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Therapy response with diffusion MRI: an update
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Abstract

The efficiency of an oncological treatment regimen is often assessed by morphological criteria such as tumour size
evaluated by cross-sectional imaging, or by laboratory measurements of plasma biomarkers. Because these types of
measures typically allow for assessment of treatment response several weeks or even months after the start of therapy,
earlier response assessment that provides insight into tumour function is needed. This is particularly urgent for the
evaluation of newer targeted therapies and for fractionated therapies that are delivered over a period of weeks to allow
for a change of treatment in non-responding patients. Diffusion-weighted MRI (DW-MRI) is a non-invasive imaging
tool that does not involve radiation or contrast media, and is sensitive to tissue microstructure and function on a
cellular level. DW-MRI parameters have shown sensitivity to treatment response in a growing number of tumour types
and organ sites, with additional potential as predictive parameters for treatment outcome. A brief overview of DW-
MRI principles is provided here, followed by a review of recent literature in which DW-MRI has been used to monitor
and predict tumour response to various therapeutic regimens.
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Introduction

The global cancer burden continues to increase due to
a combination of factors including aging populations,
population growth, and global increases in smoking,
physical inactivity, and other cancer causing beha-
viours[1]. Therapeutic options include surgical resection,
radiotherapy, various chemotherapeutic regimens and
active surveillance in selected cases. While the ability to
monitor the response or progression of a tumour through-
out the therapeutic and follow-up cycle is desirable for
the selection of effective treatment, standard tumour
response criteria based on size reduction are not always
timely as size reduction typically occurs after widespread
cell kill and debris removal, which can occur over days
and weeks with fractionated therapy regimens. An addi-
tional problem is that newer antiangiogenic, vascular, and
molecular targeting chemotherapeutic agents act by other
mechanisms apart from direct cell kill, leading to func-
tional changes in the tumour microenvironment that are
not directly detectable by tumour size criteria.

Positron emission tomography (PET), magnetic reso-
nance spectroscopy (MRS), dynamic contrast-enhanced

(DCE) and diffusion-weighted (DW) magnetic resonance
imaging (MRI) can all be used to measure functional
changes in the tumour microenvironment. PET can pro-
vide targeted functional information but is a relatively
expensive method and is susceptible to false-positive
results related to inflammation. The radiation burden of
PET is also a consideration, particularly in young patients
requiring multiple follow-up examinations. Magnetic res-
onance spectroscopy provides information about metabo-
lites and tumour biochemistry. However, the limited
spatial resolution can be problematic, particularly for
metastases and heterogeneous tumours, and considerable
expertise is required for effective data analysis and inter-
pretation. DCE-MRI offers improved spatial resolution
over MRS to visualize information about vascular perfu-
sion, permeability, and/or interstitial volume. However,
image analysis is also non-trivial, and the use of gadoli-
nium-based contrast agents is a concern in patients with
impaired renal function. DW-MRI is a non-invasive
imaging modality that involves no radiation burden
or contrast agent use. An increasing body of literature
including several recent review articles indicates that
DW-MRI is well suited to longitudinal monitoring of
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tumour progression and response in a variety of tumour
types[2�4]. This article is an update to a previously
published review on the use of DW-MRI for monitoring
tumour response to various treatment regimens[4], and
focuses on recent developments in the field.

Principles of diffusion-weighted
imaging

DW-MRI is a technique that measures the movement of
free water molecules via the use of magnetic field
gradients. The type of movement that is measured
includes directed perfusion and passive thermal diffusion,
which may be influenced by cell size, structure, and mem-
brane integrity. Depending on the imaging parameters
used, either one of these (or a combination) may be
measured. Many treatments that act by functional
mechanisms will affect water diffusion and perfusion in
a detectable way long before tumour size reductions are
seen. This ability of DW-MRI to detect early changes in
the tumour microenvironment is the motivation behind
the growing interest in DW-MRI for use in treatment
monitoring.

The b-value used in a DW-MRI scan refers to the gra-
dient durations and amplitudes used, and determines the
extent of diffusion weighting in a scan. If DW-MRI
images are acquired using a minimum of two b-values,
the decay of the diffusion-weighted signal can be quanti-
fied to provide an estimate of the apparent diffusion
coefficient (ADC). ADC values are typically lower in
highly cellular tissues with impeded water diffusion,
such as tumours, and are often increased in necrotic
regions and tissues with damaged or permeable cell mem-
branes. In many tissues, the diffusion-weighted signal
exhibits a multi-exponential (rather than simple monoex-
ponential) decay[5]. The more quickly decaying portion
of the signal is attributed to tissue perfusion. If a bi-expo-
nential model of diffusion is used, diffusion (D or ADCd)
and perfusion (D* or ADCp) related diffusion coeffi-
cients as well as the perfusion fraction (f) can be
measured[5].

The selection of the optimal number and values
for the b-values is an important technical consideration.
Although there have been a number of articles on
the topic, no consensus has yet been reached. A mini-
mum of two b-values are required to measure the
ADC assuming monoexponential signal decay and a min-
imum of four are required assuming bi-exponential signal
decay; however, some groups routinely use more than
this minimal number to minimize the effect of noise
and motion on the data analysis[6], or to ensure full cov-
erage of both low and high b-value ranges[7�9]. For clin-
ical assessment of treatment response, monoexponential
fitting with two or three b-values is the most commonly
used model.

Clinical applications of DW-MRI for
monitoring treatment response in

different organ sites

DW-MRI can be used to detect microstructural changes
that precede changes in tumour size as an indication of
tumour response to therapy. For many organs and
tumour types, a tumour initially demonstrates decreased
ADCs relative to the surrounding tissue due to diffusion
restriction caused by high cell density in the tumour. This
should also correspond to high signal intensity on high-b-
value diffusion-weighted images. Tumours containing
necrotic regions will also demonstrate areas of high
ADC, low perfusion fraction, and low signal on high-b-
value images.

The change in DW-MRI signal and diffusion para-
meters observed after treatment will vary depending
both on the individual tumour and treatment type. A
positive response to treatment generally tends to result
in an increase in ADC relative to pre-treatment values as
apoptosis and necrosis begin and cell density decreases.
However, ADC decreases may occur following the clear-
ance of necrotic portions of the tumour, or in cases of
fibrosis and scar formation concurrent with a decrease in
the perfusion fraction. ADC decreases have been
observed in response to therapy in rectal carcinoma
[10�12] and bone metastases[13]. ADC may also decrease
in response to treatments where cell swelling or vascular
restriction are important mechanisms of action. Thus, to
determine whether a change in ADC corresponds to
response or progression, diffusion parametric maps
should be evaluated along with DW-MRI signal intensity
images and all other available clinical information. For
many tumour types, low pre-treatment ADC values in the
primary tumour indicating high cell density are predictive
of favourable response to standard chemotherapy.
However, this has not been confirmed in all tumours,
and may not apply consistently in the case of
metastases[13,14].

In the following sections, recent literature focusing on
changes observed in DW-MRI parameters in a variety of
extra-cranial tumours is summarized. The literature is
categorized by anatomical site: head and neck cancer,
breast cancer, primary lung cancer, liver metastases and
hepatocellular carcinoma, osteosarcoma and soft tissue
sarcoma, uterine cervical cancer, ovarian cancer, bladder
cancer, prostate cancer, rectal cancer, and metastases
imaged using DW whole-body MRI.

Head and neck cancer

Three recent studies evaluating the response to chemo-
radiation using DW-MRI have shown ADC increases in
head and neck regions responding to therapy[15�17]. In
one study, the ADC increase (both at 2 and 4 weeks
during chemotherapy) was higher for non-recurrent
lesions and correlated with loco-regional control at 2
years[15]. In another study, ADC increases at 3 weeks
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did not correlate with loco-regional control at 6 months,
however, parametric response mapping of ADC was pre-
dictive of 6-month clinical progression, showing ADC
increases in a large percentage of the tumour volume
for responding patients[16]. A third study showed that
ADC decreases seen during or after treatment predict
loco-regional failure with 100% specificity and 80%
sensitivity[17].

Breast cancer

Monitoring response to neoadjuvant chemotherapy has
been evaluated in a number of published reports on DW-
MRI in breast cancer[18�27]. Incremental ADC increase
over chemotherapeutic treatment cycles is consistently
reported in a number of studies[18�23,25�27]. These
ADC increases were more pronounced in responding
patients than in non-responding patients[18�23,25�27]. In
several studies, significant increases in ADC have been
observed as early as after the first cycle of chemother-
apy[19,25,26] and correlated with tumour volume reduc-
tion[18], while in one study anatomical response was
only borderline significant after the 2nd cycle of
chemotherapy[19].

While lower pre-treatment ADC has been correlated
with eventual response to chemotherapy in several stu-
dies[18,20,21], this finding was not consistent in all stu-
dies[22,23]. Pre-treatment ADC was found to be lower in
tumour lesions than in benign tumours[24] or normal
breast tissue[25] and pre-treatment ADC cut-off values
could be used to predict response with sensitivity of
94% and specificity of 71%[20]. Post-treatment ADC
cut-off values were able to differentiate between respon-
ders and non-responders, or pathological complete and
non-complete remission, respectively, with 88% and 100%
sensitivity and 88% and 70% specificity[21,22].

Primary lung cancer

Recent trials reporting the use of DW-MRI in predicting
and assessing lung cancer response show a consistent
increase in ADC during and after chemotherapy, chemor-
adiation, and radiofrequency ablation[28�30]. Pre-treat-
ment DW-MRI/ADC showed better specificity and
accuracy than fluorodeoxyglucose (FDG)-PET/maxi-
mum standardized uptake value (SUVmax) in predicting
tumour response[31]. Lower pre-treatment ADCs
were found in partially responding lesions versus stable
and progressive disease in one study[31], however no sig-
nificant difference was seen in another study involving
chemoradiation[28]. In contrast to the findings in uterine
cervical cancer[32], pre-treatment ADC in lung
was higher in squamous cell carcinoma than in
adenocarcinoma[28�30]. This might be attributed to the
fact that squamous cell carcinomas undergo necrotic
change with consequent increases in ADC.

Liver metastases and hepatocellular
carcinoma

Hepatic metastases, the most common malignant
tumours of the liver, are only rarely eligible for surgical
resection to achieve long-term tumour-free survival or
cure. DW-MRI is a promising technique for the response
of liver metastases and hepatocellular carcinoma to che-
motherapy, radiotherapy, and local palliative treatment,
particularly at early treatment time points when signifi-
cant changes in tumour size have not yet occurred[33�38].

ADC increases correlated with response to systemic
chemotherapy in all studies with liver metastases of
breast and colorectal cancer[33,36�38]. The correlation of
ADC increase with response of liver metastases of breast
cancer was strongest on day 4, the earliest time point
examined[33]. The findings of increased ADC after che-
motherapy are consistent with studies of colorectal
cancer liver metastases treated with chemotherapy via
direct hepatic arterial infusion (HAIC)[34]. Using radio-
frequency ablation, decreased ADC was observed in the
periphery of the ablation zone and correlated with local
tumour progression[35]. Two studies found that for liver
metastases of colorectal cancer, non-responding lesions
had significantly lower pre-treatment mean ADCs than
responding lesions[36,37], but this was not confirmed in a
third study[38].

Several clinical studies evaluating response to treat-
ment for hepatocellular carcinoma using DW-MRI have
been published. A post-treatment increase in ADC was
reported in most of the studies[39�44] as early as 1�2
weeks after treatment[39], while a correlation between
ADC and response as assessed pathologically in terms
of percent tumour necrosis was also demonstrated[40].
The use of DW-MRI seems to be an important contribu-
tor to treatment monitoring in these tumours, as morpho-
logically a change in tumour size could not yet be
observed at 4 weeks after transarterial chemo-emboliza-
tion (TACE), the last time point measured in one
study[39]. In another study, a 4% decrease in tumour
size and 15% increase in ADC were observed 1 month
after therapy[41]. An association was found between post-
treatment ADC increase and RECIST response in a fur-
ther study[42]. Pre-treatment ADC values proved not to
be reliable for identification of eventually responding
lesions in one study[43]. While sensitivity improved and
specificity decreased for distinguishing recurrence versus
benign lesions when adding DW-MRI to DCE-MRI[45],
sensitivity was lower for DW-MRI than for DCE-MRI for
distinguishing recurrence versus necrosis in this study,
albeit with an equal specificity in another study[44].

Osteosarcoma and soft tissue sarcomas

Studies on primary tumours of the bone and one study
on soft tissue sarcoma have shown good results for the
use of DW-MRI in assessing response to cytotoxic
chemotherapy[46�49]. Post-treatment increases in ADC
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were observed in all studies. The ADC differential
(ADCpost � ADCpre) had 100% sensitivity and 57% spe-
cificity for predicting poor responders in osteosarcoma in
one study[46], while in another study the minimum ADC
ratio ([ADCpost � ADCpre]/ADCpre) was significantly
higher in responding versus non-responding patients[47].
For soft tissue sarcomas, a significant negative correla-
tion between ADC and changes in tumour volume was
found[48].

Uterine cervical cancer

Several recent studies have investigated the use of DW-
MRI in evaluating response to radical external beam
radiotherapy or chemoradiation in uterine cervical
cancer[50]. ADC was found to be lower in cancer
versus normal tissue[32,51], and lower for squamous cell
carcinomas than for adenocarcinomas[32]. While a rela-
tionship between decreased pre-treatment ADC values
and eventual tumour response was found in one
study[52,53], this was not confirmed in a second
study[54]. ADC was found to be negatively correlated
with cellular density and tumour grade[32], and also cor-
related with tumour stage[51].

Ovarian cancer

Response to chemotherapy in ovarian cancer has been
evaluated by DW-MRI in two recent studies[14,55]. In a
study evaluating distinct anatomical tumour sites, mean
pre-treatment ADCs were lowest for peritoneal deposits,
followed by omental and primary ovarian lesions; post-
treatment ADCs were significantly increased for ovarian,
but not for omental and peritoneal lesions[14]. While
RECIST responders showed an ADC increase for ovar-
ian lesions, Gynaecologic Cancer InterGroup (GCIG)
CA125 serum marker responders did not[14].
Significant increases in ADC as well as in histogram
skewness and kurtosis were observed after the 1st cycle
in responders; the ADC change of the 25th percentile
proved to be the best discriminant of response[55].

Bladder cancer

Recent studies using DW-MRI to evaluate response to
neoadjuvant chemotherapy showed that ADC was a sig-
nificant and independent predictor of sensitivity to che-
moradiation[56], with chemoradiation-sensitive tumours
showing lower pre-treatment ADC compared with resis-
tant tumours[56]. In a multiparametric evaluation, DW-
MRI was superior to T2-weighted (T2w) and DCE-MRI
in specificity and accuracy, albeit with comparable sensi-
tivity to DCE-MRI[57].

Prostate cancer

The potential of detecting prostate cancer and the effect
of external beam radiotherapy, antihormonal treatment,
and ultrasonic ablation of locally progressing, recurrent,

and advanced prostate cancer has been evaluated in a
number of recent studies[58�64], with a growing interest
in applying multiparametric MRI techniques.

While in one study ADC was lower in recurrent cancer
than in benign tissue after radiotherapy[58], a difference
was only found before but not after radiotherapy in a
second study[59]. ADC increased in response to both
radiotherapy[59] and antihormonal therapy[60].

Multiparametric MRI, including DW-MRI, can achieve
accuracy levels of 80�90% in the detection of recurrent
cancer after radiation therapy[61]. While the combination
of DW-MRI with T2w-MRI was found to be more spe-
cific than DCE-MRI alone[62], and more sensitive than
T2w-MRI alone[58], DCE-MRI proved to be more sensi-
tive than T2w-MRI combined with DW-MRI in detecting
recurrent cancer[62]. The sensitivity, specificity, and area
under the curve (AUC) of qualitative detection of pros-
tate cancer can be improved by including DW-MRI
with T2w imaging; the best results were seen on high-b-
value images (2000 s/mm2) rather than at b¼ 1000 s/
mm2[64]. Furthermore, a recently published study showed
the potential of DW-MRI to detect tumour recurrence
after radical prostatectomy that could not be assessed
on computed tomography (CT) or conventional MRI[65].

Rectal cancer

Although the rectum can be a difficult area for DW-MRI
due to physiological motion, a growing number of studies
investigating the use DW-MRI in monitoring response of
rectal cancer to neoadjuvant chemotherapy and chemor-
adiation show indications that DW-MRI is sensitive to
early changes in response to treatment[10�12,66�72].

It has been found that the combination of DW-MRI
with T2w-MRI improves the prediction of surgical
tumour clearance of the mesorectal fascia over the use
of T2w-MRI alone[66]. Low pre-treatment ADC corre-
lated with eventual response to therapy in two stu-
dies[10,67], while in two other studies pre-treatment
mean ADCs were identical in responders versus non-
responders and pathological complete response versus
non-complete response, respectively[68,69]. Post-treatment
ADC increase was observed in a number of recent
studies[12,67�71] and was observed as early as 1 week
after initiation of therapy[12]. However, it should be
noted that ADC decreases have also been observed: in
one study, the ADC of responders decreased after che-
motherapy and rose after chemoradiation[10], while in
another study the ADC of responders increased 1 week
after chemoradiation therapy followed by a decrease in
subsequent weeks[12]. Some authors have suggested that
this may occur if a treatment results in the loss of a
necrotic luminal component of the tumour in response
to treatment, leaving a tumour with a proportionately
greater viable cell fraction behind[10]. Another explana-
tion is that when tumours eventually showing pathologi-
cal complete remission were analysed, those with reduced
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post-treatment ADC more often developed proctitis or
fibrosis[11].

A correlation with both pre-treatment and post-treat-
ment ADC and Mandard regression grade[70] of the
tumour was found; low pre-treatment ADC correlated
also with more advanced disease (i.e. extramural invasion
and positive lymph nodes after chemoradiation)[72].
ADC cut-off values proved helpful in predicting complete
response with a sensitivity of 100% and a specificity of
79% in one study[71]. Interestingly, in another study the
post-treatment ADC showed higher accuracy in deter-
mining pathological complete response than relative
change in ADC[69].

Whole-body DW-MRI and metastases

Recent technological advances in scanner technology
have improved the ease of whole-body MRI examination.
Whole-body DW-MRI is being increasingly used in the
detection of bone and organ metastases from various
tumours and for the assessment of lymph node and
bone marrow involvement in lymphoma[13,73�80], in
many cases showing comparable sensitivity and specifi-
city to scintigraphy and PET/CT with no radiation dose
to the patient.

One study showed superior sensitivity but
inferior specificity for DW-MRI compared with scintigra-
phy for metastasis detection[73], while in another
study the specificity was higher but sensitivity was com-
parable for DW-MRI compared with scintigraphy and
PET-CT[74]. The detection rate of bone metastases
was 92% for DW-MRI compared with 57% for
[11C]methionine-PET and 23% for bone scintigraphy[75].
For the detection of distant metastases in breast cancer,
DW-MRI proved less sensitive and specific than FDG-
PET/CT[76].

A comparison of DW-MRI with PET/CT in lymphoma
staging showed that the two modalities agreed in 94% of
cases[77], and a second study confirmed that staging
results for whole-body T1-weighted (T1w) and DW-
MRI were comparable with CT[78]. The use of whole-
body DW-MRI for the diagnosis of lymphoma had a
sensitivity of 100% in a study of 31 patients, but a speci-
ficity of only 31% when compared with histopathol-
ogy[79]. It is not clear whether DW-MRI provides an
advantage over standard whole-body MRI; for the detec-
tion of bone marrow involvement DW-MRI gave a sensi-
tivity of 42% compared with 46% for whole-body T1w-
MRI[80], and similar results were found for whole-body
T1w and DW-MRI in lymphoma staging[78].

In studies measuring mean ADC in bone metastases
before and after treatment, ADC rose in most
lesions[13,81]. However, in one study, the ADC maps of
bone metastases revealed areas of both central ADC
increase and peripheral ADC decrease within metasta-
ses[81], and in another study, the mean ADC fell in
some lesions, which included both responding and non-
responding lesions, indicating that mean ADC should

be used with caution to monitor bone metastasis
response[13].

Conclusions

While ADC increases are seen in response to many thera-
pies, care must be taken as post-treatment decreases can
also be seen with selected therapies, imaging time points
and tumour types (notably, rectal cancers and bone
metastases). The predictive value of ADC is not yet
clear for all tumour types, and care should be taken
when using ADCs for prediction of individual patient
response.

DW-MRI continues to show promise as a method of
detecting early changes in the tumour microenvironment
in response to a variety of treatment regimens. The
advantage of DW-MRI over other methods of monitoring
response include its sensitivity to tumour function, good
spatial resolution, and lack of radiation burden. One
potential caveat for DW-MRI is that imaging protocols,
b-values, and time of examination relative to therapeutic
interventions must be tailored to individual tumour types,
organs, and therapies. However, with careful application
of appropriate DW-MRI protocols, the use of DW-MRI
in treatment monitoring presents a large potential benefit
to the patient.
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