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Abstract

The vitamin D3 receptor (VDR) serves as a negative growth regulator during mammary gland development via suppression
of branching morphogenesis during puberty and modulation of differentiation and apoptosis during pregnancy, lactation
and involution. To assess the role of the VDR in the aging mammary gland, we utilized 12, 14, and 16 month old VDR
knockout (KO) and wild type (WT) mice for assessment of integrity of the epithelial and stromal compartments, steroid
hormone levels and signaling pathways. Our data indicate that VDR ablation is associated with ductal ectasia of the primary
mammary ducts, loss of secondary and tertiary ductal branches and atrophy of the mammary fat pad. In association with
loss of the white adipose tissue compartment, smooth muscle actin staining is increased in glands from VDR KO mice,
suggesting a change in the stromal microenviroment. Activation of caspase-3 and increased Bax expression in mammary
tissue of VDR KO mice suggests that enhanced apoptosis may contribute to loss of ductal branching. These morphological
changes in the glands of VDR KO mice are associated with ovarian failure and reduced serum 17b-estradiol. VDR KO mice
also exhibit progressive loss of adipose tissue stores, hypoleptinemia and increased metabolic rate with age. These
developmental studies indicate that, under normocalcemic conditions, loss of VDR signaling is associated with age-related
estrogen deficiency, disruption of epithelial ductal branching, abnormal energy expenditure and atrophy of the mammary
adipose compartment.
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Introduction

The developmental changes associated with puberty, pregnan-

cy, lactation and involution of the mammary gland have been

extensively studied and signaling pathways initiated by both

membrane and nuclear receptors are essential for coordination of

these events [1]. However, less is known about the pathways that

control turnover of the mammary cell populations during the

aging process. In mice, ovariectomy (to mimic the post-

menopausal state) is associated with cessation of mammary

epithelial cell proliferation, which can be restored by treatment

with estrogen and progesterone, although the sensitivity of the

gland to these hormones decreases with age [2,3]. While estrogen

is clearly needed for maintenance of the ductal epithelium, it does

not appear to be required for development or maintenance of the

adipose/stromal compartment [4].

Stromal-epithelial interactions are crucial for mammary gland

development and maintenance, including the mammary fat pad,

which provides signals that mediate ductal morphogenesis [5,6].

The mammary adipose tissue functions as an endocrine organ,

producing steroid and peptide hormones as well as hormone-like

molecules known as adipokines [7,8], which impact on the

mammary epithelial compartment. The total absence of white

adipose tissue in the mammary gland disrupts stromal-epithelial

interactions and prevents normal mammary gland development

[6,9]. Thus, when investigating the development or homeostasis of

the mammary epithelium, it is necessary to consider all

microenvironments of the mammary gland.

We have previously shown that the nuclear vitamin D3 receptor

(VDR), whose ligand, 1,25-dihydroxyvitamin D3 (1,25D), a

derivative of vitamin D3, is expressed and dynamically regulated

in mammary gland during the reproductive cycle [10]. VDR

agonists have been shown to modulate proliferation and survival of

stromal and epithelial cells derived from mammary gland, and can

inhibit growth of breast cancers in animal models [11,12,13,14].

Furthermore, VDR knockout (KO) mice exhibit accelerated

mammary gland development during puberty and early pregnan-

cy, and impaired apoptosis during involution, compared to wild-

type (WT) mice [10,15]. Although the VDR is essential for

intestinal calcium absorption, the effects of VDR ablation on
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mammary gland were observed in mice maintained on a high

calcium rescue diet which normalizes serum calcium, bone

growth, and fertility [15,16,17], indicating that the effects of

VDR on mammary gland represent calcium-independent actions.

Additional novel functions of VDR that have been uncovered

using the normocalcemic VDR KO mouse model include effects

on the immune system [18], the renin-angiotensin system [19],

adipogenesis [20,21] and tumorigenesis [22].

In the studies reported here, we used normocalcemic VDR KO

mice to determine whether the changes we observed in the

mammary gland during pubertal development and the reproduc-

tive cycle of VDR KO mice persist or are exacerbated with age.

We hypothesized that chronic absence of vitamin D3 signaling, via

VDR ablation, in the mammary gland might impact ductal

epithelial cell turnover, leading to hyperplastic nodules that could

lead to transformation. We demonstrate that VDR expression

persists in the aging mammary gland of WT mice, but in contrast

to expectations, abnormal energy metabolism in older VDR KO

mice leads to atrophy of the mammary adipose compartment and

apoptotic regression of the mammary epithelium. Thus, our

studies suggest that VDR signaling is required for overall

metabolic homeostasis and for maintenance of epithelial and

stromal interactions in the mammary gland during the aging

process.

Results

VDR expression persists in aging mammary gland
Vitamin D3 deficiency is prevalent in the elderly population and

has been linked to an increased risk for breast cancer [23]. To

assess the potential impact of vitamin D3 signaling in aging

mammary glands, we used real time PCR to assess VDR gene

expression in mammary glands harvested from 12, 14 and 16

month old virgin mice. As shown in Figure 1A, VDR expression

was detected in mammary glands from aging WT mice at levels

slightly lower than that found during pregnancy, when expression

of this receptor is highly induced [10,24]. Interestingly, VDR

mRNA in aging mammary gland was about 10-fold higher than

that in post-pubertal, non-pregnant mice, where VDR promotes

differentiation [15]. VDR protein was detected in aging mammary

glands of WT mice but not in VDR KO mice by western blotting

of tissue homogenates (Figure 1B). Immunohistochemistry was

used to determine VDR localization within specific cell types of

the gland of aging WT mice. Representative staining of the

inguinal mammary gland from a 12 month old virgin WT mouse

(Figure 1C) demonstrates positive staining for the VDR in the

nuclei of ductal epithelial cells and in the stromal and adipose cells

surrounding the ducts, similar to what has been reported

previously in pubertal mammary glands from virgin WT mice

[15].

Effects of VDR ablation on mammary gland morphology
To assess the long-term impact of VDR ablation on mammary

gland ductal morphology, whole mounts of inguinal mammary

glands were prepared from virgin WT and VDR KO mice

sacrificed between 6 and 16 months of age. Although the gross

morphology of mammary glands from WT and VDR KO mice at

6, 8 and 10 months were similar (data not shown), developmental

differences were apparent in glands from VDR KO mice

beginning at 12 months. Representative micrographs of inguinal

mammary glands from 16 month old mice are shown in Figure 2A.

Whole mounted glands (left panels) from WT mice displayed

dense ductal extension past a small central lymph node and

extensive secondary and tertiary branching morphogenesis.

Although the glands from VDR KO mice showed normal ductal

extension, the extent of epithelial branching was significantly

reduced and the lymph nodes were markedly enlarged. At higher

magnification (middle panels), the degree of secondary and tertiary

branching was consistently reduced in glands from VDR KO

mice. In addition, darkly stained lesions were frequently observed

along the primary ducts of glands from VDR KO mice (Figure 2A,

lower middle panel, arrows). On H&E preparations (Figure 2A,

right panels), these lesions, which were present only in VDR KO

mice, corresponded to dense clusters of inflammatory cells

adjacent to the ducts, particularly at branch points.

Counts of primary, secondary and tertiary branch points

(Figure 2B) indicated that the increase in secondary and tertiary

ductal branching evident with age in WT mice was retarded in

VDR KO mice. In addition to the differences in epithelial

structure, the increase in mammary fat pad area that occurred

with age in WT mice did not occur in VDR KO mice (Figure 2C).

In fact, the mammary adipose tissue size decreased with age in

VDR KO mice, and by 16 months, the average fat pad area in

VDR KO mice was less than half the size of their WT

counterparts. In contrast, the size of the central lymph node was

significantly increased in VDR KO animals over the aging time

course (Figure 2D).

Figure 1. Expression of the VDR in aging mammary glands of WT mice. A. Real Time PCR for VDR gene expression in aging mammary glands
(12, 14, and 16 months) derived from wild type (WT) mice were compared to mature 10 week (10wk) pubertal and late pregnancy mammary glands.
Data are expressed relative to 18S RNA (Relative VDR Expression) and represent mean 6 s.e.m. of triplicate runs. B. Western blot of VDR protein
expression in aging mammary glands (12 and 14 months) from WT mice, which is undetectable in VDR KO glands. C. Formalin fixed sections of
mammary gland from 12, 14, and 16 month old WT mice were subjected to immunohistochemistry with a monoclonal antibody directed against VDR.
A representative stained section of a 12 month WT gland shows positive staining in the mammary epithelium, stroma and adipose, a pattern that is
similar to pubertal mammary gland expression [15]. VDR positive cells appear brown against the blue hematoxylin counterstain.
doi:10.1371/journal.pone.0016479.g001

Impact of VDR on Aging Mammary Gland
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Figure 2. Morphological and quantitative assessment of inguinal mammary glands from 12, 14, and 16 month old WT and VDR KO
mice. A. (Left Panels) Glands from VDR KO mice show decreased secondary and tertiary branching, signs of ductal thickening (ectasia), and large
lymph nodes as the adipose tissue begins to atrophy with age. In contrast, WT glands show an extensive array of secondary and tertiary branches
resting in a vast fat pad of plentiful adipose tissue. (Middle Panels) Glands at higher magnification from VDR KO mice show reduced secondary and
tertiary branching and areas of darkly stained lesions along primary ducts (arrows). (Right Panels) Histological sections stained with hematoxylin and
eosin Y show clusters of inflammatory cells along the primary ducts within glands of VDR KO mice compared to WT glands. B. Primary, secondary and
tertiary branch points were quantitated as described in materials and methods. Primary branch counts showed a significant decrease between WT
and KO glands at 16 months whereas secondary and tertiary branches were significantly decreased in glands from VDR KO mice at 14 and 16 months
compared to WT control mice. *Statistically significant by Students t test, WT vs. VDR KO, n = 10–12 p,0.05. C. Whole mounts from VDR WT and KO
mice were utilized to measure the area of mammary fat pads using AxioVision software. Fat pad area was calculated by tracing around the exterior of
the ductal branches of the mammary fat pads. At 14 and 16 months of age, there is a significant reduction in the mammary fat pads of VDR KO mice
compared to WT controls. *Statistically significant by Students t test, WT vs. VDR KO, n = 10–12 p,0.05. D. Whole mounts from VDR WT and KO mice
were utilized to measure the mammary lymph nodes. Using AxioVision software, the exterior of the glandular lymph node was traced to calculate the
area. At all time points, lymph nodes within glands from VDR KO mice were significantly enlarged compared to lymph nodes from WT mice.
*Statistically significant by Students t test, WT vs. VDR KO, n = 10–12 p,0.05.
doi:10.1371/journal.pone.0016479.g002

Impact of VDR on Aging Mammary Gland

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e16479



At the histological level, sections were stained for smooth muscle

actin (SMA) to determine whether VDR ablation altered the

stromal compartment of the mammary gland. As shown in

Figure 3A, increased SMA staining surrounding the ducts of VDR

KO mice was consistently observed compared to WT controls.

Since vitamin D3 has been shown to regulate E-cadherin in

mammary cells in vitro, we assessed the expression of several

proteins associated with the epithelial tight junctions. No

differences in E-cadherin, b-catenin or occludin abundance were

detected by western blotting of tissue extracts from WT and VDR

KO mice at any age (Figure 3B).

Effect of VDR ablation on adiposity and energy
expenditure

To further explore the effect of VDR signaling on the stromal

compartment, the cellularity of the mammary fat pad was

compared in WT and VDR KO mice. As shown in Figure 4A,

the mammary fat pads from 16 month WT mice were primarily

composed of large uni-locular fat cells, whereas the adipose

compartment of VDR KO mice contained smaller adipocytes,

many of which were multi-locular and histologically reminiscent of

brown adipocytes. To confirm previous reports of reduced whole

body adiposity in younger VDRKO mice [20], we measured

serum concentrations of leptin, a cytokine secreted from mature

adipocytes which reflects overall body fat stores. Serum leptin

(Figure 4B) was significantly lower in aging VDR KO mice

compared to WT mice, showing a reduction as early as four

months of age and significantly reduced by eight months,

suggesting that the atrophy of the mammary fat pad in VDR

KO mice reflects comparable decreases in total body fat stores.

To determine whether long-term VDR ablation altered global

energy metabolism, we utilized indirect calorimetry to assess

metabolic rate in male WT and VDR KO mice as a function of

age. Male mice were used to help define the impact of VDR

ablation on energy consumption without the underlying concern of

hormonal fluctuations found in female mice during each estrous

cycle and throughout the aging time course. Compared to WT

mice, VDR KO mice exhibited an elevated VO2 level, indicating a

hypermetabolic phenotype, beginning at 6 months of age, with

significant (p,0.05) differences detected from 9 months of age on

(Figure 4C, top panel). Energy expenditure is also reflected as heat

production, expressed as calories, which was elevated in the VDR

KO mice beginning at 6 months of age and significantly higher by

12 months (Figure 4C, middle panel). Finally, indirect calorimetry

also allows inference of the energy source (carbohydrate versus fat)

based on the respiratory exchange ratio (RQ). The RQ data

indicates no difference in energy source between WT and VDR KO

mice over the 12 month time course (Figure 4C, bottom panel).

Collectively, these data indicate that atrophy of the mammary fat

pad in aging female VDR KO mice reflects a reduction in whole

body fat stores secondary to enhanced energy expenditure.

VDR KO mice are normocalcemic but display reduced
circulating estrogen

Vitamin D is a critical regulator of calcium homeostasis, and

VDR KO mice require a high calcium ‘‘rescue’’ diet during early

Figure 3. Stromal smooth muscle actin and cell junction expression in glands from WT and VDR KO mice. A. Elevated level of smooth
muscle actin staining in VDR KO glands compared to VDR WT control sections. SMA positive cells appear brown against the blue hematoxylin
counterstain. B. Western blot for cell junction markers E-cadherin, b-catenin, and occludin to assess changes in the epithelial cell junctions that may
account for the increase in secretion within the VDR KO ducts. E-cadherin, b-catenin, and occludin expression were equivalent at all time points
during aging development between VDR WT and KO mammary glands.
doi:10.1371/journal.pone.0016479.g003

Impact of VDR on Aging Mammary Gland
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Figure 4. Adipose morphology and indirect calorimetric assessment throughout the aging of VDR WT and KO mice. A. Histological
sections stained with hematoxylin and eosin Y show the small multi-locular adipocytes in glands of 16 month VDR KO mice compared to the large
uni-locular fat cells in WT mice. B. Serum leptin was assessed by ELISA. There was a significant reduction in serum leptin by 8 months of age in the
VDR KO mice that persisted through 16 months of age as a result of WT mice experiencing a progressive elevation in serum leptin beginning at 6
months and peaking at 16 months. C. Indirect calorimetric measurements were conducted every three months (3–12 months) in VDR WT and KO
mice. Average oxygen consumption (VO2) was trending higher by 6 months in VDR KO mice and was significantly elevated at 9 and 12 months
compared to VDR WT mice. n = 6 p,0.05. Energy expenditure (Heat Kcal/hr/mouse) was similar to VO2 in that VDR KO mice experience a significant
elevation in energy expenditure by 9 and 12 months. n = 6 p,0.05. Respiratory exchange ratio (RQ), which infers the energy source utilized by the
animal, was equivalent between VDR WT and KO mice throughout the aging time course (3–12 months).
doi:10.1371/journal.pone.0016479.g004

Impact of VDR on Aging Mammary Gland
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development to prevent skeletal defects and maintain fertility

[16,25]. However, it is unclear whether this rescue diet can

maintain normocalcemia over the lifespan of VDR KO mice.

Since calcium has been linked to body weight regulation [26,27], it

was important to determine whether the altered mammary gland

morphology in VDR KO mice was associated with disturbances in

calcium homeostasis. We therefore measured serum calcium as a

function of age in WT and VDR KO mice compared to pubertal

mice (2 months). As shown in Figure 5A, serum calcium was

comparable at 2, 8, 12, 14, and 16 months of age in VDR WT and

KO mice, suggesting that the high calcium rescue diet is sufficient

to prevent hypocalcemia in VDR KO mice regardless of age.

We assessed whether the effect of VDR ablation on glandular

maintenance was related to alterations in estrogen signaling. The

expression of estrogen or progesterone receptors in the mammary

gland (as measured by immunohistochemistry and western blot)

was not affected by VDR ablation (data not shown). However,

serum 17b-estradiol was significantly reduced in 12, 14, and 16

month old VDR KO mice compared to age-matched WT mice

and compared to pubertal aged WT and VDR KO mice

(Figure 5B). Serum 17b-estradiol progressively decreased in the

VDR KO mice beginning at 8 months of age whereas WT mice

maintained a relatively constant 17b-estradiol serum level through

16 months of age. Histological analysis indicated that the decrease

Figure 5. Effect of VDR ablation on serum calcium, estrogen, and estrogen responsive tissues in aging WT and VDR KO mice. A.
Serum calcium levels in aging WT and VDR KO mice were equivalent prior to (2 and 8 months) and throughout the aging time course (12–16 months).
B. Serum estrogen was measured by radioimmunoassay in WT and VDR KO mice at 2, 8, 12, 14, and 16 months of age. There was a significant
reduction in serum estrogen by 12 months of age in the VDR KO mice that persisted through 16 months of age. *Statistically significant by Students t
test, WT vs. VDR KO, n = 8–10 p,0.05. C. Representative hematoxylin and eosin Y stained sections of the ovary and the uterus, an estrogen responsive
tissue. VDR KO tissues show signs of atrophy, likely due to incomplete follicle formation in the ovary and thus decreasing serum estrogen and
inducing atrophy in the uterus compared to WT ovary supporting follicle formation and a responsive and robust uterus. Scale bar: 200 mm.
doi:10.1371/journal.pone.0016479.g005

Impact of VDR on Aging Mammary Gland
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in serum 17b-estradiol in aged VDR KO mice resulted from

ovarian failure, as there was little evidence of follicle formation in

the ovaries of VDR KO mice from 12 months of age on

(Figure 5C, left panels). By 16 months of age, the ovaries of VDR

KO mice were about half the size of their WT counterparts.

Furthermore, the uterus, another estrogen responsive tissue,

displayed severe atrophy in aging VDR KO mice compared to

WT controls (Figure 5C, right panels). Thus, decreased estrogen

signaling due to ovarian atrophy likely contributes to the reduction

in ductal branching characteristic of aging VDR KO mammary

glands.

Markers of apoptosis are increased in mammary glands
from aging VDR KO mice

The severe adipose tissue atrophy, altered stromal architecture

and reduced branching in glands from VDR KO mice suggested

an imbalance in mammary cell turnover. Therefore, we measured

the expression of Bax and caspase-3, genes associated with

apoptosis, in lysates of mammary tissue from WT and VDR KO

mice. As shown in Figure 6A, Bax, a pro-apoptotic bcl-2 family

member that is linked to physiologic apoptosis in the mammary

gland [28], was minimally expressed in tissue from WT mice, but

was consistently elevated in tissue of VDR KO mice. Caspase-3

expression and cleavage was detected in several samples from

VDR KO mice, but this was not as consistent as bax elevation.

Surprisingly, AKT, a gene that mediates cell survival, was also up-

regulated in aging VDR KO tissue relative to WT tissue.

Collectively these data may indicate that different cell populations

in the gland respond differently to VDR ablation, and/or that cell

survival signals are triggered in response to the tissue regression

that occurs in the VDR KO mice.

Real time PCR was used to compare the expression of several

genes linked to mammary gland differentiation and turnover,

including beta casein, clusterin, fatty acid synthase, macrophage

inhibitory factor, and TGFbRII. Expression of two genes, clusterin

and TGFbRII, were found to be significantly up-regulated in

VDR KO mice (Figure 6B). Induction of both clusterin and

TGFbRII has been linked with apoptosis during post-lactational

involution in the murine mammary gland, consistent with the

concept that atrophy of aging VDR KO glands may involve

apoptosis.

Discussion

These studies have revealed a novel, age-related contribution of

the VDR in maintenance of mammary gland integrity and

Figure 6. Assessment of apoptotic and survival related proteins in aging mammary glands from WT and VDR KO mice. A. Western
blot of Bax, caspase-3, and AKT expression during aging development. VDR KO glands have a higher Bax expression at all aging time points,
suggesting a possible increase in apoptosis in aging VDR KO glands. Caspase-3 and AKT expression are also elevated in VDR KO mice, particularly at
14 and 16 months. GAPDH serves as a loading control. B. Real Time PCR for Clusterin and TGFbII gene expression in aging mammary glands (12 and
14 months) derived from WT and VDR KO mice. Data are expressed relative to 18S RNA (Relative Gene Expression) and represent mean 6 s.e.m. of
triplicate runs.
doi:10.1371/journal.pone.0016479.g006

Impact of VDR on Aging Mammary Gland
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adiposity. Through comparative analysis of mammary gland

development and gene expression in relation to age, we report that

mice lacking the VDR exhibit ductal ectasia, reduced branching

and progressive atrophy of the mammary fat pad with age. These

changes do not become evident until the onset of the second year

of life and are in sharp contrast to the effects of VDR ablation

observed during puberty and pregnancy, when lack of the VDR is

associated with accelerated branching and precocious alveolar

development [10,15]. Importantly, the altered mammary gland

development observed in both young and aged VDR KO mice

occurred in the absence of hypocalcemia, indicating that these

effects of VDR ablation are not secondary to the role of VDR in

maintenance of extracellular calcium homeostasis.

Due to the chronic and systemic nature of VDR ablation in

these studies, the extent to which VDR signaling within the

mammary gland is responsible for maintaining glandular homeo-

stasis is unclear. In support of direct effects of VDR signaling,

VDR expression remained high in the aging mammary gland, and

positive VDR staining was observed in glandular epithelial and

stromal cells as well as adipocytes. Although the effects of 1,25D

and VDR on mammary epithelial cells have been well studied,

little attention has been paid to the effects of VDR on fibroblasts or

adipocytes. Thus, the dramatic changes in the stromal microen-

vironment of the mammary gland of VDR KO mice were

unexpected. The absence of VDR signaling in the adipocytes and

stromal fibroblasts may contribute to the regression of ductal

branches, since stromal-derived growth factors and extracellular

matrix proteins are crucial for normal mammary gland develop-

ment and maintenance [29,30]. In addition, mice lacking white

adipose tissue have short and severely distended ducts (ductal

ectasia) [6,9] similar to those observed in aged VDR KO mice.

Deciphering the specific role of VDR signaling within each cell

population will be necessary to elucidate the contributions and

mechanisms of VDR signaling in maintenance of glandular

homeostasis.

Regardless of mechanism, our data indicate an elevation in

apoptotic signaling, including activation of the standard apoptotic

markers Bax and Caspase-3 and up-regulation of clusterin and

TGFbRII, in VDR KO mammary tissue. Since glandular

homogenates were used for these assays, further studies will be

needed to determine whether apoptosis is increased in the

epithelium, the stroma or both compartments of aging VDRKO

mice. We also observed an increase in AKT expression, which

may be an adaptive response to the elevated apoptosis, since AKT

activation of phosphodiesterase 3B limits cAMP production and

reduces protein kinase A (PKA) activity. These changes inhibit

lipolysis since PKA activity is required for phosphorylation and

activation of hormone sensitive lipase [31]. Therefore, AKT may

be elevated in mammary adipose tissue of VDR KO mice in an

effort to block further hydrolysis of triglycerides. Characterization

of the metabolic disturbances resulting from VDR ablation

specifically within the adipose tissue will be necessary to clarify

the significance of these findings.

Our work reports that the depletion of adipose stores observed

in younger VDR KO mice [20,21] progresses with age and results

in severe atrophy of the mammary fat pad in parallel with age-

related elevations in respiration rate and energy expenditure. A

previous study by Wong et al. [21], reported minimal differences

in energy expenditure between WT and VDRKO male mice

unless they were challenged with a high fat diet, however, the age

at which energy expenditure measurements were done in that

study was not stated. In our mice on the low fat rescue diet,

changes in energy metabolism secondary to VDR ablation were

evident within 6 months, progressed with age and correlated with

up-regulation of uncoupling protein-1 in adipose tissue [20] and

mammary gland (Narvaez and Welsh, unpublished). Collectively,

these data indicate that VDR signaling is necessary for suppression

of uncoupling protein-1 and control of energy metabolism in both

visceral and subcutaneous adipose depots, including maintenance

of the stromal microenvironment of the mammary gland and

ultimately ductal branching and epithelial cell survival.

Our studies also provide additional insight into the interactions

between VDR, ovarian function and fertility. Neither fertility nor

circulating estrogen is compromised in young VDRKO mice

maintained on the high calcium rescue diet [10,15,16], however,

here we demonstrate that VDR is necessary for maintenance of

ovarian function and estrogen production with age. Since VDR is

expressed in granulosa and corpus luteal cells [32], the ovarian

failure we observed in mice 12 months and older may represent

loss of VDR regulated gene expression within ovarian tissue.

Regardless of mechanism, our data indicates that premature

menopause represents another manifestation of accelerated aging

in VDRKO mice. Clearly, an age-related decline in estrogen

availability could contribute to the reduced branching in the

mammary gland of VDR KO mice, since involution of side

branches and loss of branch points occurs within five weeks of

ovariectomy in mouse models of menopause [33]. However,

ovarian failure is unlikely to contribute to the mammary fat pad

atrophy in the VDRKO mice since chronic estrogen deficiency

secondary to ablation of either estrogen receptor alpha or

aromatase leads to accumulation of adipose tissue [34,35].

Furthermore, we observed disturbed adiposity and altered energy

metabolism in male VDR KO mice, suggesting these effects are

independent of estrogen deficiency. Thus, while ovarian failure

likely contributes to the activation of apoptosis and subsequent

reduction in epithelial branching in the mammary gland, it does

not explain the adipose tissue atrophy in VDR KO mice. Further

studies will clearly be necessary to fully define the interactions

between VDR signaling, metabolism, adipose and aging.

Our studies also identify a novel anti-inflammatory effect of

VDR signaling in the mammary gland. Inspection of mammary

gland whole mounts at high magnification revealed multiple dense

lesions in VDR KO mice that were not present in WT mice.

Although these lesions were initially thought to be hyperplastic

epithelial nodules, Hematoxylin and Eosin Y staining indicated the

presence of inflammatory cells, in support of chronic inflammation

in VDR KO mammary tissue. Furthermore, the inguinal lymph

nodes of VDR KO mice were significantly larger than those of

WT mice. Our findings are consistent with reports that VDR KO

mice exhibit altered cytokine profiles, T cell populations and

antibody responses, and are highly susceptible to colonic

inflammation with age [36,37].

In summary, chronic VDR ablation exerts global effects on

energy metabolism and ovarian function that are associated with

alterations in mammary gland, including atrophy of the fat pad,

degeneration of epithelial ductal branching, enlarged lymph nodes

and chronic inflammation. These progressive changes represent

additional features of the accelerated aging phenotype of VDR

KO mice, and are distinct from the effects of VDR ablation during

puberty and pregnancy. Other phenotypic changes that become

evident with age in VDRKO mice include alopecia [17], wrinkling

of the skin [24,38], hearing loss [39], osteoblast differentiation

failure [40], altered immunity [36] and hematopoietic disturbanc-

es [41]. The mechanisms underlying accelerated aging in

VDRKO mice are unclear, and with the exception of alopecia

(which represents a 1,25D independent effect of VDR), the role of

the VDR ligand in these age-related process has yet to be

determined. Narvaez et al [20] demonstrated that young Cyp27b1

Impact of VDR on Aging Mammary Gland
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KO mice, which lack 1,25D, exhibit a lean phenotype similar to

that of VDRKO mice, but studies on mammary gland and the

aging process have yet to be conducted in mice lacking the VDR

ligand. Future investigations to specifically address 1,25D and

VDR actions in each microenvironment of the breast will be

needed to establish direct mechanisms by which vitamin D3

signaling regulates adipose tissue, ductal branching and ultimately

breast maintenance. In the case of the mammary gland phenotype

described here, both direct and indirect effects of VDR signaling

in multiple cell types (adipocyte, fibroblasts, epithelial cells) likely

contribute to these changes, and aging studies in conditional VDR

and cyp27b1 knockout models will offer the best approach for

clarification of the underlying mechanisms.

Materials and Methods

Animal Maintenance
Wild type and VDR KO mice [42] on the C57Bl6 background

were weaned onto and continuously maintained on a ‘‘rescue’’ diet

containing 2% calcium, 1.25% phosphorous, and 20% lactose

with 2.2 IU vitamin D3/g (TD96348, Teklad, Madison, WI). This

diet prevents the mineral disturbances and impaired growth

associated with VDR ablation [17]. Female mice (10–12 animals

per genotype) were sacrificed at 12, 14 and 16 months of age for

analysis of mammary gland development. One inguinal gland

from each mouse was whole mounted, while the contra lateral

gland was formalin-fixed and paraffin embedded. Thoracic

mammary glands were harvested and snap frozen for further

analysis of protein and RNA. All procedures were approved by the

relevant institutional animal care and use committees at the

University of Notre Dame (03-92) or the University of Cincinnati

(06-03-03-02).

For whole mount analysis, mammary glands were fixed in

Carnoy’s fixative and stained overnight in Carmine Alum.

Samples were dehydrated, cleared in xylene, mounted, and

examined on an Olympus SZX12 stereoscope. Whole mounts

were used to calculate total area of the fat pad and the degree of

branching morphogenesis (assessed by counting the numbers of

primary, secondary and tertiary branch points). Primary branches

were considered as ducts that arose in the nipple region and

extended to the leading edge of the gland, secondary branch points

were those that extended from primary ducts and tertiary

branches were lateral branches that arose from secondary ducts.

The fat pad and lymph node areas were determined by tracing

around the outer edges of each tissue and calculating the area with

AxioVision software (Zeiss, Inc).

Indirect Calorimetry
Indirect calorimetry was performed using an Oxymax system

(Columbus Instruments, Columbus, OH) in a room with

controlled temperature and 12 hour lighting conditions. Mice

were placed in individual chambers with free access to food and

water. Six weight-normalized WT and VDR KO male mice were

placed individually into metabolic isolator chambers, acclimated

for three days, reweighed and recorded over a 96 hour time

period. Airflow through the chambers was 0.6 L/min. Oxygen

consumption (VO2) and carbon dioxide production (VCO2) for

each mouse were measured once per hour for 3.5 minutes (settle

time 105 sec, measure time 105 sec). The respiratory quotient

(RQ) is the calculated ratio of CO2 produced to O2 consumed

during a given time period. Oxygen consumption (VO2), carbon

dioxide production (VCO2), and energy expenditure were

recorded at 3, 6, 9, and 12 months of age in four separate

recording periods. The four day measurements were averaged to

produce a 24 hour measurement for each mouse, and the six

individual mouse data sets were averaged to provide a represen-

tative data set for the 24 hour time period for each genotype.

Histology and Immunohistochemistry
Formalin fixed mammary glands were embedded in paraffin,

sectioned at 5 mM, and stained with hematoxylin and eosin Y for

routine histological assessment. To detect VDR, formalin fixed

paraffin embedded sections were incubated in 2 N HCl at 37uC
for 20 minutes. After rinsing in PBS for 5 minutes, slides were

incubated overnight with a rat monoclonal antibody directed

against VDR (clone 9A7, Neomarkers) at a dilution of 1:60,

followed by incubation with anti-rat secondary antibody at a

dilution of 1:200. To detect estrogen receptor a (ER) and

progesterone receptor (PgR), slides were pretreated using citrate

buffer (pH-6.0) heated to boiling in a pressure cooker for 15-20

minutes and incubated for 1 hr with mouse ERa (clone 6F11,

Novocastra) or PgR (clone AB-7, NeoMarkers) antibodies and

detected with the M.O.M. kit (Vector Laboratories) according to

manufacturer’s directions. To detect smooth muscle actin, slides

were digested using a 0.1% trypsin solution for 10 minutes and

incubated with a mouse antibody to smooth muscle actin (clone

1A4, Sigma) for 1 hr at room temperature and detected with the

M.O.M. kit as above. For all antibodies, sections were counter-

stained with Harris modified hematoxylin (Fisher Scientific).

Serum Hormone and Calcium Assays
Blood was removed by cardiac puncture for analysis of serum

calcium, leptin and estradiol. Calcium was determined with a

colorimetric assay kit (Sigma) according to manufacturer’s

directions. Leptin was determined using an ELISA kit from Linco

Research (St. Charles, MO) and 17b-estradiol radioimmunoassays

were conducted with a reagent kit from DiaSorin (Stillwater, MN).

Real Time Quantitative PCR
Total RNA was isolated from 90–150 mg of frozen thoracic

mammary gland with Trizol reagent (GibcoBRL). Independent

mammary gland RNA preps from five mice of each genotype were

made at the time points indicated in the figure legends. After

concentration and purity of the RNA was determined by

spectrophotometry, total RNA was reverse transcribed with

Taqman Reverse Transcription Reagents (N808-0234, Applied

Biosystems). Three independent 1.5 ug cDNA stocks were

generated from each RNA sample, and each was independently

analyzed in duplicate (60 ng of cDNA/well) using the Taqman

PCR Core Reagent Kit (N808-0228, Applied Biosystems) and

specific primer and probe sets. Gene expression levels were

normalized against 18S RNA, and reported as relative gene

expression. For data presentation, duplicate values from each run

were averaged, and triplicate values were then averaged to

generate one value for each animal. The final data is expressed as

the mean 6 standard error of five animals/time point.

Western blotting
Thoracic mammary glands (100 mg) from three animals of each

genotype per time point were homogenized in Laemlli buffer

containing phosphatase and protease inhibitors [43], separated by

SDS-PAGE, transferred to nitrocellulose, and blocked with 5%

milk. Immunoblotting was performed with antibodies against

VDR (clone 9A7, Neomarkers), Bax (N-20, Santa Cruz Biotech),

Caspase-3 (Cell Signaling), E-cadherin (clone 36, BD Biosciences),

Occludin (clone 19, BD Biosciences), AKT (Cell Signaling), and

estrogen receptor á (clone 6F11, Novocastra). An antibody to
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GAPDH (clone 6G5, Biogenesis) was used as a loading control. All

blots were visualized by enhanced chemiluminescence using

products from Pierce.

Statistical Evaluation
Data are presented as mean 6 standard error, with the number

of analyses for each mean indicated. Data were analyzed by

Student’s t test, and means were considered significantly different

if a p value less than 0.05 was obtained. All statistical evaluations

were performed with Instat software (GraphPad Software, Inc.,

San Diego California USA, www.graphpad.com).
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