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Abstract: An edge computing system is a distributed computing framework that provides execution
resources such as computation and storage for applications involving networking close to the end
nodes. An unmanned aerial vehicle (UAV)-aided edge computing system can provide a flexible
configuration for mobile ground nodes (MGN). However, edge computing systems still require higher
guaranteed reliability for computational task completion and more efficient energy management
before their widespread usage. To solve these problems, we propose an energy efficient UAV-based
edge computing system with energy harvesting capability. In this system, the MGN makes requests
for computing service from multiple UAVs, and geographically proximate UAVs determine whether
or not to conduct the data processing in a distributed manner. To minimize the energy consumption of
UAVs while maintaining a guaranteed level of reliability for task completion, we propose a stochastic
game model with constraints for our proposed system. We apply a best response algorithm to obtain
a multi-policy constrained Nash equilibrium. The results show that our system can achieve an
improved life cycle compared to the individual computing scheme while maintaining a sufficient
successful complete computation probability.

Keywords: unmanned aerial vehicle (UAV); edge computing; mobile ground node (MGN); energy
efficiency; reliability

1. Introduction
1.1. Motivation

For effective data computation, cloud and edge computing have been used in a rapidly
growing variety of applications. In traditional centralized computing system architectures,
data are backhauled to and processed in either a central enterprise data center or the
cloud [1]. By contrast, in a distributed computing framework, an edge computing system
provides efficient data computation at the edge of the network. This ensures that processing
occurs in real-time without the need for the cloud or external data centers, as vehicles such
as trains, planes, and connected cars can support the edge computing service [2].

Traditional infrastructure-based mobile edge computing (MEC) is a technology widely
used in resource-constrained applications such as IoT. However, the unchangeable and
limited wireless coverage of infrastructure-based MEC severely hampers service flexibility
and efficiency [3]. On the other hand, an unmanned aerial vehicle (UAV)-aided edge com-
puting system provides a way to solve the above problem. UAV-aided edge computing,
which is characterized by large area coverage, line-of-sight communication, and customiz-
able cruising, provides flexible and low-cost edge services for a large number of widely
deployed IoT devices on the ground [4]. For UAV-aided edge computing, UAV-aided
architectures have been proposed [5–7], where a UAV serves as a node that is involved in
various tasks—for instance, an edge computing server that executes the computational
tasks of nodes, and a relay station to offload computational tasks [8]. Although UAVs
provide some advantages to edge computing systems, such systems still need guaranteed
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reliability to enhance the computational task completion and efficient energy management
of the system [9,10]. As the energy of a UAV is typically limited, there may be instances
when the battery capacity level of the UAV is not sufficient for computation, and the UAV
may therefore provide an incomplete computation service to the user. In addition, for data
transmission from the node to the UAV or from the UAV to the node, transmission failures
such as packet loss and bit error can occur as a result of the stochasticity of the wireless
channels or the movement of the user [11,12].

Our aim was to design an energy efficient edge computing system with guaranteed
reliability for computational task completion. Consider an autonomous vehicle system
involving safety production monitoring, automatic driving, and a cooperative-intelligent
transport system in a smart city [13–15]. To operate such a system, the mobile ground node
(MGN) should collect and compute data from multiple sources (traffic signals, roadside
stations, autonomous vehicles, etc.). Then, because most MGNs have limited computing
capabilities, they can offload their computational tasks to a UAV acting as an edge server to
improve the computing efficiency, because the data require high performance computing,
such as high-resolution image processing, video processing, pattern recognition, stream
data mining, and online task planning. However, even if the MGN requests a comput-
ing service from a UAV, as mentioned above, there are still issues with the reliability of
computational task completion and the energy management of such a system.

1.2. Related Work and Main Contribution

Various studies have attempted to improve the energy efficiency and processing
reliability of edge computing systems [16–24]. For example, reference [16–18] introduced
optimization problems for an energy-efficient computation offloading in UAV-based edge
computing systems. In [16], to minimize the energy consumption of the UAV’s data
processing, the computational offloading problem was formulated with a time-duration
constraint for CPU cycles. Meanwhile, Li et al. [17] developed a model to maximize
the energy efficiency of a UAV by jointly optimizing the UAV trajectory, user transmit
power, and computation load allocation. In another study, You et al. [18] designed an
energy-efficient offloading policy for determining the offloading data volume, offloading
duration, and transmission resources of each user. Further, Hua et al. [19] proposed
a collaborative scheduling scheme that is jointly optimized by bit allocation, resource
partitioning, and power allocation at the user devices/UAV to minimize the total energy
consumption of user devices. To increase the reliability of UAV-based communication,
reference [20–24] investigated the wireless channel and mobility. Al-Hourani et al. [20]
established a link channel probability model—which makes mobility determinations based
on the angle from the ground—and proposed an optimal UAV deployment that maximizes
the coverage area. The path loss and channel gain of the link between a UAV and a ground
node were examined in [21]. In the context of link channel probability, [22,23] studied
secrecy capacity UAV-aided communication systems and UAV-to-ground communication
in the presence of an interferer, respectively. Further, Kim et al. [24] established a foundation
for multi-layer aerial networks where each layer has UAVs with different densities, floating
altitudes, and transmission powers. However, no previous work has optimized the energy
efficiency and processing reliability of edge computing systems in a distributed manner.
Additionally, reference [25–27] considered the UAV-based edge computing system to
achieve the minimum energy consumption and delay. In [25], the authors designed a
collaborative UAV network system, which helps isolated vehicle routing and load balancing
by using a prediction of vehicle distributions. In [26], the authors considered the pareto
optimal solution that balances the trade-off between the completion time and energy
consumption of a UAV. In [27], the authors proposed multi-user offloading for edge
computing networks, in which users select the best edge server to offload their tasks to
achieve the minimum delay.

In this paper, we propose a UAV-based edge computing system with an energy
harvesting capability [28,29]. In our proposed system, when the MGNs need to compute
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the data, they send them to geographically proximate multiple UAVs, because this system
uses the additional assistance of UAVs to improve the reliability for computational task
completion. However, the performance of excessively redundant computing processes by
the UAVs can decrease their energy efficiency in the system. Therefore, in our scheme, when
the MGN sends a computational task service request to the UAVs, the UAVs determine
whether or not to compute the MGN’s data in a distributed manner. As one UAV cannot
know the decisions made by the other UAVs, some degree of redundant computing may
occur. Accordingly, to optimize the trade-off between reliability for computational task
completion and energy efficiency, a stochastic game model with constraints was formulated,
and a multi-policy constrained Nash equilibrium is obtained by a best response algorithm.
The results show that, compared to the individual computing scheme, our system can
achieve an improved life cycle while maintaining a sufficiently complete computation
service. Although the authors in [30] formulated a constrained stochastic game model [31]
for an energy-efficient Internet of Things system, their model only considers the energy
consumption and error of one-way data transmission.

The three key contributions of our paper can be summarized as follows.

1. We studied our energy efficient edge computing system which has a reliability guar-
antee via multiple UAVs located near an MGN, selectively executing computational
tasks. Unlike the conventional centralized approaches, for our proposed system, we
formulated a stochastic game model with constraints to obtain the optimal policy
regarding the behavior of UAVs in a distributed manner.

2. In contrast to [27,30], our scheme considers the energy consumption of the UAV, the de-
sired probability of completing the processing according to the bidirectional data trans-
mission error, and the number of cooperative UAVs in the edge computing system.

3. Simulation results are provided to validate the performance of the proposed designs,
and illustrate the energy consumption of the UAV and complete computation prob-
ability. Besides, the simulation results show that the proposed design provides a
significant improvement in terms of cluster lifetime for the considered UAV-aided
system compared to the baseline schemes.

The rest of the paper is organized as follows. Section 2 describes the UAV-based edge
computing system. In Section 3, the constrained stochastic game model is formulated.
Section 4 presents numerical examples, and concluding remarks are provided in Section 5.

2. System Model

Figure 1 shows an example of a UAV-based edge computing system scenario wherein
each UAV can execute the particular computational task required of it for high performance
computing; this system also has energy harvesting capabilities. In addition, we assume that
one unit of energy of the UAV is consumed when receiving the MGN’s data, and another is
consumed when processing the data and then sending them. In general, the transmission
power and receiving power of a node can be calculated by multiplying the transmission
power of the current node by the transmission time. Meanwhile, the transmission time
can be obtained from the total volume of data [32]. Our system is based on federated
learning concept, where UAVs perform the model training for a raw dataset received from
the MGN. After training, each UAV transfers its local model parameters to the MGN; these
model parameters constitute a small amount of data. In our system, since the volume of
raw dataset is the same as that of the processed, we assume that the sending and task
processing power consumes one unit.
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Figure 1. Example of a UAV-based edge computing system scenario.

As shown in Figure 1, the MGN transmits the computational task to multiple UAVs;
since UAV 1 has the minimum remaining energy state, it refuses to receive the MGN’s
data, and UAVs with sufficient energy thus receive the task of the MGN. However, in this
receiving process, as a result of a receiving error, UAV 2 cannot execute the task, though one
unit of power is still consumed. For UAV 5, after receiving and computing the MGN’s data,
the computing service remains uncompleted as a result of a sending error, although two
units of power are still consumed. For UAV 3 and UAV 4, a sufficiently complete com-
putation service is achieved by which two units of power are consumed. After receiving
the processed data from UAVs, the MGN seeks a consensus on the processed data using
an average algorithm, such as the FedAvg algorithm for federated learning, which is a
well-established method for performing machine learning tasks over distributed data [33].
For example, when the MGN receives M model parameters from the UAVs that participated
in the data computing, it can obtain the result, R, as follows:

R =
1
M

M

∑
m=1

ωm, (1)

where ωm is a model parameter received by UAV m.
In our system, to alleviate the degradation of the successful complete computation

probability caused by transmission error, several UAVs can redundantly process the MGN’s
data, even though the MGN only needs one set of processed data; these excessively
redundant data computations and transmissions reduce the energy efficiency of UAVs.
Therefore, in our proposed system, each UAV should consider the actions of other UAVs in
determining whether or not to execute the MGN’s computation tasks.

3. Game Model and Optimization Formulation

In a stochastic game model with constraints, UAVs and players are used interchange-
ably. For N UAVs, each UAV can be defined by the tuple {Si, Ai, Pi, v, c} for i, where
i ∈ {1, . . . , N}.
• Si is a finite local state space of UAV i, where Si = {0, 1, . . . , Emax} for the maximum

energy capacity of UAVs Emax. Then, S = ∏i Si is a global state space, where ∏
is the Cartesian product. In addition, S−i = ∏j 6=i Sj is the state space of all UAVs
excluding UAV i.

• Ai is a finite local action set of UAV i, where Ai ∈ {0, 1, 2} represents refusing
to compute, receiving the MGN’s data, and transmitting the processed data after
computing, respectively.

• Pi is the transition probability of UAV i, where Pi[Si′ |Si, Ai] is the probability that the
state of UAV i moves from state Si to Si′ if it chooses an action Ai.
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• ν is the cost function defined to minimize the energy consumption. As mentioned
previously, since the UAV consumes one unit of energy to receive the MGN’s data,
and since it consumes another unit of energy to process the data and then transmit
the processed data, ν(Si, Ai) = 1 when Ai =1 or 2 while ν(Si, Ai) = 0 for Ai = 0.

• c is the constraint function to represent the successful complete computation proba-
bility while accounting for transmission errors. The computation of the MGN’s data
can be successfully completed if there is at least one successful complete computation
between a UAV and the MGN. Therefore, if the target UAV i chooses Ai = 2 and has
Si > 1, then the successful complete computation probability can be represented as

(1− εRx)(1− εTx) + (1− εRx)εTx(1− εRx)(1− εTx)λ
−i

+ εRx(1− εRx)(1− εTx)λ
−i, if Si > 1, Ai = 2

(1− εRx)(1− εTx)λ
−i, otherwise,

(2)

where λ−i denotes the probability that at least one UAV aside from UAV i receives the
MGN’s data. In addition, εRx and εTx denote the respective probabilities of suffering
a receiving error or a transmitting error (We assume that the channels between UAVs
and nodes are the same quality. In UAV-aided computing system, UAVs can fly close
to mobile ground nodes. When UAVs fly close enough with better channel quality, it
is possible that UAVs or nodes can efficiently receive/transmit data and have same
channel quality. However, transmission failures such as packet loss and bit error can
occur from the stochasticity of the wireless channels or the mobility of the user.).

3.1. Transition Probability

The transition probability of the target UAV i introduced above can be derived
as follows.

When UAV i does not execute the MGN’s computation task (i.e., Ai = 0 ) and the
energy of UAV i is not fully charged (i.e., Si 6= Emax), its energy increases by one unit. The
UAV can harvest energy only when its environment provides energy. Therefore, the energy
harvested by the UAV can be modeled by a Bernoulli random process taking values in
{0, 1}, and the probability that the UAV harvests one unit energy is PH . When UAV i
does not execute the MGN’s computation task (i.e., Ai = 0 ) and the energy of the UAV is
fully charged (i.e., Si = Emax), it no longer harvests energy. Therefore, the corresponding
probabilities can be expressed by

Pi[Si′ |Si 6= Emax, Ai = 0] =


PH , if Si′ = Si + 1
1− PH , if Si′ = Si

0, otherwise
(3)

and

Pi[Si′ |Si = Emax, Ai = 0] =
{

1, if Si′ = Si

0, otherwise.
(4)

When UAV i receives the MGN’s data and it has two or more units of energy, it
consumes one unit of energy. On the other hand, if UAV i has fewer than two energy units,
it cannot execute the MGN’s computation task, and it thus consumes no energy. In addition,
its energy increases by one unit with PH . Therefore, the corresponding probabilities can be
represented as

Pi[Si′ |Si > 1, Ai = 1] =


PH , if Si′ = Si

1− PH , if Si′ = Si − 1
0, otherwise

(5)
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and

Pi[Si′ |Si ≤ 1, Ai = 1] =


PH , if Si′ = Si + 1
1− PH , if Si′ = Si

0, otherwise.
(6)

When UAV i receives the MGN’s data without a receiving error while having sufficient
energy, UAV i can execute the task and transmit the processed data to the MGN, and one
unit of energy is consumed. On the other hand, if UAV i receives the data with an error or
does not have sufficient energy, it cannot process the data, and it thus consumes no energy.
Therefore, the corresponding probabilities can be represented as

Pi[Si′ |Si 6= 0, Ai = 2] =
{

1, if Si′ = Si − 1
0, otherwise.

(7)

and

Pi[Si′ |Si = 0, Ai = 2] =
{

1, if Si′ = Si

0, otherwise.
(8)

3.2. Optimization Formulation

The stationary multi-policy of all UAV, π, is to be optimized such that the constraints
of long-term average energy consumption and long-term average successful complete
computation probability are both met. The long-term average energy consumption, ψE(π),
and the long-term average of successful complete computation probability, ψS(π), are
defined as follows:

ψE(π) = lim
T→∞

1
T

T

∑
t=1

Eπ [ν(St, At)], (9)

ψS(π) = lim
T→∞

1
T

T

∑
t=1

Eπ [c(St, At)], (10)

where St ∈ S and At ∈ {0, 1, 2} are the global state and action at time t, respectively.
From (9) and (10), the constrained stochastic game can be formulated as follows:

Minimize:ψE(π) (11)

Subject to:ψS(π) ≥ γS,

where γS is the target average successful complete computation probability. The con-
strained Nash equilibrium is the solution of the formulated constrained stochastic game.
Let π∗ be the best response policy; it is the constrained Nash equilibrium when the follow-
ing condition is satisfied

ψE((π
i∗, π−i∗)) ≤ ψE((π

i, π−i)), (12)

where πi and π−i, respectively, denote a stationary policy of UAV i and a stationary policy
of all UAVs excluding UAV i, and π∗ = (πi∗, π−i∗). We use a linear programming (LP)
approach to obtain π∗. Let ϕi,π−i

(Si, Ai) be the stationary probability in local state Si and
action Ai of UAV i given the policies of the other UAVs π−i. The LP problem corresponding
to (11) can be expressed as follows:

min
ϕ(S,A)

∑
S

∑
A

ϕi,π−i
(Si, Ai)v(Si, Ai) (13)
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s.t. ∑
S

∑
A

ϕi,π−i
(Si, Ai)c(Si, Ai) ≥ γS (14)

∑
A

ϕi,π−i
(Si′ , Ai) = ∑

S
∑
A

ϕi,π−i
(Si, Ai)Pi

[
Si′
∣∣∣Si, Ai

]
(15)

∑
S

∑
A

ϕi,π−i
(Si′ , Ai) = 1 (16)

ϕi,π−i
(Si′ , Ai) ≥ 0. (17)

Here, (13) is the objective function to minimize the average energy consumption of
UAV i, and the constraints are expressed as (14)–(17). (14) implies that the target successful
complete computation probability should always be kept higher than the desired target
successful complete computation probability γS. The constraints in (15), (16), and (17),
respectively, represent the Chapman–Kolmogorov equation and the probability properties.

Let ϕ∗i,π
−i
(Si, Ai) be the optimal solution of the LP problem defined in (13) through

(17). The stationary best response policy of UAV i can be obtained as follows:

πi∗(Si, Ai) =
ϕi∗,π−i

(Si, Ai)

∑Ai′ ϕi∗,π−i (Si, Ai′)
. (18)

The constrained Nash equilibrium ensures that UAV i cannot achieve a lower cost by
adopting any other stationary policies if the other UAVs do not change their stationary
policies. To update the policies of the UAVs, as shown in Algorithm 1, we apply best
response dynamics [34]. Note that the interaction among UAVs is expressed through the
probability λ−i. Then, λ−i can be obtained by

λ−i = 1−∏
i′ 6=i

1−λi′ , (19)

where λi denotes the probability that UAV i receives the MGN’s data; it can be expressed as

λi = ∑
Si 6=0

ϕi,π−i
(Si, Ai = 1). (20)

Algorithm 1 Best response dynamics algorithm.

1. Initialize the policies πi for ∀i
2. repeat
3. for i = 1, . . . , N do
4. Calculate λ−i from (19)
5. Obtain πi∗ by solving the LP problem
6. Update the multi-policy, π
7. end for
8. until λi converge

4. Numerical Example

In this section, simulation results are presented to evaluate the energy consumption
and complete computation probability of our system. We simulated a UAV-based system
with N = 4 ∼ 8 UAVs, where the UAVs determined whether or not to compute the MGN’s
data by using our scheme. We assumed Emax = 10 (the maximum energy capacity of UAVs)
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and PH = [0.3 ∼ 0.7] (the probability that UAV harvests energy), where [a, b] denotes a
random value between a and b. Furthermore, we also assumed that the initial batteries
of all UAVs were fully charged, and the desired target successful complete computation
probability was γS = 0.9. The chosen system parameters are summarized in Table 1.
In addition, our system is also compared with the following four schemes:

1. Always: UAVs always receive the MGN’s data.
2. P-based: UAVs receive the MGN’s data with the probability P, where P is set to 0.7.
3. Rand: UAVs randomly receive the MGN’s data.
4. Con: One UAV always receive the MGN’s data.

Figure 2 shows the process by which the policies of the UAVs converge on the con-
strained Nash equilibrium policy.The number of UAVs in the UAV cluster was set to 4,
where for ε = εTx = εRx, UAV 1 and UAV 2 each had 0.06, whereas UAV 3 and UAV 4 each
had 0.08. As can be seen in this figure, the best response algorithm converged within a few
iterations (i.e., six iterations). This result means that our scheme can be implemented in a
system without high overhead. We can see that each UAV chose its action by considering
the best response relative to the actions of the other UAVs. For example, after the conver-
gence, UAV 1 and UAV 3, which initially had high probabilities of receiving the MGN’s
data, had low probabilities; in so doing, their energy consumption was reduced. We can
also see that for different values of ε, UAVs adaptively chose their action policies, where
for ε = 0.06, λi = 0.45, whereas for ε = 0.08, λi = 0.68.

0 2 4 6 8 10

Iteration

0.4

0.5

0.6

0.7

0.8

Figure 2. Convergence on the constrained Nash equilibrium policy, where Tx denotes the initial
policy of each UAV.

Table 1. System parameters.

Parameter Emax PH γS N
Value 10 [0.3, 0.7] 0.9 4∼8

Figures 3 and 4, respectively, show the effects of transmission error ε on ψE and
ψS, where ε = εTx = εRx. These figures show that our system operates adaptively with
varying ε. That is, as ε increases, more UAVs in our system receive the MGN’s data to avoid
situations wherein task data or computed data are not delivered due to ε, and the energy
consumption is expected to increase as a result. In this way, ψS can be maintained at γS.
On the other hand, Figure 3 shows that as ε increases, the ψE values of the other compared
schemes decrease slightly; this is because they not only follow a fixed policy, but also do
not compute and transmit the data, as a receiving error causes a UAV not to compute a
task received from the MGN. Therefore, as shown in Figure 4, the successful complete
computation probabilities of the other comparison schemes decrease as ε increases. We
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can also see that the non-cooperation computation scheme, i.e., the Con scheme, suffers
from insufficient average successful complete computation probability. This means that
cooperative computation schemes have higher average successful complete computation
probabilities when the transmission error is high.

0.02 0.04 0.06 0.08 0.1 0.12
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
Proposed

Always

P-based

Rand

Con

Figure 3. Average energy consumption ψE versus ε.

0.02 0.04 0.06 0.08 0.1 0.12
0.75

0.8

0.85

0.9

0.95

1

S

Proposed

Always

P-based

Rand

Con

Figure 4. Successful task computational probability ψS versus ε.

Figure 5 shows the cluster lifetime ψL with respect to ψS, where ψL is defined as the
lifetime of the first dead UAV in the cluster [35] and the initial batteries of all UAVs are
fully charged. As shown in vertical red line of Figure 5, our system can prolong ψL above
ψS. That is, as ε and ψL are increased, ψS is maintained. This is because the UAVs in our
system can reduce unnecessary computations by considering the actions of neighbor UAVs.
For example, when ε=0.01, ψL = 22; and when ε = 0.12, ψL = 11. For a fixed policy, it
should be noted that ψL cannot be increased without increasing the tolerance of ψS for
the system. We can also see from the result of the Con scheme that the use of cooperative
schemes can improve the lifetime of the system.

Figures 6 and 7 show the effects of uneven transmission error, i.e., εTx 6= εRx, on ψE
and ψS, respectively, where εRx = 0.06 and 0.01 ≤ εTx ≤ 0.12. From these results, we can
see that our scheme operates adaptively when εTx is changed, as shown in previous results.
That is, as εTx increases, ψE is increased, and ψS is maintained. We can also see that the
ψE values of other schemes remain constant regardless of εTx, because those policies are
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fixed. Then, the successful complete computation probabilities of other schemes decrease
as εTx increase.

0.75 0.8 0.85 0.9 0.95 1

S

6

8

10

12

14

16

18

20

22

L

Proposed

Always

P-based

Rand

Con

Figure 5. Successful task computational probability ψS versus cluster lifetime ψL with various values
of ε.

0.02 0.04 0.06 0.08 0.1 0.12
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Always
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Figure 6. Average energy consumption ψE versus εTx, where εRx = 0.06.
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Figure 7. Average energy consumption ψS versus εTx, where εRx = 0.06.
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Figures 8 and 9 show the effect of the number of UAVs in the cluster, N. From these
figures, we can see that as N increases, the cluster lifetime ψL decreases. This is because
the probability that at least one UAV receives the MGN’s data increases with increasing
N. In this situation, the average successful complete computation probability ψS can be
maintained, as shown in Figure 8.

4 4.5 5 5.5 6 6.5 7 7.5 8

N

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98
S

Proposed

Always

P-based

Rand

Figure 8. Average energy consumption ψS versus N.

4 4.5 5 5.5 6 6.5 7 7.5 8

N

6

8

10

12

14

16

18

20

22

L

Proposed

Always

P-based

Rand

Figure 9. Cluster lifetime ψL versus N.

5. Conclusions

In this paper, we propose a UAV-based edge computing system for MGNs which lever-
ages spatial correlation to reduce unnecessary computation and transmission of the MGN’s
data. In this system, geographically proximate UAVs decide whether or not to accept a
computation request from the MGN by considering the actions of other UAVs. To minimize
the number of acceptances and the total amount of computing power used while main-
taining the desired successful complete computation probability, a stochastic game model
with constraints is formulated, and a multi-policy is obtained by a best response algorithm.
The results show that our system can reduce unnecessary energy consumption compared
to the probabilistic acceptance scheme and achieve a longer network lifetime, ψL while
maintaining the successful complete computation probability, ψS, above a desired level,
γS. For example, for γS = 0.9, ψS can be maintained at 0.9; for ε = 0.06, ψL = 22; and for
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ε = 0.12, ψL = 11, respectively. In addition, these findings show that our system operates
adaptively even when the operating environment (e.g., the number of UAVs in the cluster
and transmission failure) changes. In this paper, we focused on the energy consumption
and complete computation probabilities of multiple UAVs. Thus, as future work, for a
more accurate performance evaluation from the processed data perspective, we need to see
the accuracy for an average data processed by the FedAvg algorithm. Furthermore, we also
need to see the energy consumption for the UAV system using retransmission technique.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, writ-
ing, revision—Y.-K.K. and S.-Y.K.; supervision—Y.-K.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A3042204).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shi, W.; Pallis, G.; Xu, Z. Edge computing [scanning the issue]. Proc. IEEE 2019, 107, 1474–1481. [CrossRef]
2. Liang, L.; He, H.; Zhao, J.; Liu, C.; Luo, Q.; Chu, X. An Erasure-Coded Storage System for Edge Computing. IEEE Access 2020,

8, 96271–96283. [CrossRef]
3. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S; Zhang, Y. Blockchain Empowered Asynchronous Federated Learning for Secure Data

Sharing in Internet of Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4298–4311. [CrossRef]
4. Zhang, K.; Zhu, Y; Maharjan, S; Zhang, Y. Edge Intelligence and Blockchain Empowered 5G Beyond for the Industrial Internet of

Things. IEEE Netw. 2019, 33, 12–19. [CrossRef]
5. Li, B.; Fei, Z.; Zhang, Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J.

2019, 6, 2241–2263. [CrossRef]
6. Zhang, J.; Dai, M.; Su, Z. Task allocation with unmanned surface vehicles in smart ocean IoT. IEEE Internet Things J. 2020,

7, 9702–9713. [CrossRef]
7. Fu, S.; Zhao, L.; Su, Z.; Jian, X. UAV based relay for wireless sensor networks in 5G systems. Sensors 2018, 18, 2413. [CrossRef]

[PubMed]
8. Zhou, F.; Hu, R. Q; Li, Z; Wang, Y. Mobile edge computing in unmanned aerial vehicle networks. IEEE Wirel. Commun. 2020,

27, 140–146. [CrossRef]
9. Shi, W.; Li, J; Cheng, N; Lyu, F.; Zhang, S; Zhou, H; Shen, X. Multi-drone 3-D trajectory planning and scheduling in drone-assisted

radio access networks. IEEE Trans. Veh. Technol. 2019, 68, 8145–8158. [CrossRef]
10. Yang, L.; Meng, F.; Zhang, J.; Hasna, M. O.; Di Renzo, M. On the performance of RIS-assisted dual-hop UAV communication

systems. IEEE Trans. Veh. Technol. 2020, 69, 10385–10390. [CrossRef]
11. Yamanaka, H.; Kawai, E.; Teranishi, Y.; Harai, H. Proximity-aware IaaS in an edge computing environment with user dynamics.

IEEE Trans. Netw. Serv. Manag. 2019, 16, 1282–1296. [CrossRef]
12. Qu, Y.; Dai, H.; Wu, F; Lu, D; Dong, C; Tang, S; Chen, G. Robust Offloading Scheduling for Mobile Edge Computing. IEEE

Transactions on Mobile Computing ( Early Access ); IEEE: Piscataway, NJ, USA, 2020.
13. Sun, L.; Jiang, X.; Ren, H.; Guo, Y. Edge-cloud computing and artificial intelligence in Internet of medical things: Architecture,

technology and application. IEEE Access 2020, 8, 101079–101092. [CrossRef]
14. Khan, L. U.; Yaqoob, I.; Tran, N. H.; Kazmi, S. A.; Dang, T. N.; Hong, C. S. Edge-Computing-Enabled Smart Cities: A Comprehen-

sive Survey. IEEE Internet Things J. 2020, 7, 10200–10232. [CrossRef]
15. Qi, F.; Zhu, X.; Mang, G.; Kadoch, M.; Li, W. UAV network and IoT in the sky for future smart cities. IEEE Netw. 2019, 33, 96–101.

[CrossRef]
16. Bai, T.; Wang, J.; Ren, Y.; Hanzo, L. Energy-efficient computation offloading for secure UAV-edge-computing systems. IEEE Trans.

Veh. Technol. 2019, 68, 6074–6087. [CrossRef]
17. Li, M.; Cheng, N.; Gao, J.; Wang, Y.; Zhao, L.; Shen, X. Energy-efficient UAV-assisted mobile edge computing: Resource allocation

and trajectory optimization. IEEE Trans. Veh. Technol. 2020, 69, 3424–3438. [CrossRef]
18. You, C.; Huang, K.; Chae, H.; Kim, B.-H. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans.

Wirel. Commun. 2017, 16, 1397–1411. [CrossRef]
19. Hua, M.; Wang, Y.; Li, C.; Huang, Y.; Yang, L. UAV-aided mobile edge computing systems with one by one access scheme. IEEE

Trans. Green Commun. Netw. 2019, 3, 664–678. [CrossRef]

http://doi.org/10.1109/JPROC.2019.2928287
http://dx.doi.org/10.1109/ACCESS.2020.2995973
http://dx.doi.org/10.1109/TVT.2020.2973651
http://dx.doi.org/10.1109/MNET.001.1800526
http://dx.doi.org/10.1109/JIOT.2018.2887086
http://dx.doi.org/10.1109/JIOT.2020.2991578
http://dx.doi.org/10.3390/s18082413
http://www.ncbi.nlm.nih.gov/pubmed/30044413
http://dx.doi.org/10.1109/MWC.001.1800594
http://dx.doi.org/10.1109/TVT.2019.2925629
http://dx.doi.org/10.1109/TVT.2020.3004598
http://dx.doi.org/10.1109/TNSM.2019.2929576
http://dx.doi.org/10.1109/ACCESS.2020.2997831
http://dx.doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1109/MNET.2019.1800250
http://dx.doi.org/10.1109/TVT.2019.2912227
http://dx.doi.org/10.1109/TVT.2020.2968343
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/TGCN.2019.2910590


Sensors 2021, 21, 8264 13 of 13

20. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014,
3, 569–572. [CrossRef]

21. Al-Hourani, A.; Kandeepan, S.; Jamalipour, A. Modeling air-to-ground path loss for low altitude platforms in urban envi-
ronments. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Austin, TX, USA, 8–12 December
2014; pp. 2898–2904.

22. Liu, C.; Quek, T.Q.S.; Lee, J. Secure UAV communication in the presence of active eavesdropper. In Proceedings of the 9th
International Conference on Wireless Communications Signal Process, Nanjing, China, 11–13 October 2017; pp. 1–6.

23. Kim, M.; Lee, J. Impact of an interfering node on unmanned aerial vehicle communications. IEEE Trans. Veh. Technol. 2019,
68, 12150–12163. [CrossRef]

24. Kim, D.; Lee, J.; Quek, T.Q.S. Multi-layer unmanned aerial vehicle networks: Modeling and performance analysis. IEEE Trans.
Wirel. Commun. 2020, 19, 325–339. [CrossRef]

25. Lin, N.; Fu, L.; Zhao, L.; Min, G.; Al-Dubai, A.; Gacanin, H. A novel multimodal collaborative drone-assisted VANET networking
model. IEEE Trans. Wirel. Commun. 2020, 19, 4919–4933. [CrossRef]

26. Zhan, C.; Hu, H.; Sui, X.; Liu, Z.; Niyato, D. Completion time and energy optimization in the UAV-enabled mobile-edge
computing system. IEEE Internet Things J. 2020, 7, 7808–7822. [CrossRef]

27. Shu, C.; Zhao, Z.; Han, Y.; Min, G.; Duan, H. Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and
Latency-Optimal Approach. IEEE Internet Things J. 2020, 7, 1678–1689. [CrossRef]

28. Ulukus, S.; Yener, A.; Erkip, E.; Simeone, O.; Zorzi, M.; Grover, P.; Huang, K. Energy harvesting wireless communications: A
review of recent advances. IEEE J. Sel. Areas Commun. 2015, 33, 360–381. [CrossRef]

29. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices.
IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

30. Ko, H.; Pack, S. Neighbor-Aware Energy-Efficient Monitoring system for Energy Harvesting Internet of Things. IEEE Internet
Things J. 2019, 6, 5745–5752. [CrossRef]

31. Altman, E.; Avrachenkov, K.; Bonneau, N.; Debbah, M.; El-Azouzi, R.; Menasche, D. S. Constrained cost-coupled stochastic games
with independent state processes. Oper. Res. Lett. 2008, 36, 160–164. [CrossRef]

32. Teng, H.; Liu, X.; Liu, A.; Shen, H.; Huang, C.; Wang, T. Adaptive transmission power control for reliable data forwarding in
sensor based networks. Wireless Commun. Mobile Comput. 2018, 2018, 2068375. [CrossRef]

33. Yang, Z.; Chen, M.; Saad, W.; Hong, C.S.; Shikh-Bahaei, M. Energy Efficient Federated Learning Over Wireless Communication
Networks. IEEE Trans. Wirel. Commun. 2021, 20, 1935–1949. [CrossRef]

34. Berger, U. Best response dynamics for role games. Int. J. Game Theory 2002, 30, 527–538. [CrossRef]
35. Dong, M.; Ota, K.; Liu, A. RMER: Reliable and energy-efficient data collection for large-scale wireless sensor networks. IEEE

Internet Things J. 2016, 3, 511–519. [CrossRef]

http://dx.doi.org/10.1109/LWC.2014.2342736
http://dx.doi.org/10.1109/TVT.2019.2949345
http://dx.doi.org/10.1109/TWC.2019.2944378
http://dx.doi.org/10.1109/TWC.2020.2988363
http://dx.doi.org/10.1109/JIOT.2020.2993260
http://dx.doi.org/10.1109/JIOT.2019.2943373
http://dx.doi.org/10.1109/JSAC.2015.2391531
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/JIOT.2019.2905573
http://dx.doi.org/10.1016/j.orl.2007.05.010
http://dx.doi.org/10.1155/2018/2068375
http://dx.doi.org/10.1109/TWC.2020.3037554
http://dx.doi.org/10.1007/s001820200096
http://dx.doi.org/10.1109/JIOT.2016.2517405

	Introduction
	Motivation
	Related Work and Main Contribution

	System Model
	Game Model and Optimization Formulation
	Transition Probability
	Optimization Formulation

	Numerical Example
	Conclusions
	References

