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Reward uncertainty asymmetrically affects
information transmission within the monkey
fronto-parietal network
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Mulugeta Semework3,4, Sameer A. Sheth5, Reza Lashgari1,4 & Jacqueline Gottlieb 3,4,6✉

A central hypothesis in research on executive function is that controlled information pro-

cessing is costly and is allocated according to the behavioral benefits it brings. However,

while computational theories predict that the benefits of new information depend on prior

uncertainty, the cellular effects of uncertainty on the executive network are incompletely

understood. Using simultaneous recordings in monkeys, we describe several mechanisms by

which the fronto-parietal network reacts to uncertainty. We show that the variance of

expected rewards, independently of the value of the rewards, was encoded in single neuron

and population spiking activity and local field potential (LFP) oscillations, and, impor-

tantly, asymmetrically affected fronto-parietal information transmission (measured

through the coherence between spikes and LFPs). Higher uncertainty selectively enhanced

information transmission from the parietal to the frontal lobe and suppressed it in the

opposite direction, consistent with Bayesian principles that prioritize sensory informa-

tion according to a decision maker’s prior uncertainty.
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Executive control is broadly understood as the ability to
engage in information processing in pursuit of a goal,
especially in circumstances requiring non-habitual or novel

responses1. In humans and monkeys, executive function depends
on a network of frontal and parietal areas, which is activated in
relation to demanding behaviors requiring the suppression of
inappropriate response tendencies, monitoring and adjusting
behavioral strategies, and the goal-directed control of attention1,2.

Theories of computational rationality, like current frame-
works of executive function, propose that controlled (rather
than automatic) information processing is costly and is engaged
in proportion to the benefits it brings to the organism1,3.
Because the decision-theoretic (Bayesian) definition of infor-
mation is in terms of a reduction of uncertainty, an important
implication of this view is that control should be optimally
allocated to tasks that not merely have reward value but, more
specifically, have uncertainty. It is in conditions of higher
ex ante uncertainty that animals can expect to obtain the
greatest benefits from processing new information and
improving prediction accuracy4–7.

Consistent with this view, a growing literature shows that
attention is recruited by uncertainty independently of reward
gains. Animals are intrinsically motivated to resolve uncertainty
independently of instrumental incentives5,8, the expectation of
new information influences eye movements in humans9 and
monkeys10, and oculomotor neurons in monkey parietal cortex
have stronger responses preceding saccades that are expected to
reduce uncertainty11. And yet, while existing studies have tested
neural activity in the fronto-parietal network in tasks involving
risk and ambiguity, learning, exploration, novelty, or surprise (e.g.
refs. 12–17), critical open questions remain about the cellular
effects of uncertainty on this network.

One question concerns the distinction between uncertainty and
reward gains. In instrumental conditions, when animals make
reward-maximizing decisions, reductions of decision uncertainty
are closely related with increases in long-term reward gains5,18.
A handful of studies recently used non-instrumental conditions
to show that individual neurons have distinct responses to the
variance and value of expected rewards, but these studies have
targeted the orbitofrontal cortex19 and subcortical structures20,21

rather than the fronto-parietal network22–26 (but see11 for a
notable exception).

A second key question is how uncertainty affects not only
neural activity within areas but information flow between areas. A
central tenet of Bayesian4 and predictive coding theories6 is that,
in states of high prior uncertainty, the brain downregulates top-
down signals conveying uncertain prior expectations and upre-
gulates the bottom-up transmission of sensory information.
However, while this view is prevalent in computational theories,
there has been no empirical demonstration of uncertainty-
dependent modulations of functional connectivity.

To examine these questions, we simultaneously recorded
single-neuron responses and local field potential (LFP) oscilla-
tions in the dorsolateral prefrontal cortex (dlPFC) and area 7A,
two strongly interconnected nodes of the monkey fronto-parietal
network. We used a simple task in which monkeys were cued to
expect certain or uncertain rewards but could not make decisions
to maximize those rewards. We show that uncertainty has
representations in action potential activity and LFP oscillations
that are distinct from those of EV. Importantly, uncer-
tainty asymmetrically enhances spike-field coherence (SFC) from
the parietal to the frontal lobe while suppressing SFC in the
opposite direction, consistent with theoretical predictions of
optimal inference under uncertainty.

Results
Task and behavior. Two monkeys performed a visually guided
saccade task in which they formed expectations about the trial’s
rewards based on familiar visual cues. On each trial after
achieving central fixation, the monkeys were shown a cue indi-
cating the trial’s reward probability (Fig. 1a), which was followed,
after a 400 ms delay period, by presentation of the target for the
subsequent saccade. Upon making the required saccade, the
monkeys received a reward according to the probability signaled
by the cue. Cue and target locations were independently rando-
mized across two locations (8° eccentricity to the right or left of
fixation). Thus, the cue was only predictive of the coming reward
but not the instrumental action, allowing us to examine beha-
vioral and neural responses to reward expectations independently
of saccade planning or reward-maximizing decision strategies.

Fig. 1 Task design and behavior. a Task: The monkeys initiated a trial by looking at a fixation point flanked by two placeholders. A randomly selected
placeholder was then replaced by a reward cue for 400ms, followed by a 400-ms delay (memory) period, and presentation of the saccade target
(luminance increase in a randomly selected placeholder). After making the instructed saccade, the monkeys received a reward according to the cued
distribution. b Visual cues: Monkeys were familiarized with nine visual cues signaling the possible reward magnitudes on an 11-point scale (1 point= 0.1 mL
of water). c Orthogonalization of variance and EV: Across the cue set, variance and EV could each take three discrete levels and were statistically dissociated.
d Anticipatory licking before reward delivery increased as a function of both variance and EV. Points show average and SEM of the z-scored licking rates
(n= 12,029 independent trials).
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Monkeys were familiarized with a set of cues signaling nine
reward distributions, whose variance and EV were statistically
dissociated. Three cues signaled deterministic rewards of,
respectively, 3, 6, or 9 points, whereas the remaining six cues
indicated probabilistic rewards, with a small or large reward size
being equally likely to occur (Fig. 1b single- and double-line
cues). Reward sizes were determined through a mean-preserving
procedure, whereby the small and large probabilistic rewards
were symmetrically positioned with low or high variance, around
the deterministic EV. This produced a cue set that statistically
dissociated three levels of variance (0, 1, and 4) and three levels of
EV (Fig. 1c). Both monkeys achieved high proficiency, with a
high fraction of correctly completed trials (monkey 1: 83%
correct, monkey 2: 81% correct overall). Importantly the fraction
of correct trials did not vary with variance or EV (two-way
ANOVA for each monkey, all p > 0.19) ensuring that the rewards
that the monkeys experienced were not distorted by uneven
performance and corresponded to those signaled by the cues.

Analyses of anticipatory licking confirmed that the monkeys
were familiar with the cues and were cognizant of both variance
and EV (Fig. 1d). The generalized linear model (GLM)
coefficients for licking (see “Methods”) were significantly greater
than zero for both variance and EV (mean ± SEM, variance: 0.03
± 0.0006; EV: 0.24 ± 0.002, all p < 10−9 relative to 0, signed-rank
test). In contrast, EV and variance did not consistently affect the
monkeys’ saccades. Saccade reaction times (RTs) increased with
EV in monkey 1 but not in monkey 2 (GLM coefficients,
respectively, p= 2.6 × 10−8 and p= 0.35 relative to 0) and were
not affected by variance in either monkey (all p > 0.1). Moreover,
the effects of EV and variance on licking were uncorrelated with
those on RT across sessions and showed no significant
interactions with the location of the visual cue (all p > 0.3). Thus,
reward expectations affected anticipatory licking independently of
saccade orienting, consistent with previous reports that the two
behaviors have different reward sensitivity27.

To investigate the neural correlates of variance and EV, we
implanted multi-channel electrode arrays in area 7A and the
dlPFC focusing on subdivisions that are reciprocally connected
and have visual and attention-related activity—i.e., area OPT in
the parietal cortex and the pre-arcuate portion of the dlPFC28,29

(Fig. S1). We describe the effects of variance and EV in single-
neuron activity, followed by their influence on LFP oscillatory
power and SFC.

Variance and EV have distinct single-neuron representations.
In both 7A and dlPFC, individual neurons showed significant
encoding of variance or EV (Table 1 and Fig. 2). The sensitive
neurons were equally likely to respond to uncertainty and EV
with increases or decreases in firing (Table 1 and Fig. 2).
Importantly, the GLM coefficients capturing each effect (see
“Methods”) were uncorrelated, suggesting that variance and EV
are encoded in distinct populations of cells (7A: r= 0.03, p=
0.49, n= 522; dlPFC: r= 0.06, p= 0.15, n= 530).

Responses with positive and negative scaling had similar
prevalence and strength in the two areas (Fig. 2 and Table 1) and,
across all the cells, the average coefficients showed no net
enhancement or suppression of firing with either variable (all p >
0.23, with the single exception of a net positive effect of EV in
area 7A; mean ± SEM GLM coefficient of 0.171 ± 0.032, p= 10−6

relative to 0). Cells with positive and negative scaling had
sustained effects throughout the cue and delay epochs (Fig. 3a).
We found no correlation between trial-by trial firing rates and
licking responses, suggesting that the cells encoded expectations
rather than licking per se. Moreover, cells with positive or
negative scaling for one variable had no significant sensitivity to

the other factor (Fig. 3b), confirming that variance and EV were
encoded by distinct populations of cells.

Because cue location was included as a nuisance regressor in
the GLM, the EV, and variance sensitivity were above and beyond
any cue location response. Four additional observations support
this conclusion. First, while some neurons encoded the location of
the visual cue, location coefficients were uncorrelated with those
for variance or EV (Fig. S2). Second, the EV and variance selective
cells showed no consistent visual response, ruling out that they
merely encoded the appearance of the cue (Fig. S2). Third, EV
and variance coefficients that were estimated separately for each
cue location were statistically equivalent (all p > 0.59 sign-rank
test) and highly correlated (all p < 0.02). Finally, we found no
significant correlation between trial-by-trial firing rates and
saccadic RT. Thus, the neurons encoded global expectations of
reward variance and EV independently of visuo-spatial selectivity
or saccade planning activity.

Noise correlations: Given the stark segregation of EV and
variance responses we found in both areas, we wondered whether
the neurons encoding these variables had distinct functional
connectivity. To examine this question, we computed noise
correlations between trial-by-trial activity in pairs of simulta-
neously recorded cells, focusing on firing rates in a 600 ms pre-
cue epoch preceding cue onset to avoid confounds related to
evoked activity30.

Noise correlations were higher in pairs in which both neurons
coded for the same factor (both neurons encoding variance or
both encoding EV) relative to pairs with mixed selectivity (Fig. 4a,
“across-factor” vs “within factor”) and this difference was highly
robust in both areas (Table 2, dlPFC, p= 2.5 × 10−7, n= 47 and
n= 56 pairs; 7A, p= 5.1 × 10−8, n= 79 and n= 43 pairs;
Kruskal–Wallis test). In addition, in pairs with homogeneous
selectivity, noise correlations were larger if the two neurons had
the same versus opposite polarity (Fig. 4a) for both variables and
both areas (Table 2). Variance, EV, or response polarity had no
effect on across-trial variability (Fano factor), ruling out that this
may have produced apparent effect on noise correlations. Thus,
subject to their encoding polarity, neurons responding to variance
shared distinct variability relative to those encoding EV.

Decoding: Because information can be transmitted by neurons
that lack linear selectivity, we conducted a final analysis to
estimate the decoding capacity from the entire population of cells.
We trained support vector machine (SVM) classifiers to perform
pairwise discriminations between the different levels of variance
and EV based on the population responses and analyzed the
boostrapped distributions of excess accuracy (the differences in
accuracy in the real and label-shuffled (null) data sets). To
determine the extent to which variance and EV had distinct or
overlapping representations, we also tested incongruent train-
testing regimes—training the classifiers on variance and EV and
testing on the untrained variable.

Decoding performance in congruent training-testing regimes
was clearly superior to that in incongruent regimes for both
variables in both areas. In both the pooled analyses (Fig. 4b) and
pairwise comparisons (Fig. S3), 95% confidence bands were
clearly above 0 for all congruent train-testing classifications, while
decoding in incongruent regimes was significantly weaker and at
chance levels in all cases. There were no significant differences
between the decoding of variance and EV in 7A and dlPFC.

In sum, analysis of single-neuron activity, noise correlation,
and population decoding show that variance and EV had clearly
segregated representations that were similar in 7A and the dlPFC.

Variance and EV modulate oscillatory LFP power. Because,
in addition to spiking activity, oscillatory LFP potentials are
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sensitive indicators of cognitive states31–33 we next examined how
oscillations are affected by variance and EV. To this end, we
divided single-trial LFP traces into 1 Hz × 1ms pixels spanning
the cue and delay epochs and, for each pixel, fit a GLM model
that included variance and EV as factors, controlling for cue
location and interactions (identical to the model applied to
spiking activity; “Methods”). The resulting coefficient maps
showed that variance and EV exerted consistent effects in two
frequency bands: a lower frequency band between 8 and 18 Hz,
corresponding to α/low-β frequencies, and a higher band of
18–43 Hz, corresponding to the high-β/low-γ frequencies (Figs. 5
and 6).

Power in an α/low-β frequency band (8–18 Hz) is widely
associated with task engagement and arousal in different tasks
and brain areas in humans and monkeys34. Consistent with this
widely replicated result, activity in this band was suppressed by
variance and EV in both 7A and the dlPFC (Fig. 5, pink regions of
interest (ROIs)). The strongest effects arose in the late cue and
early delay periods (Fig. 6a, b) and were highly significant for
both variables for each monkey (7A variance: monkey 1: p < 6 ×
10−6 (Wilcoxon rank-sum test relative to 0 across all pixels in the
ROI); monkey 2: p < 2 × 10−14; EV: monkey 1: p < 2 × 10−21,
monkey 2: p < 9 × 10−13; dlPFC variance: monkey 1: p < 6 ×

10−10, monkey 2: p < 8 × 10−8; EV: monkey 1: p < 5 × 10−28,
monkey 2: p < 2 × 10−12).

In contrast with the uniform suppression in the low-frequency
band, the effects in the high-β/low-γ differed for variance and
EV and across the two areas (Fig. 6c vs d and Fig. 5, purple ROI).
In 7A, power in this band was suppressed by variance and
enhanced by EV (Fig. 6c vs d, dashed traces), while the dlPFC
showed the opposite pattern—being enhanced by variance and
suppressed by EV (Fig. 6c vs d, solid traces). Each effect was highly
robust in each monkey (7A variance: monkey 1: p < 2 × 10−13,
monkey 2: p < 4 × 10−17; 7A EV: monkey 1: p < 2 × 10−16, monkey
2: p < 4 × 10−18; dlPFC variance monkey 1: p < 3 × 10−6, monkey 2:
p < 2 × 10−22; dlPFC EV: monkey 1: p < 4 × 10−28, monkey 2:
p < 9.5 × 10−4). As for the single-neuron results, these effects
were above and beyond location selectivity, were equivalent at
the two cue locations and were uncorrelated with the sensitivity
to variance and EV in saccadic RT. Thus, variance and EV
reduced power in the α/low-β frequency range in both areas
but had distinct area-specific effects in the high-β/low-γ
frequency range.

Variance enhances parietal-to-frontal information transmis-
sion. Given theoretical predictions that uncertainty modulates the

Table 1 Single-neuron sensitivity to variance and EV in dlPFC and 7A.

Proportion significant β-values (mean ± SEM)

dlPFC 7A dlPFC vs 7A dlPFC 7A dlPFC vs 7A

EV
EV+ 5.7% (30) 12% (62) χ2= 2.410, d.f. = 1, p > 0.1 1.13 ± 0.13* 1.32 ± 0.11* p= 0.72
EV− 5.7% (30) 6% (31) χ2= 0.007, d.f.= 1, p > 0.9 −0.94 ± 0.07* −0.80 ± 0.07* p= 0.06

All EV sensitive 11.3% (60) 18% (93) χ2= 1.690, d.f.= 1, p > 0.1 0.10 ± 0.15 0.61 ± 0.13* p= 0.70
Risk

Variance+ 2.8% (15) 2.3% (12) χ2= 0.060, d.f.= 1, p > 0.1 0.73 ± 0.09* 0.79 ± 0.1* p= 0.62
Variance− 3.4% (18) 3.1% (16) χ2= 0.017, d.f.= 1, p > 0.9 −0.72 ± 0.08* −0.95 ± 0.1* p= 0.10

All var. sensitive 6.2% (33) 5.4% (28) χ2= 0.070, d.f.= 1, p > 0.1 −0.06 ± 0.14 −0.20 ± 0.18 p= 0.08
Interaction

All interaction 6.6% (35) 6.1% (32) χ2= 0.018, d.f. = 1, p > 0.9 0.04 ± 0.18 0.82 ± 0.23* p= 0.04
All modulations 22% (117) 26% (134) χ2= 3.460, d.f.= 7, p > 0.1

The left half of the table (“proportion significant”) shows the percentage (number) of neurons with significant coefficients, and the results of chi-square tests of proportions comparing 7A and dlPFC. The
right half (“β-values”) shows the mean ± SEM of the signed coefficients in the sensitive cells and the results of Kruskall–Wallis non-parametric analysis of variance comparing the two areas. Note that,
while the individual area averages refer to the signed values of the coefficients, the comparison between areas is on the absolute values to indicate whether the effects are stronger in any one area
regardless of sign.

Fig. 2 Single-neuron encoding of variance and EV is uncorrelated. Scatterplots of the GLM coefficients capturing the effect of EV (βEV, abscissa) and
variance (βVariance, ordinate) in 7A and dlPFC. Every point is one neuron, with the number of observations indicated in each plot. The colors indicate the
significance of individual EV and Var coefficients as noted by the legend.
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balance between top-down and bottom-up information
transmission4,6, we asked how variance and EV modulate func-
tional interactions among the two areas. To this end, we calcu-
lated SFC using the method of Vinck et al. that is known to
compensate for biases due to low spike counts and volume
conduction35,36. The SFC measures the extent to which spikes
arrive at a consistent phase of the LFP oscillations and provides
an index of directional interactions. The SFC between spikes in
area A and LFPs in area B measures the extent to which outputs
from area A influence area B, while the SFC between spikes in
area B and LFPs in area A measure the opposite interactions35–37

(see also “Methods”).
The most robust modulation we found was an asymmetric

effect of variance on fronto-parietal SFC. Higher uncertainty
was associated with enhanced SFC from 7A spikes to dlPFC
LFPs, suggesting enhanced information transmission from 7A
to the dlPFC (Fig. 7a). Conversely, higher variance was
associated with reduced SFC in the opposite direction,
suggesting reduced information transmission from dlPFC to
7A (Fig. 7b). These effects were consistent in both monkeys and

could not be explained by changes in LFP power, which had
opposite signs in the two areas (Figs. 5 and 6) or by LFP–LFP
coherence, which did not show consistent modulations with
variance or EV (Fig. S5). The SFC modulations were unique to
variance and to across-area communications, with only weak
and inconsistent effects being produced by EV on SFC across
areas (Fig. S4a) and by both variance and EV within areas
(Fig. S4b).

The SFC modulations by variance extended to all frequency
bands and differed across the task epochs (Fig. 7c–f). In the α/
low-β frequency band, the earliest modulation was an increase in
parietal-to-frontal SFC followed by a decrease in the frontal-to-
parietal direction (Fig. 7c, f; all p < 10−7 in each monkey,
Krusal–Wallis test; see figure legend for detailed statistics). In the
high-β/low-γ frequency band this sequence was reversed, with the
earliest modulation being reduction in frontal-to-parietal SFC
followed by increased parietal-to-frontal SFC (Fig. 7 d, e; all p <
10−7 in each monkey). Thus, uncertainty sets off an intricate
temporal sequence of increases and decreases in fronto-parietal
functional connectivity.

Fig. 3 Single neurons had positive and negative encoding of variance and EV. a Variance and EV encoding was sustained in the late cue and delay
periods. Spike density functions for the subsets of cells with significant positive or negative coefficients for variance and EV (including the few cells with
both main effects). “n” indicates the number of cells contributing to each trace. b Spike counts of the cells contributing to the traces in a grouped by variance
(blue) and EV (orange). In the violin plots, each point shows the mean spike count of one cell in the interval of 0–800ms after cue onset, z-scored relative
to all the trials of that cell and averaged across trials with the indicated variance or EV. The thicker lines show the mean and SEM across cells.
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Individual variability and risk preference. Although our study
did not examine economic decisions, it is interesting to consider
how the responses to reward expectancy we report may relate to
risk preference. To explore this question we tested the monkeys,
after neural recordings were complete, on a choice version of the
task in which the monkeys received two cues on each trial and
chose one cue whose reward probability they wished to obtain
(Fig. S6 legend). This revealed that monkey 1 was risk seeking and
monkey 2 was risk averse—a highly significant individual

difference (% of choices to the higher variance of, respectively,
56.2% and 47.8%; both p < 0.014 signed-rank test against 50%; p
< 10−9 between monkeys; Fig. S6).

These individual differences corresponded with the relative
sensitivity to variance versus EV in several behavioral and neural
indicators. Monkey 1, who was risk seeking, was relatively more
sensitive to EV rather than variance in his licking and saccadic
RT; monkey 2, who was risk averse, showed the opposite pattern,
and was more sensitive to variance relative to EV (Fig. S6).

Fig. 4 Noise correlations and population decoding support separate representations of variance and EV. a Noise correlations: Each violin plot shows the
correlation coefficient for pairs of cells that were simultaneously recorded and had specific combinations of selectivity as noted on the x-axis. The numbers
show the number of pairs in each distribution. The dots in each distribution show individual pairs; the larger points and whiskers show the median
coefficient and 25th and 75th percentiles. Distributions that are significantly higher than 0 (p < 0.05) are shown with black dots and whiskers, otherwise
they are shown with white dots and gray whiskers. “Within-factor” distributions show pairs in which both cells were selective to EV or both were selective
for variance, further separated by whether the two cells had the same encoding polarity (EV+/EV+ or EV−/EV−, variance+/variance+ or variance
−/variance−) or opposite polarity (EV+/EV− or variance+/variance−). “Across-factor” distributions show the coefficients for pairs in which one cell was
selective for EV and the other for variance, further separated by polarity as noted. b Classification accuracy based on population responses: Each violin plot
shows the distribution of accuracy across 200 bootstrap iterations (after subtracting the accuracy in a randomized dataset). The large dot and error bars
show the average accuracy and 95% confidence intervals, with above-chance classification shown with black dots and whiskers. The different distributions
correspond to different train/test regimes, as indicated by the x-axis and colors (test variable: dot color; train variable: outline color; orange: EV; blue:
variance).

Table 2 Noise correlations.

r values (mean ± SEM)

dlPFC 7A dlPFC vs 7A

EV/EV
Same polarity 0.30 ± 0.05**, N= 33 0.27 ± 0.03**, N= 76 p= 0.66
Opposite polarity −0.05 ± 0.03, N= 21 0.04 ± 0.02*, N= 61 p= 0.007
Same vs opp. (p value) p= 1.8 × 10−5 p= 2.56 × 10−6

Var/Var
Same polarity 0.26 ± 0.08a**, N= 14 0.58 ± 0.06, N= 3 p= 0.04
Opposite polarity −0.16 ± 0.11, N= 4 −0.14 ± 0.11, N= 2 p= 0.64
Same vs opp. (p value) p= 0.015 p= 0.083

EV/Var
Same polarity −0.0006 ± 0.01, N= 21 0.02 ± 0.01, N= 21 p= 0.20
Opposite polarity 0.02 ± 0.01*, N= 35 8e−4 ± 0.01, N= 22 p= 0.07

All EV/Var vs all [EV/EV and Var/Var same polarity] P= 2.5 × 10−7 p= 5.1 × 10−8

Each entry shows the average and SEM of the Pearson correlation coefficient, and the number (N) of simultaneously recorded cell pairs of each type that met the analysis criteria (see “Methods“). Stars
and bold typeface indicate the results of signed-rank tests relative to 0.
**p < 0.01, *p < 0.05.
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Among neural indicators, analogous differences were reflected in
LFP power and the fraction of sensitive cells in both areas (Fig.
S6) although not in measures of SFC. Thus, the relative weight
that individuals afford to variance of EV may relate to risk
attitudes—a conclusion that can be verified in future
investigations.

Discussion
We show that the uncertainty of an expected reward, indepen-
dently of the value of the reward, affects multiple aspects of
microscopic and mesoscopic fronto-parietal activity, including
single-neuron responses, LFP oscillations, and SFC.

Uncertainty powerfully modulated LFP power, producing dif-
ferent effects in low- and high-frequency bands. Low-frequency-
α/low-β-LFP power homogenously decreased in 7A and the
dlPFC as a function of EV and uncertainty. Because lower α/low-
β LFP power has been linked with enhanced task engagement,
reduced inhibition, and desynchronized neural activity in multi-
ple structures38–40 this suggests that arousal was enhanced by
both EV and uncertainty in our task. In contrast with the
homogeneous effects of uncertainty in the lower frequency band,
the signature of uncertainty in the higher frequency range dif-
fered markedly by area and was clearly distinct from that of EV.
This heterogeneity is consistent with the diverse modula-
tions previously reported for γ-band power, which consist of
increases and decreases with attention across tasks and cortical
areas38. Based on the prevailing view that γ-band oscillations
primarily index feedforward sensory processing32,41 our findings
suggest that feedforward processing is differentially affected by
uncertainty versus EV.

Another clear distinction we find is that variance and EV had
separate representations in spiking activity. Previous studies have
shown that reward variance is encoded independently of value by
individual neurons in the orbitofrontal cortex19, in subcortical
structures such as the basal forebrain20,21,42 and, more recently,
in the anterior cingulate cortex43,44. Our findings show that this
segregation extends to lateral fronto-parietal areas and to circuit-
based measures including noise correlations and population
decoding capacity.

Importantly, we show that, rather than producing overall
increases or decreases in firing, uncertainty and EV had
opponent-coding representations, enhancing or suppressing
responses in distinct classes of cells. An opponent-coding repre-
sentation has been previously reported for EV in the dlPFC45,46

and here we show that it extends to the parietal cortex and to
uncertainty. Our finding that neurons with similar polarity have
higher noise correlations suggests that they form subnetworks
with distinct functional properties. Neurons with positive and
negative EV scaling may be associated with, respectively,
approach and avoidance behaviors (go/no-go tendencies) that are
mediated by distinct basal ganglia pathways47. Neurons with
positive or negative variance coding, on the other hand, may
arbitrate between different modes of cognitive control based on
uncertainty—relying on a simpler striatal controller when
familiar, habitual strategies are sufficient but engaging the pre-
frontal cortex in uncertain conditions48.

While uncertainty and value have been shown to modulate
the representations of specific objects or actions (e.g., in the
frontal cortex14,49 and dorsal striatum50) the EV and variance-
sensitive cells we describe reflected global, non-spatial states of
expectancy that were independent of visuo-spatial selectivity.
This result most likely reflects the task we employed, in which
monkeys merely formed expectations without formulating a
choice, contrasting with previous studies in which monkeys
made a deliberate choice. Thus, an important question
for future investigations concerns the relation between expec-
tancy and decision making, especially given our preliminary
finding that the relative impact of uncertainty versus EV on
expectations may be systematically related to individual risk
attitudes.

A central result we report is that uncertainty had powerful
effects on fronto-parietal connectivity. Higher uncertainty was
associated with reduced SFC from the frontal to the parietal
cortex but enhanced SFC from the parietal to the frontal lobe.
These results are consistent with a recent report that, although
fronto-parietal areas have similar single-neuron activity, the
direction of their functional interactions can be strongly depen-
dent on context28. That study found that, in monkeys performing
a familiar categorization task, information about task context and

Fig. 5 Variance and EV affect LFP oscillations in the α, β, and γ frequency bands. Time-frequency maps of GLM coefficients indicating the effects of
variance and EV on LFP power. Each pixel is a GLM coefficient obtained from fitting the LFP power spectrum across all the trials available in each monkey
and averaging across monkeys (see “Methods, LFP pre-processing”). The rectangles superimposed on each map indicate the regions of interest (ROI)
where consistent effects were found in both monkeys, in the α/low-β (8–18 Hz, pink) and high-β/low-Υ (18–43 Hz, purple) frequency bands.
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rules was predominantly transmitted in a top-down direction,
from dlPFC to 7A. This is consistent with our finding that, when
monkeys have low uncertainty, frontal-to-parietal SFC is higher
than parietal-to-frontal SFC (i.e., 0 variance, Fig. 7a, b). However,
we show that, for higher uncertainty, this balance can drastically
change in favor of parietal-to-frontal transmission, consistent
with Bayesian optimal inference theories.

Our finding that uncertainty reduces SFC in the top-down
direction does not imply that the dlPFC goes “offline” in uncer-
tain conditions. Indeed, the modulations of frontal-to-parietal
and parietal-to-frontal SFC had overlapping time-courses and
some of the strongest effects of uncertainty—i.e., on high-β/low-γ
frequency LFP power (Fig. 5) and SFC (Fig. 7c–f)—emerged first
in the dlPFC and only later in 7A. It is thus possible that the
connectivity changes relied on dynamic interactions between the
frontal and parietal lobes. We propose that uncertainty is detected
by frontal cortical areas including the dlPFC and the anterior
cingulate cortex; these areas may provide the initial drive which,

perhaps by triggering release of neuromodulators, ultimately
leads to increases in sensory gains and enhancements in parietal-
to-frontal transmission2,51.

Our findings also support the idea that the parietal cortex plays
an important role in resolving uncertainty. Early support for this
view comes from the reinforcement learning literature showing
that rats have increases in associability (learning rates) for
uncertain sensory cues and these increases are reduced by lesions
of the parietal cortex52. Subsequent single-neuron recordings in
monkeys show that parietal neurons have enhanced responses to
novel stimuli and salient distractors16,53 and, in multi-step deci-
sion tasks, assign credit and learning specifically at junctures that
resolve uncertainty11,54,55. Thus, an important direction for
future research is to refine our understanding of the intricate
mechanisms that allow the brain to allocate attention and other
cognitive resources to task junctures that not only have high value
but benefit from new information and a reduction of
uncertainty5,7,18,26.

Fig. 6 Variance and EV effects in low and high-frequency bands. Each trace shows the average GLM coefficient in the α/low-β (8–18 Hz, pink, a and b)
and high-β/low-γ (18–43 Hz, purple, c and d) (mean and SEM across the frequencies). The insets show the raw LFP power as a function of variance or EV
in the ROIs shown in Fig. 5. The left gray axis and gray curve correspond to dlPFC, and, the right black axis and dashed black curve correspond to 7A. For
these plots, z-transformed LFP power was first averaged within each electrode across all the trials collected on that electrode, and the data show average
and SEM across n= 96 electrodes (48 in each monkey) as a function of the variable of interest (variance and EV). Violin plots show individual data points.
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Methods
General methods. Data were collected from two adult male rhesus monkeys
(Macaca mulatta; 9–12 kg) using standard behavioral and neurophysiological
techniques as described previously56. All methods were approved by the Animal
Care and Use Committees of Columbia University and New York State Psychiatric
Institute as complying with the guidelines within the Public Health Service Guide
for the Care and Use of Laboratory Animals. Visual stimuli were presented on a
MS3400V XGA high definition monitor (CTX International, Inc., City of Industry,
CA; 62.5 × 46.5 cm viewing area). Eye position was recorded using an eye tracking
system (Arrington Research, Scottsdale, AZ). Licking was recorded with an in-
house device that detected interruptions in a laser beam produced by extensions of
the monkeys’ tongue.

Task. A trial started with the presentation of two textured square placeholders (1°
width) located along the horizontal meridian at 8° eccentricity to the right and left
of a central fixation point (white square, 0.2° diameter). After a 300–500 ms period
of central fixation (when the monkeys maintained gaze within a 1.5–2° square
window centered on the fixation point) one of the placeholders was replaced by a

randomly selected reward cue (a vertical rectangle measuring 1.2 × 5° with 11 gray
bars indicating the reward scale, and one or two gradations highlighted in yellow,
indicating the trial’s rewards). The cue was visible for 400 ms and was followed by a
400-ms delay period, after which the fixation point disappeared and one of the
placeholders simultaneously increased in luminance, indicating the saccade target.
The target location was randomized independently of the reward cue. If the
monkey made a saccade to the target with an RT of 100–700 ms and maintained
fixation within a 2.0–3.5° window for 377 ms, he received a reward with the
magnitude and probability that had been indicated by the cue.

Neural recordings. After completing behavioral training, each monkey was
implanted with two 48-electrode Utah arrays (electrode length 1.5 mm) arranged in
rectangular grids (1 mm spacing; monkey 1, 7 × 7 mm; monkey 2, 5 × 10 mm) and
positioned in the pre-arcuate portion of the dlPFC and the posterior portion of area
7A (Fig. S1). Data were recorded using the Cereplex System (Blackrock, Salt Lake
City, Utah) over 24 sessions spanning 4 months after array implantation in
monkey 1, and 11 sessions spanning 2 months after implantation in monkey 2.

Statistics and reproducibility. Data were analyzed with MatLab (MathWorks,
Natick, MA; version R2016-b) and other specialized software as noted below. Raw
spikes were sorted offline using WaveSorter57. We analyzed a total of 12,029 trials
that (1) were correctly completed and (2) had RT within 2 standard deviations
relative to the mean of each monkey’s full dataset (monkey 1: n= 8082 analyzed
trials, monkey 2: n= 3947). These trials were further sub-selected for different
analyses. For single-neuron analysis, we included only well-isolated cells, as defined
by the automated sorting results followed by visual inspection to verify that only
neurons with waveforms clearly separated from noise were included in the analysis,
and that the population of cells was substantially different across days (ensuring
that we did not systematically record from the same subsets of cells). For LFP and
SFC analyses, trials were further cleaned to remove electrical artifacts as described
in detail below. The unit of statistical comparison and statistical tests differed are
described in detail throughout the text.

Analysis of behavior. The lickometer signal was digitized at 1 kHz to produce a
trial-by-trial record of licking with 1 ms resolution. The probability of licking was
measured in a time window centered on the time of each monkey’s average peak
licking response (monkey 1: 400–800 ms after cue onset; monkey 2: 800–1100 ms
after cue onset). Licking probabilities in individual trials were pooled across ses-
sions and subjected to a GLM analysis with EV and variance, including cue
position and the EV × variance interaction as nuisance regressors (using a binomial
distribution and logit link function and implemented in the fitglm function in the
MATLAB statistics toolbox). Models that included a parametric uncertainty
regressor outperformed those that included only a binary indicator of probabilistic
versus deterministic cues and are presented throughout the paper.

Single neurons spike analysis. Raw spikes were sorted offline using WaveSorter
and produced a total of 1175 neurons in dlPFC (749 in monkey 1) and 971 neurons
in 7A (755 in monkey 1). We focused the analysis on the subset of units that were
well isolated, had at least five trials in each condition, and fired at least five spikes
on average within the time interval from 500 ms before to 1000 ms after cue onset,
comprising 530 neurons in dlPFC (432 in monkey 1) and 522 neurons in 7A (481
in monkey 1).

To measure neuronal selectivity, we fit each neuron’s trial-by-trial spike count
in the interval 0–800 ms after cue onset using a GLM with factors EV, variance,
EV × variance, and Cue location, using a normal distribution and identity link
function. To estimate changes in firing rate variability, we computed the Fano
factor—the ratio of across-trial variability to the mean firing rate. Although the
Fano factor was lower during the cue/delay relative to the pre-cue epochs, we found
no consistent changes as a function of variance or EV in either area.

Peri-stimulus time histograms were constructed for display purposes by
smoothing the cue-onset aligned spike train with a Gaussian kernel with 50 ms
standard deviation z-scoring using the mean and standard deviation during the cue
and delay epochs for each cell, and averaging across cells.

SVM classification. We smoothed the raw spike train using a Gaussian kernel of
50 ms standard deviation and measured the average smoothed firing rate in each
trial in the interval 0–800 ms after cue onset. We then evaluated decoding accuracy
for each pairwise classification (e.g., EV3 vs EV6, variance 1 vs variance 4, etc)
using the data pooled across all the neurons in an array. To construct the pooled
dataset, we randomly selected m trials from each neuron and every condition,
where m was equal to the minimum number of trials across all neurons and all
conditions. We used a fivefold cross-validation procedure with 200 repetitions to
compute decoding accuracy in the original dataset and repeated the procedure after
randomly shuffling trial labels to compute the baseline accuracy expected purely by
chance.

LFP pre-processing. The raw LFP from each electrode and trial were measured
from 1200 ms before to 2000 ms after cue onset, notch filtered at 60 Hz, low pass

Fig. 7 Uncertainty enhances spike-field coherence (SFC) from 7A to
dlPFC but not vice versa. a SFC between 7A neurons and dlPFC LFPs as a
function of variance: Each point shows the mean and SEM of the SFC values
in the time-frequency bins showing the most consistent effects of variance
in the average data of both monkeys. b SFC between dlPFC neurons and 7A
LFPs in the same format as in a. In a and b, SFC values were averaged
across all neuron-LFP channel pairs and all task conditions with identical
levels of uncertainty (n ranges between 136,368 and 164,880 independent
pairs across conditions). c–f SFC as a function of frequency for variance of 0
(gray) versus 4 (black). The curves show the mean and SEM of the SFC
values for different frequencies in the time bins that showed the most
consistent effects (c, d 200–400ms; f 400–600ms, and e 600–800ms
after cue on). The stars in each panel show the frequencies where SFC was
significantly modulated for each monkey (Kruskal–Wallis test, p < 0.05
after correcting for multiple comparisons across frequencies). Blue stars
indicate decrease and red stars indicate increase of SFC with variance.
The SFC values for the peak effects in each panel are as follows (all units of
10−3). Cue period, mean ± SEM SFC for 7A→ dlPFC in the α/low-β
frequency band: var0: −0.09 ± 0.054, var4: 3.8 ± 0.5; Kruskal–Wallis test,
p= 5.2 × 10−8. For dlPFC→7A, in the high-β/low-γ frequency band: var0:
5.5 ± 0.6, var4: −2.4 ± 0.6 (p= 1.8 × 10−21). Delay period, 7A→ dlPFC in
the high-β/low-γ frequency band: var0: −0.7 ± 0.6, var4: 3.9 ± 0.6 (p=
3.5 × 10−7). dlPFC→7A, in the α/low-β frequency band: var0: 7.0 ± 0.6,
var4: −2.1 ± 0.6 (p= 6.3 × 10−16).
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filtered at 100 Hz, and subjected to a linear trend removal. The traces from each
session were then pooled and subjected to a two-step cleaning procedure to
remove outliers in, respectively, the frequency and time domains. For the first
step that removed outliers in the frequency domain, we calculated the power
spectrum of each LFP trace in the range of 0–90 Hz (using a multitaper method
with four tapers) and characterized each trial with a five-dimensional vector
containing the sum of the logarithm of the power spectrum in five frequency
bands (0.5–4, 4–8, 8–12, 12–30, and 30–90 Hz). We then reduced the dimen-
sionality of each session’s dataset to two principal components using principal
component analysis and clustered this two-dimensional dataset using Gaussian
Mixture Models (fitgmdist function in the MATLAB statistics and machine
learning toolbox). This procedure produced, for each session, one or two “dense”
clusters that contained most of the session’s data, and one or two “sparse”
clusters containing the remaining trials, in which the LFP power in at least one
frequency band was an outlier. We discarded the trials in the sparse clusters. In
addition, we discarded trials that were identified as outliers within the dense
clusters—i.e., for which the Mahalanobis distance to all other trials in the cluster
was above the 90th percentile. The trials surviving the first step were subjected to
a second step that removed outliers in the time domain. To this end, we com-
puted the peak-to-peak amplitude of the broadband LFP trace in each trial, z
transformed these values, and removed trials for which this measure was more
than half a standard deviation away from the mean across all trials. This was
a conservative cleaning procedure that removed all the trials with poor signal
quality due to a variety of reasons (e.g., signal-to-noise ratio, artifact, or
saturation). Overall, 39.5% of trials (12.3–77.4% across sessions) were excluded
after pre-processing.

LFP power spectrum. For each trial that was accepted for analysis, we calculated
the LFP power spectrum in 1 Hz frequency bands using Morlet wavelet trans-
formation (ft_freqanalysis function of the FieldTrip toolbox58). The power in
each band was then z-scored relative to all the trials and time points within
the session, and normalized relative to the trial’s baseline using the following
equation:

relative power change ðt; f Þ ¼ powertf � baselinef

baselinef
; ð1Þ

where powertf is the power at time t and frequency f, and baselinef is the power
in frequency f during the 300 ms interval before cue onset on the same trial.
Normalization relative to the frequency-specific baseline accounted both for
trial-by-trial variability and 1/f power distribution36.

GLM of LFP power spectrum. The Relative Power Change quantity from Eq. (1)
produced a time-frequency map of normalized LFP power for each trial and
electrode. To determine how these maps varied as a function of uncertainty and
EV, for every trial we pooled the trials across the electrodes of an array, and fit
this pooled dataset using a GLM with factors of [EV, variance, EV × variance,
Cue location] assuming a normal distribution and identity link function. This
produced a time-frequency map of coefficients measuring the effects of EV and
variance, controlling for any visuo-spatial response and EV × variance interac-
tion (Fig. 5). To identify ROI within the GLM coefficient maps, we divided the
cue and delay periods into 200 ms epochs, and identified frequencies for which
the coefficients for a variable were significantly different from 0 with the same
sign in both monkeys (Kruskal–Wallis test with false discovery rate (FDR)
correction).

Field–field coherence. Field–field coherence was measured using weighted phase
lag index (WPLI)37. The WPLI uses imaginary part of the cross-spectrum to
remove the volume conduction effect. Within a session, for every task condition the
phase locking index was calculated across trials and LFP channel pairs for every
time and frequency. GLMs with EV, variance, and EV × variance factors were then
fitted to the coherence maps from different sessions, assuming normal distribution
and identity link function.

Spike-field coherence. We used the FieldTrip toolbox58 to calculate the power
spectrum for the trial-by-trial LFP using multitaper analysis, and the ft_spike-
triggeredspectrum function to measure the phase in frequencies of 4–47 Hz. We
estimated SFC using the average Pairwise Phase Consistency index (PPC2,
ft_spiketriggeredspectrum_stat function), which is known to minimize biases due to
low spike counts and volume conduction35,37. For every pair of neuron-LFP
channel, in each task condition and frequency, PPC2 was calculated across all
spikes that the cell fired in the corresponding task condition. PPC2 values of all
cell–LFP pairs (excluding pairs in which the neurons did not emit any spikes) were
submitted to non-parametric analyses to detect influences of EV and variance (n
ranging between 136,368 and 164,880 across conditions). In the frequency plots, p
values were corrected for comparison across frequencies using the FDR correction
method.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
The summary statistics are available within the article and its data supplement. All other
data are available from the corresponding author upon reasonable request.
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