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The antibody repertoire of each individual is continuously updated by the

evolutionary process of B-cell receptor (BCR) mutation and selection. It has

recently become possible to gain detailed information concerning this process

through high-throughput sequencing. Here, we develop modern statistical

molecular evolution methods for the analysis of B-cell sequence data, and

then apply them to a very deep short-read dataset of BCRs. We find that the

substitution process is conserved across individuals but varies significant-

ly across gene segments. We investigate selection on BCRs using a novel

method that side-steps the difficulties encountered by previous work in differ-

entiating between selection and motif-driven mutation; this is done through

stochastic mapping and empirical Bayes estimators that compare the evolution

of in-frame and out-of-frame rearrangements. We use this new method to

derive a per-residue map of selection, which provides a more nuanced view

of the constraints on framework and variable regions.
1. Introduction
Antibodies encoded by somatically modified human B-cell receptor (BCR)

genes bind a vast array of antigens, initiating an immune response or directly

neutralizing their target. This diversity is made possible by the processes of

VDJ recombination, in which random joining of V, D and J genes generates an

initial combinatorial diversity of BCR sequences, and affinity maturation,

which further modifies these sequences. The affinity maturation process, in

which antibodies increase binding affinity for their cognate antigens, is essential

to mounting a precise humoral immune response. Affinity maturation proceeds

via a nucleotide substitution process that combines Darwinian mutation and

selection processes. Mutational diversity is generated by somatic hypermutation
(SHM), in which a targeted molecular mechanism mutates the BCR sequence.

This diversity is then passed through a selective sieve in which B cells that

bind well to antigen are stimulated to divide, whereas those that do not bind

well or bind to self are marked for destruction. The combination of VDJ recom-

bination and affinity maturation enables B cells to respond to an almost

limitless diversity of antigens. Understanding the substitution process and

selective forces shaping the diversity of the memory B-cell repertoire thus has

implications for disease prophylaxis and treatment.

It has recently become possible to gain detailed information about the B-cell

repertoire using high-throughput sequencing [1–5]. Recent reviews have high-

lighted the need for new computational tools that make use of BCR sequence

data to bring new insight, including the need for reproducible computational

pipelines [6–9]. Rigorous analysis of the B-cell repertoire will require statistical

analysis of how evolutionary processes define affinity maturation. Statistical

nucleotide molecular evolution models are often described in terms of three
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interrelated processes: mutation, the process generating diver-

sity; selection, the process determining survival or loss of

mutations and substitution, the observed process of evolution

that follows from the first two processes. One major vein of

research has focused on how nucleotide mutation rates

depend on the identity of surrounding nucleotides (reviewed

in [10]; see also [11,12]), but little has been done concerning

other aspects of the process, such as how the substitution

process differs between gene segments.

Along with mutation, selection owing to competition for

antigen binding forms the other key part of the affinity matu-

ration process. Inference of selective pressures in this context

is complicated by nucleotide context-dependent mutation,

leading some authors to proclaim that such selection inference

is not possible [13]. Indeed, if one does not correct for context-

dependent mutation bias, interactions between those motifs

and the genetic code can lead to false-positive identification

of selective pressure. Previous work has developed method-

ology to analyse selection on sequence tracts in this context

(reviewed in §3b), but no methods have yet achieved the goal

of statistical per-residue selection estimates. This has, however,

been recently identified as an important goal [11]. Such selec-

tion estimates could be used to better direct generation of

synthetic libraries of antibodies for high-throughput screening.

Another application would be to the engineering of antibody

Fc regions with specific properties, such as for bispecific mono-

clonal antibodies or antibody-derived fragments, while

preserving overall stability.

The ensemble of germline V, D and J genes that rearrange

to encode antibodies (equivalently: immunoglobulins) are

divided into nested sets. They can first be identified by their

locus: IGH, denoting the heavy chain; IGK, denoting the

kappa light chain; or IGL, denoting the lambda light chain.

Our dataset contains solely the IGH locus, so we will frequently

omit the locus prefix for simplicity. Genes within a locus can be

first subdivided by their segment, which is whether they are a V,

D or J gene. IGHV genes are further divided into subgroups
which share at least 75% nucleotide identity. Genes also have

polymorphisms that are grouped into alleles, which represent

polymorphisms of the gene between individuals [14].

VDJ recombination does not always produce a functional

antibody, such as when the V and J segments are not in the

same reading frame after recombination (an out-of-frame
rearrangement) or when the receptor sequence contains a

premature stop codon. However, each B-cell carries two

copies of the IGH locus, with one on each chromosome. If

the rearrangement on the first locus fails to produce a

viable antibody, the second locus will rearrange; if this

second rearrangement is successful, the antibody encoded

by the second rearrangement will be produced by the cell

[15]. If this second rearrangement does not produce a

viable antibody the cell dies.

When assaying the BCR repertoire through sequencing,

some of the sequences will be from cells for which the first

rearrangement was successful, while others will be from cells

with one productive and one out-of-frame rearrangement.

Although the out-of-frame rearrangements from the second

type of cell do not produce viable antibodies, their DNA gets

sequenced along with the productive rearrangements. As

SHM rarely introduces insertions or deletions (we observe

whole codon insertion deletion events in between 0.013 and

0.014% of memory sequences within templated segments), it

is appropriate to assume that observed frameshifts in
sequences are dominated by out-of-frame rearrangement

events. However, because they are not expressed, but rather

are carried along in cells with a separate functional rearrange-

ment, they have no selective constraints. For this reason, we use

sequences from out-of-frame rearrangements as a proxy for the

neutral mutation process in affinity maturation.

In this paper, we develop modern statistical molecular

evolution methods for the analysis of high-throughput B-cell

sequence data, and then apply them to a very deep short-read

dataset of BCRs. Specifically, we first apply model selection

criteria to identify patterns in the single-nucleotide substitution

process that occurs during affinity maturation and find that

they are similar across individuals but vary significantly

across gene segments. Next, we investigate how substitution

processes vary between V genes and find that the primary

source of variation is whether a sequence produces a functional

receptor. Finally, we develop the first statistical methodology

and corresponding software for comprehensive per-residue

selection estimates for BCRs. We leverage out-of-frame

rearrangements carried along in B cells with a productively

rearranged receptor on the second chromosome to estimate

evolutionary rates under neutrality, thus avoiding difficulties

encountered by previous work in differentiating between selec-

tion and motif-driven mutation. A key part of our method is our

extension of the ‘counting renaissance’ method for selection

inference [16] for non-constant sequencing coverage and a

star-tree phylogeny. Using this modified method, we are able

to efficiently derive a per-residue map of selection on more

than 15 million BCR sequences; we find that selection is domin-

ated by negative selection with patterns that are consistent

among individuals in our study.
2. Results
(a) Substitution model inference and testing
We evaluated the fit of nested models with varying complex-

ity, ranging from a simple model with shared branch lengths

and substitution processes for the three independent seg-

ments of the BCR, to a complex model with completely

separate substitution processes and branch lengths for each

segment (table 1). For the underlying nucleotide substitution

model, we fit a general time-reversible (GTR) nucleotide

model [17] with instantaneous rate matrix Q to subsets of

the data, using 20 000 unique sequences from each individ-

ual. The choice of a stationary and reversible model, rather

than a more general model, was based on the similarity

of base frequencies between the germline and observed

sequences (electronic supplementary material, table S3). We

modelled substitution rate heterogeneity across sites using a

four-category discretized Gamma distribution [18] with

fixed mean 1.0.

We find that the best performing model (denoted trQiGi,

table 2) is one in which the branch length separating a

sequenced BCR from its germline counterpart is estimated

independently for each observed sequence, but that V, D

and J regions differ systematically in their relative amounts

of sequence change (denoted tr). Additionally, this model

uses separate GTR transition matrices for V, D and J regions

(denoted Qi) and uses separate distributions for across-site

rate variation for V, D and J regions (denoted Gi). Looking

across models, both the Akaike information criterion (AIC)

[19] (table 2) and the Bayesian information criterion [20]



Table 1. Models and model testing results. The models of molecular evolution evaluated, including the number of free parameters introduced in parentheses.

name branch length GTR transition matrix
across-site rate variation
(discrete Gamma)

total
parameters

tiQiGi one branch length per segment

per sequence (n � 3)

one matrix per segment (8 � 3) one distribution per segment (3) 3n þ 27

TrQiGi one branch length per sequence

(n) þ relative rate between segments (2)

one matrix per segment (8 � 3) one distribution per segment (3) n þ 29

trQiGs one branch length per sequence

(n) þ relative rate between segments (2)

one matrix per segment (8 � 3) one shared distribution (1) n þ 27

trQsGs one branch length per sequence

(n) þ relative rate between segments (2)

one shared matrix (8) one shared distribution (1) n þ 11

Table 2. Models and model testing results. Models show identical ranking
across individuals. Columns include the log-likelihood (LogL), number of
degrees of freedom (d.f.), Akaike information criterion (AIC) and difference
of AIC from the top model (DIC).

model LogL d.f. AIC DAIC

A trQiGi 2687 582 20 029 1 415 222 0

trQiGs 2687 980 20 027 1 416 014 793

trQsGs 2700 818 20 009 1 441 654 26 433

tiQiGi 2662 417 60 027 1 444 888 29 666

B trQiGi 2507 980 20 029 1 056 017 0

trQiGs 2508 229 20 027 1 056 512 494

trQsGs 2517 320 20 009 1 074 658 18 641

tiQiGi 2482 963 60 027 1 085 979 29 962

C trQiGi 2563 181 20 029 1 166 420 0

trQiGs 2563 291 20 027 1 166 637 217

trQsGs 2572 530 20 009 1 185 078 18 659

tiQiGi 2539 018 60 027 1 198 090 31 671
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(data not shown) identified the same rank order of support;

this ordering was also identical for each of the three individ-

uals. Other than the tiQiGi model, in which branch length is

estimated independently across gene segments, models are

ranked in terms of decreasing complexity. The finding that

a complex model fits better than simpler models is probably

aided by the large volume of sequence data available.

Next, we fit the best-scoring model (trQiGi) to the full

dataset for each individual. The median distance to germline

was 0.063, 0.030 and 0.039 substitutions per site for individ-

uals A, B and C, respectively. The distribution of branch

lengths appears nearly exponential for individuals B and C,

with many sequences close to germline and few distant

from germline sequences (figure 1). Individual A displayed

a higher substitution load and a non-zero mode. Despite

these differences in evolutionary distance, the relative rate

of substitution between the V, D and J segments for each indi-

vidual was very similar. We note that the sorting procedure

used to separate memory from naive B cells provided

memory cells at approximately 97% purity, so these diver-

gence estimates may be conservative because of low levels

of contamination from the naive repertoire.
Coefficients from the GTR models for the same gene seg-

ment across individuals were quite similar to one another,

while models for different gene segments within an individ-

ual showed striking differences (electronic supplementary

material, figures S1 and S2). However, overall correlations of

GTR parameters between individuals were very high, yielding

correlation coefficients between r ¼ 0.988 and r ¼ 0.994. We

observe an enrichment of transitions relative to transversions

in all segments, as previously described [21].

Next, we compared the evolutionary process between

various groupings of sequences to learn what determines

the characteristics of this evolutionary process. We focused

on the V gene segment, as it had the most coverage in our

dataset, and partitioned the sequences by whether they

were in-frame, then by individual and then by gene sub-

group. We fit the trQiGi model to 1000 sequences from each

set of the partition and calculated the transition probability

matrix (P) associated with the median branch length across

all sequences given an equiprobable starting state. These

matrices were then analysed with a variant of compositional

principal components analysis [22] (see §4 Material and

methods). We find that substitution models are influenced

by in-frame versus out-of-frame sequence status, find no

evidence for models clustering by individual, and see some

limited evidence for clustering by gene subgroup (figure 2).

The Euclidean distance between these transformed discrete

probability distributions and the Hamming distance bet-

ween germline V genes showed significant, but moderate,

correlation (Spearman’s r ¼ 0.20, p , 10215; electronic

supplementary material, figure S3).
(b) Natural selection
The primary challenge for BCR selection inference is that

nucleotide context is known to have a very strong impact on

mutation rates (reviewed in [21]). These context-specific

mutations combined with the structure of the genetic code

can result in extreme dN/dS ratios using the classical definition

that are not attributable to selection. To address this problem,

we infer the selection coefficient v using a non-synonymous–

synonymous ratio which controls for background mutation

rate via out-of-frame sequences (3). We continue the tradition

of calling the selection coefficient v in this context, even

though it is a slightly different definition than previously used.

We apply this method to our dataset results in the first per-

site and per-gene maps quantifying selection in the B-cell
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repertoire [23,24]. Sites were classified as negatively or posi-

tively selected based on whether the 95% Bayesian credible

interval (BCI) excludes 1.0: sites for which the lower endpoint

of the v BCI is greater than 1.0 are classified as being under

positive selection, whereas sites for which the upper endpoint

of their v BCI is less than 1.0 are classified as being under nega-

tive selection. We employ site numbering according to the

IMGT unique numbering for the V domain [25].

IGHV3-23*01 is the most frequent V gene/allele combin-

ation in our dataset, and it displays patterns that are

consistent with the other genes. Specifically, we see significant

variation in the synonymous substitution rate (right panels,

figure 3a) even in out-of-frame sequences, which is presumably

because of motif-driven mutation. Thus, if we had directly

applied traditional means of estimating selection by comparing

the rate of non-synonymous and synonymous substitutions,

we would have falsely identified sites as being under strong

selection. By contrast, the selection inferences made using

out-of-frame sequences stay much closer to neutral (figure 3b).

We note extensive negative selection in the residues immedi-

ately preceding the third heavy chain complementarity-

determining region (CDR3; figure 4). The amino acid profile

for these sites shows a distinct preference for a tyrosine or

rarely a phenylalanine two residues before the start of the
CDR3 at site 102 (electronic supplementary material, figure

S4). It shows a preference for a tyrosine or more rarely a phenyl-

alanine or a histidine in the residue just before the start of

the CDR3 at site 103. These aromatic positions likely play impor-

tant structural roles in the antibody complex: site 102 is buried

in the core of the heavy chain and makes extensive van der

Waals interactions as well as a sidechain–backbone hydrogen

bond, while site 103 forms part of the interface between the

heavy and light chains (see further description of structural

results below).

Overall, we see extensive selection in our sequenced

region (figure 5). The mean v estimate across sites with at

least 100 productive and out-of-frame sequences aligned

was 0.907; 65.6% of sites had a median v , 1 with a wide dis-

tribution of median v values and confidence interval widths.

However, many of them were observed to be positively,

negatively and neutrally evolving with narrow confidence

intervals (figure 5, left column); 30.6% of sites were confi-

dently classified as being under negative selection (figure 5,

right column).

Because amino acids interior to the protein could be

important for protein stability compared with exposed

ones, we hypothesized that residues under negative selection

would be more internal to the antibody protein than those
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under neutral or positive selection, and that the inverse

would be true for residues under positive selection. To test

this, we mapped our v estimates onto antibody structures

(figure 6) and calculated the exposure of each amino acid pos-

ition in the structure using the solvent-accessible surface area

(SASA) using ROSETTA3 [27]. The normalized SASA was

well correlated with the classification of each site: sites classi-

fied as being under positive selection were most exposed

in the protein structure, followed by neutral sites, then

negatively selected sites (electronic supplementary material,

figure S7). Differences in surface accessibility were significant

between the three groups, with p-values ranging from less

than 0.002 for the comparison of positive versus neutral

sites to less than 10215 for the comparison of negative

versus neutral sites (Wilcoxon rank-sum test [28]).

Despite the three individuals surveyed here presumably

having quite different immune histories, we observe remarkable

consistency in substitution and selection within the memory

B-cell repertoire. Indeed, we see a very strong correlation of

median selection estimates between individuals (electronic

supplementary material, figure S5), with between-individual

coefficients of determination R2 between 0.628 and 0.687 for

site-specific v values.
3. Discussion
We find different patterns of substitution across the V, D and

J regions which is consistent among individuals (electronic

supplementary material, figure S1) even though those indi-

viduals have differing levels of substitution (figure 1). We

find that the dominant factor determining the V segment sub-

stitution process is whether out-of-frame or productive, with

the gene identity being a contributing factor. The pattern of

selective pressure is consistent across individuals, and
shows especially strong pressure near the boundary between

the V gene and the CDR3. Selection estimates for BCRs are

still high, with average v of �0.9, compared with common

examples of Darwinian evolution, such as seen in Drosophila
[29] and mammals [30], where most genes show v less than

0.1. However, we note that although our estimates of v are

comparable with more traditional estimates, we calculate v

slightly differently, using out-of-frame sequences as a control

for motif-driven evolution. Finally, the patterns of selective

pressure we observed correlated with levels of surface

exposure in published antibody structures: highly conserved

sites were more frequently found internally, while residues

we classified as positively selected were more exposed.

We note that our analyses are based on data from only three

individuals. It is possible that including more individuals

would reveal variation in the mutation process. However, we

note that these three unrelated individuals had an extraordin-

ary level of agreement, which cannot be explained by

sequencing error.

(a) Substitution process
We closely examine the substitution and selection processes in

a context-independent manner, not to make a full description

of this clearly context-dependent process, but rather to provide

a solid framework for future study and to enable downstream

comparative analyses (figure 2). Our model selection shows

that the best-fitting model allows for a single branch length

per sequence, a global multiplier for per-segment differences,

a per-segment substitution model and a per-segment rate vari-

ation model across sites (table 2). These between-segment

differences are certainly due in part to base composition,

which also differs significantly between segments and is simi-

lar between individuals (electronic supplementary material,

table S3). Another contributing factor is probably similarity
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of local nucleotide context between the genes of a given seg-

ment compared with between segments; these nucleotide

contexts are known to impact AID-induced somatic hypermu-

tation (reviewed in [21]). We also note that the entirety of the D

segment lies within the CDR3 region, and is thus more likely to
directly contact an epitope; not surprisingly, we observe higher

substitution rates within that segment. By analysing distances

between GTR substitution rate matrices, we find that the

most important difference between them is determined by

whether they are productive or non-productive (figure 2),
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which is presumably because of the impact of natural selection.

We also find a significant correlation between sequence

identity and substitution matrix (cf. [31]). In a related though

distinct vein, Mirsky et al. [32] develop an amino acid sub-

stitution model for BCR sequences, which analogously

aggregates information across positions.
(b) Selection process
The role of selection in BCR development has stimulated con-

tinuous interest since the pioneering 1985 paper of Clarke et al.
[33]; however, methods for the analysis of antigen selection

have developed in parallel to related work in the population

genetics and molecular evolution community. Work on the
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selection process for BCRs has focused on aggregate statistics

to infer selection for entire sequences or sequence tracts, and

there has been a lively debate about the relative merits of

these tests [34–38]. Recent work has offered methods that

evaluate selection on a per-sequence basis [38]. There have

also been efforts to infer selection based on lineage shape

[39–44], which has been a common approach in macroevolu-

tionary studies (reviewed in [45]) and more recently in

population genetics [46–49].

In this work, we develop the first means of inferring per-

residue selection using high-throughput sequence data with

non-uniform coverage. Our method side-steps the difficulties

encountered by previous work in differentiating between selec-

tion and motif-driven mutation in BCRs [11,13,34–38] by

developing statistical means to compare in-frame and out-of-

frame rearrangements. An alternative means of estimating

selection was recently developed by Kepler et al. [12] in which

a regression model incorporating a detailed model of motif

preferences was used to infer selection coefficients for the frame-

work and CDR regions in aggregate. In contrast to the previous

work on B-cell selection, our methods provide a per-residue
selection map for a contiguous stretch of BCR sequence.

We use out-of-frame rearrangements as our selection-free

control population. These sequences do not create functional

IGH proteins, but may be carried in heterozygous B cells

which do have a productively rearranged IGH allele. Thus

they undergo SHM, but any selection occurs on the level of

the productively rearranged allele, not on the residues in

the unproductive allele. We observe a similarly high pro-

portion of germline-identical sequences for in-frame and

out-of-frame subsets in naive cells (electronic supplementary

material, table S2); differences from germline derive in part

from sequencing and other platform errors that do not

depend on frame. For memory cells, we see extensive

action of somatic hypermutation, but with a higher pro-

portion of germline-identical out-of-frame sequences than

in-frame (electronic supplementary material, table S2). We

interpret these additional mutations for in-frame memory

sequences as following from the process of affinity matu-

ration for a specific antigen. We acknowledge that some

out-of-frame sequences could still feel the impact of selec-

tion, which would occur if the sequences accrue frameshift

mutations in the process of affinity maturation. However, it

is thought that SHM is primarily a process of point muta-

tion [21], and indeed, we observe whole codon indels in

only 0.013–0.014% of memory sequences within templated

segments. Still, if a weaker version of selection was occurring

on the out-of-frame sequences compared with the productive

ones then this would simply make our estimates of selection

conservative, pulling estimates of v closer to unity, and

yet our selection estimates are confidently classified as

non-neutral for a substantial fraction of sites (figure 5).

In applying our methodology to IGHV sequences, we gain

a high resolution per-gene map of selective forces on BCRs for

part of the V gene. This part is primarily in the framework

region, which is thought to be under substantial evolutionary

constraint to preserve structure. Indeed, we see a pattern of

quite strong negative selection in the region around the begin-

ning of the CDR3 (figure 4), agreeing with recent work that

found strong negative selection in one site near the beginning

of the CDR3 [11]. However, other sites in this section of frame-

work have substantially relaxed selection (figure 4). These

results thus provide a more nuanced view into the constraints
on BCR sequences rather than the traditional framework/

variable designations, as also noted by Yaari et al. [11].

This work points the way towards future directions. In this

work, we assumed that the size of individual lineages is small

compared with the size of the overall repertoire, and thus that

lineage structure could be ignored for the purpose of evolution-

ary model analysis. Ideally, we would reconstruct lineages and

then do evolutionary analysis on the tree corresponding to each

lineage. However, reconstructing groups of sequences forming

a lineage is a challenging prospect on its own, to say nothing of

doing phylogenetics on sequences in the presence of strong

context-specific mutation-selection patterns, and have left out

incorporating those aspects until we have first developed

the necessary methods. We have recently developed an

HMM framework to analyse VDJ rearrangements [50] and

are currently developing and validating ways to use this frame-

work for likelihood-based (as opposed to procedure-based

[51,52]) lineage group inference.
4. Material and methods
(a) Dataset
The complete description of the experiment will be published separ-

ately [53]. However, here we give a brief overview of the data in order

to facilitate understanding of our analysis and to emphasize that the

experimental design has a number of features that greatly reduce

errors in sequencing and quantification. A measure of 400 ml of

blood was drawn from three healthy volunteers under IRB protocol

at the Fred Hutchinson Cancer Research Center. CD19þ cells were

obtained by bead purification then flow sorted to isolate over 10

million naive (CD19þD272IgDþIgMþ) and over 10 million

memory (CD19þCD27þ) B cells, with greater than 97% purity. Geno-

mic DNA was extracted and the ImmunoSeq assay described in [3]

was performed on the six samples at Adaptive Biotechnologies in

Seattle, WA, USA.

The experiments and preprocessing were carefully designed

to give an accurate quantification of error-corrected observed

sequences. To mitigate preferential amplification of some V/J pairs

through primer bias, the PCR amplification was performed using

primers optimized via a large collection of synthetic templates [54].

To reduce sequencing errors and provide accurate quantification,

each sample was divided among the wells on two 96-well plates

and bar-coded individually. These templates were then amplified

and ‘over-sequenced’ (electronic supplementary material, table S1),

so that an average of almost six reads were present for each template.

Following Robins et al. [55], reads matching the same template were

collapsed into a consensus sequence with reduced sequencing error.

Here, we grouped reads from within a well into consensus sequences

by joining reads with Hamming distance less than or equal to two,

and inferred the consensus sequence in each group using parsimony.

Groups with only one member were discarded. This procedure pro-

tects against collapsing distinct sequences, as the probability that

nearly identical distinct sequences co-occur exclusively in the same

wells is small. We acknowledge this procedure may eliminate low

frequency variants, but we prioritized accuracy over sensitivity

towards these variants; despite this conservative analysis pipeline

we observed substantial signal in the data.

Deep sequencing these B-cell populations resulted in 15 023 951

(electronic supplementary material, table S1) unique 130 bp

observed sequences after preprocessing that spanned the third

heavy chain complementarity determining region (CDR3) region

(figure 7). The full dataset is available at http://adaptivebiotech.

com/link/mat2015.

http://adaptivebiotech.com/link/mat2015.
http://adaptivebiotech.com/link/mat2015.


J

PCR-R
SEQ

PCR-F

read

CDR1 CDR2FW1 FW2 FW3 FW4CDR3

V N D N

Figure 7. B-cell receptor schematic showing variable (V), diversity (D) and joining (J) gene segments as well as framework (FW) and complementarity-determining
regions (CDRs). In VDJ recombination, individual V, D, and J gene segments are randomly selected and joined together via a process that deletes some randomly
distributed number of nucleotides on their boundaries, then joins them together with random ‘non-templated insertions’ (N). The specificity of an antibody is
primarily determined by the region defined by the heavy chain recombination site, referred to as the third complementarity-determining region (CDR3). The
sequence data for this study started in the fourth framework (FW) region and continued into the third. Amplification was via a forward primer in the FW2
region and a reverse primer in the FW4 region.
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(b) Alignment and germline assignment
Each sequence was first aligned to each V gene using the Smith–

Waterman algorithm with an affine gap penalty [56]. The 30

portion of the sequence not included in the best V gene alignment

was next aligned to all D and J genes available from the IMGT data-

base [14]. The best-scoring V, D and J alignment for each sequence

was taken to be the germline alignment, and the corresponding

germline sequence was taken to be the ancestral sequence for

that observed sequence; in the case of ties, one germline sequence

was chosen randomly among those alleles present at abundance

greater than or equal to 10%. Sequences were classified as pro-

ductive or out-of-frame based on whether the V and J segments

were in the same frame; all sequences with stop codons were

removed, as these sequences could result from either an unproduc-

tive rearrangement event or inactivation due to a lethal mutation.

The 18 V gene polymorphisms present at the highest frequency in

the naive populations of the individuals surveyed which were not

represented in the IMGT database were added to the list of candi-

dates for alignment. In contrast to naive sequences which have no

mutations across almost all sites, the alleles we added to the germ-

line collection were all present at greater than 30% for the IGHV

gene in question.

(c) Substitution models, fitting and analysis
The setting of B-cell affinity maturation is substantially different

than that typically encountered in molecular evolution studies,

and hence there are some differences between our model fitting

procedure compared with common practice. For BCRs outside

non-templated insertions, the root state is the V, D and J genes

encoded in the germline from which a sequenced BCR derives.

Thus, we analyse substitutions that have occurred in evolution

away from the germline-encoded segments of observed BCR

sequences, ignoring sites comprising non-templated insertions.

The CDR3 region of an antibody is generally sufficient to

uniquely identify its specificity [57]. Although there are certainly

some clones in our dataset that derive from a single rearrange-

ment event but differ due to somatic hypermutation, the

probability that a given pair of distinct sequences derives from

a single common ancestor is small: targeted searches for clonally

related antibodies during infection have identified them at 0.003

to 0.5% [58]. It is a substantial challenge to statistically infer

which sequences sit together in a clonal lineage and then to per-

form phylogenetic analysis on such a large dataset (see work by

[12,59,60]) and performing this analysis incorrectly could bias

our results. Additionally, we encountered significant compu-

tational barriers analysing the volume of sequences available,

and adding phylogenetic structure to our analysis may have

made the analysis computationally prohibitive even if we had

the lineage structure in hand (we believe this is the largest

number of sequences from a single dataset analysed in selection

study to date).

For these reasons, our analyses were performed on a set of

pairwise alignments, each representing a two taxon tree
containing an observed sequence and its best-scoring germline

sequence according to Smith–Waterman alignment. This is

equivalent to using a rooted ‘star’ tree where the root state is

known. This assumption allowed us to focus our attention on

the selection inference problem.

Substitution models are summarized in table 1 and described

in detail here. We will use n for the number of observed

sequences. Our models are characterized by three components.

First, the subscript of t describes how branch length assignments

are allowed to vary across segments of a single sequence. The ti

model allows branch lengths to vary independently, resulting in

3n parameters. The tr model has two global per-segment multi-

pliers to define the branch lengths (e.g. figure 1) with the V

segment rate fixed at unity, resulting in n þ 2 parameters. The

subscript of Q describes how rate matrices are fit. The Qi

model allows an independent global GTR rate matrix for each

segment, with a total of 24 parameters. The Qr model just

has one GTR rate matrix overall, with eight parameters. The

subscript of G denotes how across-site substitution rate varia-

tion is modelled in terms of a four-category discrete Gamma

distribution [18]. The Gi model allows an independent rates

across-sites parameter for each sequence, with three parameters.

The Gs has a global rates across-sites parameter, with one para-

meter. Given these choices concerning how the data were

partitioned and parametrized, the standard phylogenetic likeli-

hood function was used as described in the original literature

[18,61,62] and in books (e.g. [63,64]).

Maximum-likelihood values of substitution model parameters

and branch lengths were estimated using a combination of Bioþþ
[65] and BEAGLE [66], with model optimization via the BOBYQA

algorithm [67] as implemented in NLopt [68], and branch length

optimization via Brent’s method [69]. Optimization alternated

between substitution model parameters and branch lengths until

the change in log-likelihood at a given iteration was less than

0.001. Our software to perform this optimization is available

from https://github.com/cmccoy/fit-star.

For the principal components analysis on substitution

matrices, we first obtained the median branch length t̂ across

all sequences for all individuals. We then calculated the corre-

sponding transition matrix for each model given equiprobable

starting state: eQt̂ diag(0:25). These were then projected onto

the first two principal components, adapting suggestions for

doing PCA in the simplex [22]. Specifically, each row of these

matrices, as a discrete probability distribution, is a point in the

simplex. Hence, we applied a centred log transformation to

each row of this matrix using the clr function of the R package

compositions [70], and followed with standard principal

components analysis.

To compare distance between inferred models and sequence

distance, we calculated the Hamming distance between all pairs

of V genes using the alignment available from the IMGT database

[14]. To obtain distances between models, we calculated the

Euclidean distance calculated between pairs of the transformed

probability vectors.

https://github.com/cmccoy/fit-star
https://github.com/cmccoy/fit-star
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(d) Selection analysis
Because of the large volume of sequences to analyse, we also

needed a mechanism to detect selection that could be run on over

15 million sequences, most of which did not share evolutionary his-

tory. Classical means of estimating selection by codon model fitting

[71,72] could not be used, even in their most recent and much more

efficient incarnation [73]. Instead, we used the renaissance counting

approach [16], which we modified to work under varying levels of

coverage. A key part of the renaissance counting approach is an

empirical Bayes regularization procedure [74]. This procedure

uses the entire collection of sites to inform substitution rate esti-

mation at each site individually, effectively sharing data across

sites, allowing inference at sites which either display few substi-

tutions or have less sequencing coverage. We note that obtaining

precise per-site selection estimates for hundreds of genes requires

a large quantity of sequence data like that which we have here:

the read coverage decrease on the 50 end of the V gene correspond-

ingly increases the width of the error bar (figure 3, [23]), resulting in

a decrease of power for selection regime classification (figure 4).
0:20140244
(i) Bayesian inference of selection on a star-shaped phylogeny
To determine the site-specific selection pressure for each V gene,

we extended the counting renaissance method, described in [16],

to accommodate pairwise analyses of a large number of sequences

with a known ancestral sequence and non-constant site coverage.

The counting renaissance method starts by assuming a separate

HKY substitution model [75] for each of the three codon positions

and uses Markov chain Monte Carlo (MCMC) to approximate the

posterior distribution of model parameters that include substi-

tution rates and phylogenetic tree with branch lengths. As in our

analyses, we assumed that query sequences are related by a star-

shaped phylogeny, our model parameters included only HKY

model parameters and branch lengths leading to all the query

sequences. Moreover, we fixed the parameters of the HKY

model, along with the relative rates between codon positions, to

the maximum-likelihood estimates produced using the whole

dataset. We note that we could have fit per-codon-position GTR

models and used them for stochastic mapping; however, such a

model would still be substantially mis-specified compared with

a codon model and thus we decided to follow [16] and use HKY

for the mapping. A priori, we assumed that branch lengths leading

to the query sequence independently follow an exponential distri-

bution with mean 0.1. We performed 20 000 iterations of MCMC,

scaling the branch length leading to the observed sequence at

each iteration, and sampling every 40 iterations to generate a

total of 500 samples. Given each posterior sample of query

branch lengths, the counting renaissance method draws a

sample of ancestral substitutions conditional on the observed

data using a simple per-codon-position nucleotide model; the

resulting sampled ancestral sequences are then used to count

synonymous and non-synonymous mutations.
(ii) Sampling codon substitutions
For each unique read, for each codon position l and posterior

sample j, counts of synonymous (C(S)
jl ) and non-synonymous

(C(N)
jl ) substitutions at each site were imputed using stochastic

mapping as described above in §4d(i).

For N MCMC iterations based on an alignment of L codons, the

result of this procedure was two N � L matrices, each containing

the number of synonymous and non-synonymous events at each

codon position in each posterior sample. Counts of each substi-

tution type along with the total branch length for each site were

aggregated across sequences from the same gene by element-

wise addition. This took about 5 days on an 194 core cluster

launched on Amazon Web Services using starcluster

(http://star.mit.edu/cluster/).
(iii) Empirical Bayes regularization
The varying length of the CDR3, combined with short observed

sequences, leads to quite skewed coverage of sites stratified by

gene. We modified the empirical Bayes regularization procedure

of the original counting renaissance method [16] to account for

varying depth of observation as follows. First, we define a

branch length leading to query sequence i for site l as

til ¼
ti, if any residues in the observed sequence i

align to codon position l
0, otherwise:

8<
:

We assume that substitution counts for site l come from a

Poisson process with rate lltl:

Cl � Poisson(lltl),

where tl ¼
Pn

i¼1 til:

As in the original counting renaissance, we assume that the

site-specific rates ll come from a Gamma distribution with

shape a and rate b:

ll � Gamma(a, b):

We fix a and b to their maximum-likelihood estimates â and

b̂ by treating sampled branch lengths and counts as fixed and

maximizing the likelihood function

L(a, b) ¼ ba

G(a)

� �LY
l

tCl
l

G(Cl þ 1)

G(Cl þ a)

(tl þ b)Clþa : (4:1)

We provide a derivation of this likelihood function in the elec-

tronic supplementary material. In contrast to [16], we do not

have closed-form solutions for the maximum-likelihood or

method of moments estimators of a and b in this slightly more

complex setting. However, it does not add a substantial compu-

tational burden to estimate these parameters numerically via the

BOBYQA optimizer [67].

Given â and b̂, we draw rates ll from the posterior:

lljCl � Gamma(Cl þ â , tl þ b̂ ), (4:2)

derived in the electronic supplementary material.

Estimation of a and b by maximizing likelihood (4.1) fails

when the sample variance of the observed counts C1. . .CL,

weighted by the site-specific branch length sums, t1. . .tL, is less

than the corresponding weighted sample mean. In these cases,

we assume that the observed counts are drawn from Poisson

distributions with site-specific rate ltl:

Cl � Poisson(ltl),

where l is shared across sites and is estimated from the data by

maximizing the likelihood

L(l) ¼
YL

l

(ltl)
Cl

Cl!
e�ltl :

(iv) Simulations
To validate this method, we simulated 1000 sequences of 100

codon sites each under the GY94 model and a star-like phylogeny

with branch lengths fixed to 0.05 using piBUSS [76]. We varied v

over the alignment, with 85 sites having v ¼ 0.1, 5 sites having

v ¼ 1, and 10 sites under positive selection—v ¼ 10. We next

introduced varying coverage over the alignment: sequences were

truncated such that no sequences covered the first 10 codons,

only half of the sequences had coverage over the next 40 codons,

and all sequences covered the remaining 50 codons (electronic sup-

plementary material, figure S6, bottom panel). Estimates of v were

more accurate with higher site coverage (electronic supplementary

material, figure S6, top panel). Of note, as a result of the empirical

Bayes regularization, even some sites with no coverage were classi-

fied as being under purifying selection. In all other analyses, we

http://star.mit.edu/cluster/
http://star.mit.edu/cluster/
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only report v estimates for sites covered by at least 100 sequences.

As the starting state is always the germline amino acid, no classifi-

cations can be made for sites which are Tryptophan or Methionine

in the germline, as all mutations are non-synonymous for codons

encoding those amino acids.

(v) Site-specific estimates of v
In [16], the authors arrive at site-specific estimates of vl by com-

paring data-conditioned (C) rates ll of non-synonymous (N) and

synonymous (S) substitutions, each normalized by an ‘uncondi-

tional rate’ (U): vRC
l ¼ (l(N,C)

l =l(N,U)
l )=(l(S,C)

l =l(S,U)
l ): As SHM is

highly context-specific, we chose to use rates inferred from out-

of-frame rearrangements in place of the unconditional rates, as

these more accurately represent the mutation rates in the absence

of selection:

vl ¼
l

(N,P)
l =l(N,O)

l

l
(S,P)
l =l(S,O)

l

, (4:3)

where P and O refer to productive and out-of-frame rearrangements,

respectively.

(vi) Implementation
We used the BEAST [77] implementation of the counting renais-

sance procedure to sample counts for both synonymous and

non-synonymous substitutions at each site. We extended BEAST

v. 1.8.0 to generate ‘unconditional’ counts using the germline

state as the starting state for simulating along the edge to the

query as described above in §4d(v). This process (sampling substi-

tutions for each sequence, then combining counts from sequences

mapping to the same IGHV) provides a natural setting for paralle-

lization via the map-reduce model of computation; we used the

Apache Spark [78] framework to distribute work across a cluster

running on Amazon EC2. Our software to perform this analysis

is available from https://github.com/cmccoy/startreerenaissance.

(e) Structural analysis
For each of the eleven most frequently occurring V genes, we

identified the closest structure in the Protein Data Bank (PDB)
[79] using BLAST [80]. Structures were visualized using PyMOL

[81]. We calculated the normalized SASA for each amino acid pos-

ition using ROSETTA3 [27] and normalized these values by

dividing them by the fully exposed SASA of the given residue

type in an extended chain. Wilcoxon rank-sum tests [28] between

all pairs of selection classifications (negative, neutral, positive)

were used to assess whether the normalized SASA differed

between groups. p-values were Bonferroni-corrected [82] to

account for multiple comparisons.

The details of our computational methods are available in the

electronic supplementary material.
Data accessibility. Data are available at http://adaptivebiotech.com/link/
mat2015. We have made an Amazon Machine Image (AMI) [83] avail-
able pre-loaded with our analysis pipeline and some example data. To
use it, launch an instance of AMI ami-ab295b9b in the us-west-2
region and log in as user ubuntu (no password needed: authentication
by public key).
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