,

0.392] fortnight21, c = 0.266 [0.262, 0.270] fortnight21,

aext = 0.633 [0.631, 0.635] fortnight21, Platent = 1.010 [0.600,

1.430]61024 fortnight21, a = 0, b = 0.0860 [0.0837, 0.0884],

TI = 71.6 [68.9, 74.3] days. See Figure S6 for the distribution

of all the points sampled.

(PS)

Figure S6 Distribution of the samples taken in the
Markov Chain. The lower panel shows all the sampled points of

the Markov Chain and the upper is colour coded with the lighter

colours denoting those samples corresponding to a higher
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likelihood. The clumping that is observed in the sampling regime

for some parameters is due to the convergence of the chains. Here

b,s,c are the transition rates from the susceptible to exposed,

exposed to test sensitive and test sensitive to infectious states

respectively, aext,Platent are the external and internal (latently

infected animals within the herd) reservoir terms respectively, TI is

the length of the infectious stage and a and b inform the probability

QI that a reactor animal was infectious (rather than test sensitive) at

the time of a positive test, according to the form QI~atzb, The

priors used can be seen from the limits of the sampled points, in

each case we used uniform priors over these limits. The parameter

L is the maximum length of the infectious period (in days). The

priors used for s,c correspond to stages with lengths 1–110 days

and 120–280 days respectively, and for V, 0.50–0.85.

(PNG)

Figure S7 Trace of the parameters of the model.
Illustrated are the traces of the parameters used in the model.

Convergence towards posterior values in all parameters is

observed from the dispersed starting points. Here b,s,c are the

transition rates from the susceptible to exposed, exposed to test

sensitive and test sensitive to infectious states respectively,

aext,Platent are the external and internal (latently infected animals

within the herd) reservoir terms respectively, TI is the length of the

infectious stage and a and b inform the probability QI that a

reactor animal was infectious (rather than test sensitive) at the time

of a positive test, according to the form QI~atzb, V is the

sensitivity of the routine herd test applied to each animal.

(PNG)

Text S1 Supporting Material and Methods: Examining
the reliability of SNP calls among the 31 VNTR-10
isolates.

(DOC)
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