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ABSTRACT

Background. Upper gastrointestinal cancers are aggres-

sive malignancies with poor prognosis, even following

multimodality therapy. As such, they require timely and

accurate diagnostic and surveillance strategies; however,

such radiological workflows necessitate considerable

expertise and resource to maintain. In order to lessen the

workload upon already stretched health systems, there has

been increasing focus on the development and use of

artificial intelligence (AI)-centred diagnostic systems. This

systematic review summarizes the clinical applicability and

diagnostic performance of AI-centred systems in the

diagnosis and surveillance of esophagogastric cancers.

Methods. A systematic review was performed using the

MEDLINE, EMBASE, Cochrane Review, and Scopus

databases. Articles on the use of AI and radiomics for the

diagnosis and surveillance of patients with esophageal

cancer were evaluated, and quality assessment of studies

was performed using the QUADAS-2 tool. A meta-analysis

was performed to assess the diagnostic accuracy of

sequencing methodologies.

Results. Thirty-six studies that described the use of AI

were included in the qualitative synthesis and six studies

involving 1352 patients were included in the quantitative

analysis. Of these six studies, four studies assessed the

utility of AI in gastric cancer diagnosis, one study assessed

its utility for diagnosing esophageal cancer, and one study

assessed its utility for surveillance. The pooled sensitivity

and specificity were 73.4% (64.6–80.7) and 89.7%

(82.7–94.1), respectively.

Conclusions. AI systems have shown promise in diag-

nosing and monitoring esophageal and gastric cancer,

particularly when combined with existing diagnostic

methods. Further work is needed to further develop sys-

tems of greater accuracy and greater consideration of the

clinical workflows that they aim to integrate within.

Esophageal cancer is an aggressive cancer with a mean

estimated 5-year survival rate of 35–45%, even after

treatment with curative intent.1, 2 The reported survival rate

in advanced-stage disease drops further to 5–10% and can

be attributed to the malignancy’s insidious onset and

aggressive tumor biology that often favors recurrence.3–5

Similarly, gastric cancer has a poor 5-year survival rate and

is still the third leading cause of malignancy-related death

worldwide.6 A number of investigations, such as computed

tomography (CT) scans, positron emission tomography
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(PET) scans, endoscopic ultrasound (EUS), and endo-

bronchial ultrasound (EBUS), are utilized in the diagnostic

and staging pathway of esophagogastric (EG) malignancy,

with CT being the most commonly used of those that are

noted.7 Unlike colorectal, hepatocellular, and pancreatic

cancers, there is no reliable biomarker that can be tested

and tracked non-invasively for diagnostic or surveillance

purposes in esophageal and gastric cancers.8–10 Conse-

quently, patients are often reliant on radiological

investigations for diagnosis with staging, detection of

recurrence, and monitoring response to treatment.7 These

workflows necessitate both timely and expert radiological

interpretation, a requirement that is often difficult to

achieve given busy clinical work schedules and a lack of

expertise outside tertiary oncological centers. As such,

there has been increasing calls to explore the use of AI-

centred diagnostic systems to alleviate this issue.

In the context of medical diagnostics, AI is the use of a

system to mimic human cognition in the comprehension,

analysis, and presentation of medical data.11–13 This is

often achieved using machine learning (ML), which is a

specialized sub-field within AI that improves the perfor-

mance of systems through repetitive experience. For

example, in EG cancers, ML has been used extensively by

AI systems to understand endoscopy images and enhance

the interpretation of solely operator-dependent endo-

scopy.14–16 Naturally, the next step will be the integration

of AI into the major imaging modalities used in the man-

agement of EG cancers, specifically CT scans. Typically,

this involves the high-throughput extraction of large

quantities of data from the images and is a technique ter-

med as radiomics. Radiomics is an emerging field using a

non-invasive approach to extract numerous quantitative

features from medical images, especially parameters not

visible to the naked human eye or quantifiable by routine

analysis.17, 18 Specifically, with CT scans, radiomics offers

the unique advantage of combining ML to acquire images;

segment images into regions of interest (ROIs) or volumes

of interest (VOIs); extraction of quantitative imaging fea-

tures from ROIs and VOIs; and, lastly, constructing and

validating models. Recently, there has been an increase in

work reporting on the combined or individual use of AI or

radiomics to diagnose or monitor EG cancers. This review

aims to summarize the potential applicability of AI diag-

nostic systems in the diagnosis and surveillance of

esophageal and gastric cancers.

METHODS

Literature search methods, inclusion and exclusion cri-

teria, outcome measures, and statistical analysis were

defined according to the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA)

guidelines.19 Patients were not involved in the conception,

design, analysis, drafting, interpretation, or revision of this

research, hence ethical approval was not required and was

thus not sought for this study.

Literature Search

The following databases were searched: MEDLINE

(from 1946 until the first week of April 2021) via OvidSP;

MEDLINE In-Process and other non-indexed citations

(latest issue) via OvidSP; Ovid EMBASE (from 1974 to the

latest issue); and Scopus (from 1996 until the present). The

last search was performed on 15 April 2021. Search terms

used several strings that were linked by standard modifiers

in the following order: ‘machine learning’, ‘artificial

intelligence’, ‘radiomic’, ‘AI’ OR ‘ML’, as well as ‘eso-

phageal cancer’, ‘esophageal squamous cell cancer’,

‘esophageal adenocarcinoma’, ‘ESCC’, ‘EAC’, ‘esopha-

geal malignancy’, ‘upper gastrointestinal cancer’, OR

‘upper GI cancer’. Additionally, the references of included

articles were hand-searched to identify any additional

studies.

Selection and Quality Assessment of Studies

Articles were screened for eligibility by SC and VS, and,

where conflict arose, a third co-author (SRM) was con-

sulted. Studies were included if they had incorporated the

use of AI-centred systems in CT imaging for evaluating

both esophageal and gastric cancers. Studies with diag-

nostic, prognostic, and monitoring intents were included.

Studies were excluded if they did not evaluate ML, used

imaging modalities other than CT, did not include patients

with esophageal or gastric cancers, had incomplete data on

outcome measures, were not written in the English lan-

guage, had sample sizes fewer than 30 patients, or had

incompatible designs, including letters, comments and

reviews. Studies were assessed for robustness of method-

ology using the Quality Assessment Tool for Diagnostic

Accuracy Studies 2 (QUADAS-2), which comprises four

domains covering patient selection, index test, reference

standard, and flow of patients through the study and timing

of the index test(s) and reference standard. Each domain is

evaluated in terms of the risk of bias, and the first three

domains are also assessed for any concerns regarding

applicability. In doing so, this highlights aspects of the

study design that may be exposed to bias.

Statistical Analysis

All statistical analyses were performed using STATA/

SE version 16.0 (StataCorp LLC, College Station, TX,

1978 S. Chidambaram et al.



USA). The overall pooled estimate of sensitivity and

specificity, with their corresponding 95% confidence

intervals (CIs), was calculated using the random-effects

model with the metandi command in STATA/SE. Sensi-

tivity was defined as the proportion of patients with

esophageal cancer who were correctly confirmed by AI,

while specificity was defined as correctly identifying

patients without the disease. Forest plots were used to

visualize the variation of the diagnostic parameter effect

size estimates with 95% CI and weights from the included

studies.

RESULTS

Study Selection

The database search yielded a total of 1439 studies, of

which 137 duplicates were removed. Titles and abstracts of

the remaining 1302 studies were screened for eligibility

and 648 studies were removed. A further 617 studies were

excluded after full-text review due to incompatible out-

come measures, study design, or small sample sizes of

fewer than 30 patients (Fig. 1). Thirty-seven studies that

described the use of ML (a branch of AI) platforms for the

diagnosis and surveillance of esophageal and gastric can-

cers were included in this study (Table 1).

Quality Appraisal

Assessment of studies using the QUADAS-2 tool

showed a low level of bias among the studies (Table 2).

The risk of bias and concerns on their applicability was low

across most domains. Some risk of bias was present due to

the heterogeneity of the patients included; however, in

most studies, there was little reporting of the sensitivity and

specificity of the ML algorithms used.

Use of Machine Learning and Radiomics

in the Management of Esophageal Cancer

Takeuchi et al. reported diagnostic accuracy of 84%

(sensitivity 71.7%; specificity 90.0%) in detecting stage

T1–T5 esophageal cancer in 46 patients.20 One study

looked at the prognosis of patients with esophageal cancer,

in which Foley et al. reported six variables to be predictive

of overall survival in their work of 405 patients.21 Two
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studies evaluated the use of ML to assess response to

chemoradiotherapy for esophageal cancers. The model

developed by Wang et al. to evaluate the scan of 131

patients who underwent neoadjuvant chemotherapy diag-

nosed lymph node metastasis better than the preoperative

short axis size of the largest lymph node on CT, with an

area under the curve (AUC) of 0.887.22 Jin et al. combined

a radiomics and dosimetric approach and reported an AUC

of 0.708 in predicting the treatment response of patients

with esophageal cancer who underwent

chemoradiotherapy.23

Use of Machine Learning and Radiomics

in the Management of Gastric Cancer

Two studies investigated the use of radiomics in diag-

nosing gastric cancer, specifically in differentiating gastric

cancer from other gastric lesions.24, 25 In their study

evaluating VOI-based textural features on preoperative

arterial phase and portal phase scans of 95 patients, Ba-

Ssalamach et al. differentiated gastric adenocarcinoma

with an error rate as low as 3.1%.24 Two studies reported

that there was little correlation between radiomic features

and histological grades, with AUCs below 0.7,9, 10 while

five studies evaluated images for lymph node status, vas-

cular invasion, and occult peritoneal metastasis, with

AUCs as high as 0.941.11–15 Of the included studies, two

studies evaluated the use of AI for prognosis after surgical

resection for gastric cancers. Li et al. extracted 273 features

from each ROI and 485 features from each VOI, and used

the least absolute shrinkage and selection operator

(LASSO) method to predict overall survival, although the

results were not promising in their test set.26 In contrast,

Giganti et al. extracted 107 features from each VOI that

were significantly associated with a negative overall sur-

vival in patients with resectable gastric cancer.27 Four

studies also investigated the use of AI for predicting

response to neoadjuvant chemotherapy. Giganti et al.

determined 14 features in pretreatment arterial phase

images that were significantly different between responders

and non-responders, while another study by Li et al.

showed similar results with portal venous phase ima-

ges.28, 29 In their multicenter study, Jiang et al. identified

potential predictors from portal venous phase scans of 1591

patients that were significantly different between respon-

ders and non-responders to neoadjuvant chemotherapy and

predictive of disease-free survival.30, 31 Two studies eval-

uated the response to targeted immunotherapy with

trastuzumab or radiotherapy. Hou et al. showed that

radiomic signatures can predict response to radiotherapy

with an AUC of 0.749, while Yoon et al. reported AUCs of

0.75–0.77 in their small pilot study of 26 cases of HER2-

positive gastric cancer treated with trastuzumab.32, 33
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TABLE 2 Characteristics of image acquisition and processing using AI and/or radiomic approaches

Author, year Image acquisition protocol Imaging parameters and

segmentation

AI program/radiomic features

extracted

Texture analysis

software

Ba-

Ssalamah

[24]

4 scanners; CT scans during

the arterial and portal

venous phases and

reconstructed with a soft

tissue kernel

Tube voltage, 120 kV; tube current,

230 mAs; collimation, 16 mm 9

0.75 mm; reconstruction

orientation, transverse;

reconstruction section thickness, 1

mm (arterial phase) and 4 mm

(portal-venous phase) with 2 mm

increments; and matrix, 512 9

512

Segmentation: ROI

First-order statistics; second-order

GLCM, RLM statistics; wavelet

transformed statistics

MaZda 4.6; LDA

in combination

with k nearest-

neighbor

classification

Dong, 2019 Several scanners;

pretreatment PP CT

Tube voltage, 120 kV; tube current,

120–550 mAs; collimation,

64 9 0.625 mm; reconstruction

orientation, transverse;

reconstruction section thickness,

1.25–5 mm (portal-venous phase)

with 2 mm increments; and

matrix, 500 9 500

Segmentation: ROI

3D shape and size features; first-

order statistics; second order

GLCM and RLM statistics

ITK-SNAP

software

Dong, 2020 Several scanners;

pretreatment PP CT

Tube voltage, 120 kV; tube current,

120–550 mAs; collimation,

64 9 0.625 mm; reconstruction

orientation, transverse;

reconstruction section thickness,

1.25–5 mm (portal-venous phase)

with 2 mm increments; and

matrix, 500 9 500

Segmentation: ROI

3D shape and size features; first-

order statistics; second-order

GLCM and

RLM statistics

ITK-SNAP

software

Feng, 2019 1 scanner; preoperative PP

CT

Segmentation: ROI First-order statistics, second-order

GLCM statistics

–

Feng, 2021 1 scanner; preoperative PP

CT

Segmentation: ROI First-order statistics, second-order

GLCM statistics

–

Liu, 2017 2 scanners; arterial and

portal venous phase CT

images

Tube voltage 120 kVp, tube current

250–350 mA, slice thickness 5

mm, slice interval 5 mm, field of

view 35–50 cm, matrix

512 9 512, rotation time 0.7 s and

pitch 1.375

Segmentation: ROI

First-order statistics In-house software

(Image

Analyzer 1.0,

China)

Liu, 2017 1 scanner; pretreatment

ADC map

Respiratory triggered turbo spin-

echo sequence without fat

saturation (repetition time msec/

echo time msec, 1210–1220/70;

matrix, 256 9 198; section

thickness, 4 mm; gap, 1 mm;

number of sections, 32–36; field of

view, 36 cm; sensitivity encoding

factor, 3.0; number of signal

averaged, 1)

Segmentation: VOI

First-order statistics In-house software

(Image

Analyzer 1.0,

China)

Liu, 2018 1 scanner; pretreatment

ADC

map

Segmentation: VOI First-order statistics In-house software

(Image

Analyzer 1.0,

China)

Liu, 2017 1 scanner; pretreatment

ADC

map

Segmentation: VOI First-order statistics In-house software

(Image
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Table 2 (continued)

Author, year Image acquisition protocol Imaging parameters and

segmentation

AI program/radiomic features

extracted

Texture analysis

software

Analyzer 1.0,

China)

Ma [25] 2 scanners; 25–30 s (arterial

phase), 60 s (portal

phase), and 180 s

(delayed phase)

120 kVp; 130 mAs; rotation time, 0.5

s; detector collimation, 64 9

0.625 mm or 8 9 0.625 mm; field

of view, 350 9 350 mm; matrix,

512 9 512; and reconstruction

section thickness, 1.25 mm

Segmentation: VOI

First-order statistics, shape- and size-

based features (including tumor

volume), texture features, wavelet

features

MATLAB program used

3D Slicer software

Wang, 2020 1 scanner; preoperative PP

CT

– Final radiomic features were

composed

of eight groups according to the IBSI

C-index, AUC, and DCA,

comparison of the three prognostic

models (radiomic signature,

radiomic nomogram, and

TNM staging model)

ITK-SNAP

Wang, 2020 1 scanner; preoperative PP

CT

– ITK-SNAP

Giganti [27] 1 scanner; unenhanced, late

arterial and portal venous

phases

64 detector rows; beam collimation:

64 9 0.62; pitch: 0.983;

kVp/effective mA: 120/300; slice

thickness: 2 mm; gap: 1 mm.

Segmentation: VOI

3D shape and size features; first-

order statistics, second-order

GLCM and

RLM statistics

MATLAB program used

MIPAV, version

7.2.0

Giganti [28] 1 scanner; unenhanced, late

arterial and portal venous

phases

64 detector rows; beam collimation:

64 9 0.62; pitch: 0.983;

kVp/effective mA: 120/300; slice

thickness: 2 mm; gap: 1 mm

Segmentation: VOI

First-order statistics, second-order

GLCM and RLM statistics

MATLAB program used

MIPAV, version

7.2.0

Hou [32] 1 scanner; pretreatment AP

CT

Tube voltage, 120 kVp; tube current,

200–250 mAs; rotation time, 0.75

s; pitch, 0.9; matrix, 512 9 512;

convolution kernel, standard

First-order statistics, second-order

GLCM and RLM, NGTDM,

GLSZM

statistics

3D Slicer software

Li [29] Arterial and venous phase 512512; layer thickness was 5 mm,

layer spacing was 5 mm, 120 Kv;

B31f reconstruction function,

respectively

Receiver operator curve analysis was

conducted to evaluate the

performance of the tumor grade

diagnosis model

A.K. software

(Analysis Kit) and

ITK-SNAP

Yoon [33] 3 scanners; pretreatment PP

CT

Helical scan data were acquired

using 16 9 1.5, 64 9 0.625, or

128 9 0.625 mm collimation; a

rotation speed of 0.5 s; a pitch of

1.25, 0.641, or 0.993; and a kvP of

120 kVp). Using an automatic tube

current modulation technique

(Dose-Right; Philips Medical

Systems), effective mAs ranged

from 69 to 379 mAs. Transverse

and coronal section datasets were

reconstructed with 4-mm thick

sections at 3-mm increments

Segmentation: ROI

First-order statistics, second-order

GLCM statistics

Wang [22] Pretreatment PP CT Chest unenhanced CT scans were

acquired with 0.625 mm

collimation,

120–140 kVp, and 300–350 mAs

Least squares SVM modeling MATLAB

Pretreatment PP CT CNN-based model using training

1984 S. Chidambaram et al.



Artificial Intelligence as a Diagnostic and Monitoring

Tool: Quantitative Analysis

Six studies involving 1352 patients provided sufficient

data of true positive, true negative, false positive, and false

negative rates for the calculation of sensitivity and speci-

ficity. Of these studies, four studies assessed its utility in

gastric cancer diagnosis, one study assessed its utility for

diagnosing esophageal cancer, and one study assessed its

utility for surveillance (Table 1). The pooled sensitivity

and specificity were 73.4% (64.6–80.7) and 89.7%

(82.7–94.1), respectively, as visualized on the forest plot

and summary receiver operating characteristic curve

(Figs. 2 and 3).

DISCUSSION

Our systematic review shows that the application of

radiomics and AI for the diagnosis and surveillance of

upper gastrointestinal tract malignancies is promising,

despite being in its nascency. The included radiological

studies show that AI can be potentially used to diagnose

cancers, differentiate malignancies from benign lesions,

and detect occult disease. AI systems may also be used for

staging disease, determining if surgery will improve sur-

vival outcomes in patients with resectable disease, and in

predicting whether patients will respond to adjuvant or

neoadjuvant chemoradiotherapy. Our paper also highlights

the different AI platforms available for these purposes and

captures their breadth.

The typical patient undergoes several CT scans during

their journey, with diagnosis as the primary aim. Com-

bining radiomics and AI to current scans will enable

clinicians to simultaneously predict how they will respond

to treatment and also assess how they have responded to

treatment. In other cancers, radiomic data have provided

support to genomic data in generating a prognostic signa-

ture that exceeds the accuracy of traditional TNM

staging.34 Given that there is a direct correlation between

histopathological response of patients who underwent

chemoradiotherapy and the overall survival rate, the ability

to assess clinical response will be useful in adjusting the

dose and regimes of chemoradiotherapy.35, 36 Our paper

has included at least one study using radiomics or AI to

assess the response to surgery, chemotherapy, radiotherapy

Table 2 (continued)

Author, year Image acquisition protocol Imaging parameters and

segmentation

AI program/radiomic features

extracted

Texture analysis

software

Takeuchi

[20]

Tube voltage, 120 kVp; tube current,

100–750 mA; and pitch, 1.375:1

Foley [21] Pretreatment PP CT CT images were acquired in a helical

acquisition with a pitch of 0.98

and

tube rotation speed of 0.5 s. Tube

output was 120 kVp with

output modulation between 20 and

200 mA. Matrix size for

the CT acquisition was 512 9 512

pixels with a 50-cm field of view

ATLAAS

segmentation

Rishi, 2020 Pretreatment PP CT Image resolution was 128 9 128

pixels, with voxel dimensions of

5.47 9 5.47 9 3.27 mm, and slice

thickness of 3.27 mm. CT images

were reconstructed using 3D CT

attenuation correction with

standard filtered

back-projection reconstruction 512 9

512 in 50–70 cm FOV

Segmentation: VOI

126 features were extracted from

both PET and CT scans, including

intensity (27 features), shape (11

features), GLCM (40 features),

GLRLM (17 features), GLSZM

(12 features), NGTDM (11

features), and FD (8 features)

Mirada RTx

AI artificial intelligence, CT computed tomography, ROI region of interest, LDA linear discriminant analysis, 3D three-dimensional , VOI volume

of interest, IBSI image biomarker standardization initiative, AUC area under the receiver operating characteristic curve, DCA decision curve

analysis, SVM support vector machine, ATLAAS Automatic Decision Tree Learning Algorithm for Advanced Segmentation, PET positron

emission tomography, GLCM gray-level co-occurrence matrix, GLRLM gray-level run-length matrix, RLM run-length matrix, GLSZM gray-level

size-zone matrix, NGTDM neighborhood gray-tone difference matrix, FD fractal dimension, FOV field of view, 3D three-dimensional
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and immunotherapy, and all report high performance;

however, there is still scarce evidence to add support to

existing studies described here.

AI can also help in overcoming any technical limitations

faced by traditional imaging. For example, Jin et al. com-

bined radiomic and dosimetric analyses to overcome the

artefacts in wall thickness created by the regular peristaltic

waves of contraction.23 In another study, Ding et al.

showed that their models detected occult peritoneal

metastasis more accurately than conventional CT scans.

Previous studies including the Worldwide Esophageal

Cancer Collaboration have reported that survival decreases

with the presence of lymph node metastases, and imaging

examinations are often the first-line investigations for

assessing most lymph node statuses in esophageal can-

cer.37–39 However, the accuracy of CT in diagnosing the N

stage of esophageal cancer was just 59%.40 Most clinicians

use a size criterion of 1 cm to differentiate between benign

and malignant enlargement of lymph nodes but this only

has a sensitivity of 30–60% and a somewhat higher

specificity of 60–80%.41–43 In their study, Wang et al.

showed that support vector machine (SVM) models have

better diagnostic capability for lymph node metastasis than

the traditional LN size criteria.22 Furthermore, Bollsch-

weiler et al. used a different ML methodology, termed

artificial neural network (ANN), and reported a diagnostic

accuracy of 79% in predicting LN metastasis in esophageal

cancer.44

STRENGTH AND LIMITATIONS

The strength of our systematic review lies in its up-to-

date unified analysis of esophageal and gastric cancers in

different countries. We also identified challenges that will

need to be overcome for the technology to be implemented

into daily clinical practice. Our study has several weak-

nesses. First, most of the articles included in the study did

not report the specificity or sensitivity of their AI tech-

nologies, which prevented a more comprehensive

quantitative analysis to achieve a pooled statistic for the

diagnostic accuracy of AI. This also prevented the strati-

fication of pooled data based on study intent (diagnostic vs.

prognostic). Furthermore, the diagnostic or predictive

accuracy of AI depends on several parameters, including

the specific AI program or model developed, scanning

equipment, image preprocessing, acquisition protocols, and

image reconstruction algorithms.

Although there is heterogeneity between the studies,

most of the work is limited to a few specific groups that

have taken an interest in this field. The majority of the

studies are based in Asia, and several of the included

papers stem from the work of the same group. Hence,

within the same group, the data acquisition and processing

techniques are identical but the aims of the study were

different and hence merited inclusion. For example, in the

studies by Jiang et al., the first study evaluated the use of

radiomics and AI in characterizing the tumor microenvi-

ronment, while the other study focused on identifying

occult metastasis.30, 31 Another example are the smaller

studies by Giganti et al., each of which separately inves-

tigate the response to curative resection and

chemotherapy.27, 28 Together, these studies shed light on a

different aspect of the tumor biology of gastric cancers. In

Study
Jin et al, 2021
LI et al, 2020
LIu et al, 2017
LIu et al, 2017 (study 2)
LIu et al, 2018
Ma et al, 2017
Takeuschi et al, 2021

TP FP FN TN
39 30 14 444
5 6 2 44
7 13 3 57
6 12 2 67
6 14 1 43
5 0 2 63

32 37 13 374

Sensitivity (95% CI) Sensitivity (95% CI)Specificity (95% CI) Specificity (95% CI)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.74 [0.60, 0.85]
0.71 [0.29, 0.96]
0.70 [0.35, 0.93]
0.75 [0.35, 0.97]
0.86 [0.42, 1.00]
0.71 [0.29, 0.96]
0.71 [0.56, 0.84]

0.94 [0.91, 0.96]
0.88 [0.76, 0.95]
0.81 [0.70, 0.90]
0.85 [0.75, 0.92]
0.75 [0.62, 0.86]
1.00 [0.94, 1.00]
0.91 [0.88, 0.94]

FIG. 2 Forest plot of diagnostic accuracy for machine learning platforms. TP true positive, FP false positive, FN false negative, TN true

negative, CI confidence interval
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TABLE 3 QUADAS assessment of studies included for risk of bias and applicability

Risk of bias

Patient
selection

Patient
selection

Index testIndex 
test

Applicability concerns

Reference
standard

Reference
standard

Flow and
timing
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the same vein, we also included some studies with a sample

size that was\100. Although small sample sizes lend to a

greater degree of variation on the quantitative analysis,

these studies were relevant in studying a niche area of

treatment response. Larger studies have previously tended

to focus on the diagnostic aspects, while other facets such

as monitoring for recurrence, response to curative resection

and chemotherapy, and tumor heterogeneity are areas that

are still in their infancy and hence studied at a smaller

level. Furthermore, this emphasizes the paucity of studies

of large sample sizes and hints at areas that need further

work within the field of AI in esophagogastric cancers.

FUTURE DIRECTIONS

Future work should be aimed at the ‘in silico’ bench to

bedside translation of these technologies. Although we

highlight much promise in these technologies, several

factors require evaluation prior to these technologies being

employed in routine upper gastrointestinal oncological

care:

(1) Use case: There needs to be early clarification in the

lifecycle of these AI devices as to (1) their specific

clinical task; (2) potential risk and benefits; (3)

whether they are used within either new or existing

clinical workflows; and (4) whether they are used

independently to diagnose disease/recurrence or as a

‘second reader’ alongside a human clinician. Down-

stream validation of these systems is dictated by

many of these early decisions.

(2) Model development: The development of these sys-

tems are reliant on diverse, large-scale, and well-

maintained datasets that are accurately labeled for the

purposes of model training and internal validation.

Systems created upon small single-center datasets

with post hoc labeling rarely perform well when

subjected to out-of-set testing.

(3) Validation: Independent validation of AI systems is

crucial, with comparison against expert clinicians to

demonstrate either non-inferiority or superiority in

diagnostic performance to be undertaken when fea-

sible. Such evaluations require careful study planning,

with the need for diverse demographic representation

in test datasets in order to assess for bias.

(4) Infrastructural requirements: Aside from developer

considerations, the bottleneck for many contemporary

AI products is the end-user adoption and experience.

There needs to be careful consideration of the IT

infrastructural requirements at hospitals in which

these technologies may be reasonably deployed.

(5) Cost effectiveness: Lastly, although it is assumed that

the introduction of AI systems will lead to cost saving

across health systems, this requires formal quantifi-

cation. If deemed not to be financially beneficial, it

may be more cost effective to hire diagnostic clini-

cians, which is the focus on current large-scale

studies.

Furthermore, the power of these models is dependent on

a large and diverse diet of datasets. At present, the retro-

spective single-center work available is insufficient and is

limited in size, scope and variety. Given that the largest

advances in esophagogastric surgery have occurred based

on large prospective studies, the advent of ML only calls

for further collaborative efforts at an international level to

fully reap the potential of this technology.

CONCLUSION

AI and radiomics have a huge potential for diagnostic

and surveillance of esophageal and gastric cancers. There is

currently a paucity of large-scale studies evaluating the

usefulness of AI and radiomics in esophageal cancer and

the evidence is limited to retrospective studies of small

sample sizes. Further progression of its clinical application

will require collaborative efforts to generate a large and

diverse dataset that can produce an accurate model. This

relies on determining the best and most feasible method-

ology for ML and standardizing this across centers. Hence,

further work should focus on these areas.
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