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Abstract: The endoplasmic reticulum (ER) has emerged as a source of hydrogen peroxide (H2O2) and
a hub for peroxide-based signaling events. Here we outline cellular sources of ER-localized peroxide,
including sources within and near the ER. Focusing on three ER-localized proteins—the molecular
chaperone BiP, the transmembrane stress-sensor IRE1, and the calcium pump SERCA2—we discuss
how post-translational modification of protein cysteines by H2O2 can alter ER activities. We review
how changed activities for these three proteins upon oxidation can modulate signaling events, and
also how cysteine oxidation can serve to limit the cellular damage that is most often associated with
elevated peroxide levels.

Keywords: endoplasmic reticulum (ER); hydrogen peroxide; reactive oxygen species (ROS); redox
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1. Introduction

All cells are susceptible to oxidative damage. Damage often appears concomitant with a buildup
of reactive oxidants and/or a loss of antioxidant systems. In particular, an accumulation of cellular
reactive oxygen species (ROS) has attracted much attention as a source of cellular damage and a cause
for a loss of cellular function [1]. In keeping with these observations, most historical discussions of ROS
focus on the need to defend against the toxic and unavoidable consequences of cellular ROS production,
in order to limit cellular dysfunction and disease. In particular, substantial attention has been paid
to the potential accumulation of ROS as a byproduct of cellular respiration, and the importance of
detoxification pathways that limit mitochondrial ROS accumulation and ensuing damage.

Yet, in the last two decades, the view of ROS as a toxic mitochondrial derivative has evolved.
An appreciation of the diversity of ROS, the benefits provided by the action of some ROS as signal
molecules, and the variety of cellular ROS sources (beyond the mitochondria) have begun to permeate
the literature (e.g., see [2–4]). These new views regarding ROS have begun to refocus the discussion of
ROS production and utilization by cells.

Here we concentrate our attention on the current view of hydrogen peroxide (H2O2), one type of
ROS, and the endoplasmic reticulum (ER), an emerging source of H2O2 production and H2O2-based
signaling events. We begin with a discussion of the properties of H2O2 and sources of ER-localized
peroxide. Later, we highlight examples of ER-based signaling events involving H2O2. We focus on three
targets of reversible modification by ER peroxide: the molecular chaperone BiP, the transmembrane
stress-sensor IRE1, and the calcium pump SERCA2. We discuss how reversible post-translational
oxidation of cysteine residues in BiP, IRE1, or SERCA2 by peroxide alters protein function, and how
altered activities for these proteins can help the ER adapt to rising peroxide levels.
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2. Properties of H2O2

Successive reduction of molecular oxygen (O2) generates multiple distinct oxygen-containing
species, including H2O2, the superoxide anion (O2

•–), and the hydroxyl radical (•OH) (Figure 1).
Collectively, these molecules are referred to as ROS, emphasizing the chemical reactivity of these
oxygen-containing molecules. The hydroxyl radical (known also as a “free radical”) is considered
more reactive, less stable, and more destructive to macromolecules than H2O2 [4,5]. Conversely, H2O2

is considered a strong two-electron oxidant, but poorly reactive with most macromolecules [3,6].
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Figure 1. Reactive oxygen species. Scheme shows several of the types of ROS generated through the
successive reduction molecular oxygen (O2).

The limited, slow reactivity of H2O2 with most biological molecules does not mean that cells are
unaffected by elevated levels of intracellular H2O2. H2O2 is easily converted to the highly reactive
hydroxyl radical via a Fenton or a Fenton-like reaction catalyzed by a transition metal [6–8], and it
is widely considered that the cellular damage associated with peroxide exposure is attributed to the
formation of hydroxyl radicals mediated by intracellular metals. The presence of cellular H2O2 can
also be coincident with superoxide-induced damage; the spontaneous or catalyzed dismutation of
superoxide generates H2O2, connecting the presence of these species [9].

The physiochemical properties of H2O2 are similar to those of water. Aquaporin (AQP) channels,
first established to mediate the diffusion of water across membranes [10,11], have been shown to
facilitate transmembrane H2O2 movement [12]. The mammalian AQP11 has been localized to the
ER and established to serve as a “peroxiporin”, facilitating the movement of H2O2 across the ER
membrane [13,14]. A role for mammalian AQP8 in the movement of H2O2 at the ER has been shown
as well [15]; however, localization data suggest that the ER activity of AQP8 reflects a subset of the
AQP8 found in the ER in transit to the plasma membrane [13]. Many aquaporins are regulated at the
post-translational level in response to cellular or environmental changes [16,17]. Post-translational
modulation of the ER-localized AQP11 remains to be established, but data for other peroxiporins
(including AQP8 [18]) suggest the intriguing possibility for regulated transport of H2O2 across the
ER membrane.

Despite the generally poor reactivity of H2O2 with most macromolecules, peroxide does show
reactivity towards select protein thiols. Central to most characterized redox sensing, signaling, and
regulation events is the direct oxidation of specific protein cysteine residues by H2O2, generating a
sulfenic acid adduct (–SOH) (Figure 2). The sulfenic acid can transition further to other oxidized
cysteine forms, including glutathionylated (–SSG) and disulfide-bonded species. Further oxidation
of sulfenic acid by peroxide can also yield sulfinylated (–SO2H) and sulfonylated (–SO3H) proteins.
A means to reduce sulfonylated proteins in cells has not been identified. The only established route for
sulfinic acid reduction is through the action of the enzyme sulfiredoxin (SRX) [19]. SRX is considered
key to maintain the catalytic activity of peroxiredoxins [20], and additional new targets of SRX are
emerging [21]. Interplay between H2O2 and other signaling molecules, including hydrogen sulfide
(H2S) and nitric oxide (NO), can generate further oxidants that can facilitate cysteine oxidation (e.g.,
peroxinitrite) and additional cysteine modifications (e.g., persulfides) and signaling outcomes [22].
The conversion of sulfenic acid to reversible forms (glutathione adducts, disulfides, persulfides) is
thought to safeguard against cysteine overoxidation by H2O2, and the formation of the (generally)
irreversible sulfinic and sulfonic acid (e.g., [23]).
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The reversibility of cysteine oxidation allows for transient metabolic changes and/or signaling
events, and distinguishes cysteine oxidation (signaling) from the irreversible oxidation of amino acid
side chains and protein backbone carbonyls (damage). Much like other post-translation modifications,
reversible cysteine oxidation can change protein function by altering enzyme activities and/or changing
macromolecular interaction (for further review see [24–27]). Sites of reversible cysteine oxidation are
also colloquially referred to as redox switches.
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Figure 2. Cysteine modifications initiated by H2O2. Hydrogen peroxide (H2O2) reacts with target
protein cysteine thiol (–SH), producing a sulfenic acid adduct. Subsequent reactions with glutathione
(GSH), protein thiols, or H2O2 can generate additional modifications. Glutathione adducts, disulfides,
and sulfinylated proteins can be reduced to the free thiol state through the action of proteins and
low-molecular weight thiols [4]. The only established route for reduction of sulfinylated cysteines
is by sulfiredoxin (SRX). Sulfonylated cysteines are considered irreversible oxidation products. This
figure depicts the further modification of sulfenic acid by thiols (GSH, proteins) or H2O2. However,
sulfenic acids can react also with a backbone amide (forming sulfenylamide), condense with another
sulfenic acid (forming a thiosulfinate), or undergo further modification by hydrogen sulfide; these
modifications are not shown here and are further discussed in [4,25,26].

The movement of H2O2 across membranes, alongside its relative stability and poor reactivity,
enables peroxide generated in one area of the cell to impact a different compartment; these properties
empower H2O2 as a signaling molecule. How far H2O2 can move and signal from the initial generation
site will be limited by the presence of antioxidants and/or enzymes that mediate peroxide breakdown
(peroxidases) along the path of diffusion. In general, H2O2 exhibits relatively fast reaction with
peroxidase active-site cysteines [28,29]. Thus, the ability of H2O2 to react with non-peroxidase thiols
requires either a target reaction that exceeds the rate of reaction with enzymes that mediate peroxide
breakdown and/or movement of peroxide within regions with less robust antioxidant defenses. As our
view of H2O2 has evolved to include H2O2 as more than a damaging oxidant, so has our view of
the consumers of H2O2. Peroxidases such as peroxiredoxin and catalase should be considered not
only safeguards protecting cells from reaching a state of oxidative stress by facilitating the removal of
peroxides but also as agents that serve to control the availability of peroxide for signaling.

Robust quantification of basal cellular H2O2 levels and the fold-changes associated with various
physiological and environmental conditions remain a work-in-progress for the redox field. Many
challenges are associated with the available small-molecule and protein-based H2O2 probes [22,30–34].
In addition, technical challenges are associated with the presence of H2O2 and/or H2O2-producing
molecules in common reagents, including growth media and detergents [35,36]. Although the reported
measurements of cellular H2O2 vary, a general consensus has emerged that steady-state intracellular
H2O2 is maintained in the sub-micromolar (nM) range [37–40] whereas cellular toxicity is associated
with micromolar concentrations at the whole cell level [37]. Although these measurements come with
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limitations, they provide support for the general prevailing idea that low (physiological) levels of
H2O2 may be of benefit for signaling within cells, whereas high (pathological) levels may exert damage
and result in cell death.

3. Sources of ER-localized H2O2

Enzymes that generate H2O2 exist within the ER lumen. The diffusibility of H2O2 means also
that ROS generated throughout the cell, as well as extracellular ROS exposure, have the potential to
impact molecules at the ER. As discussed above, the high reactivity of H2O2 with enzymes in the
peroxidase family (and the turnover of H2O2 by these enzymes) implies the distance traveled by H2O2

from its site of origin may be limited by the presence of detoxification enzymes along the diffusion
path. Thus, H2O2 sources most anticipated to directly impact the ER are likely close in physical space.
Below we outline some of the established sources for ER H2O2 as well as some proximal sources that
we speculate could also directly influence the ER redox environment (Figure 3).
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Figure 3. Sources of H2O2 at the endoplasmic reticulum (ER). Several direct and indirect enzymatic
sources of H2O2 are depicted and colored in dark orange (refer to text for more details). Two examples
of peroxiporins that facilitate bi-directional peroxide transport across membranes are noted in blue.

3.1. ER-Localized Enzymes

The most readily appreciated sources of ER H2O2 are oxygen-utilizing enzymes that localize to the
membrane or lumen of the ER. Arguably, the most recognized enzymatic source of ER peroxide is the
flavoprotein ERO1. Together with members of the PDI family of oxidoreductases [41], ERO1 facilitates
the formation of disulfide bonds in folding nascent polypeptides [42]. Electrons removed during the
formation of a disulfide bond are transferred from the nascent secretory protein to ERO1 via PDI.
H2O2 is produced when ERO1 transfers the electrons received from a PDI to molecular oxygen [43,44].
In mammals, H2O2 generated at the ER is turned over by the enzymes peroxiredoxin IV and the
glutathione peroxidases GPx7/8, and the activity of these enzymes is productively coupled to PDI
oxidation and serves to augment disulfide bond formation [45–48].

If one presumes that every disulfide bond yields a molecule of peroxide, back-of-the-envelope
calculations suggest that copious amounts of H2O2 will be generated as a byproduct of oxidative
folding [49,50]. Measurements suggest a relatively high (~0.7 µM) basal H2O2 concentration in the
ER of HeLa cells [51]. The enhanced oxidation of a peroxide-responsive biosensor (HyPer) targeted
to the ER (relative to HyPer targeted to other organelles) further supports a relatively high level of
ER H2O2 [52]. Yet, the quantification of H2O2 by the ER-localized HyPer probe must be considered
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carefully given the challenges associated with disulfide-based sensors targeted to the ER lumen, where
PDI may facilitate oxidation of the sensor disulfide, which can be misinterpreted as H2O2-mediated
oxidation of the probe [52,53]. Progress towards overcoming the limitations of the original ER-localized
HyPer have been made; introduction of an additional cysteine into the original HyPer probe (TriPer)
has been shown to attenuate the responsiveness of HyPer to PDI [54].

NADPH oxidases (NOX) and dual oxidases (DUOX) family members are also sources for ER H2O2.
The majority of the NOX/DUOX family members are multi-subunit transmembrane enzyme complexes,
which include activating and regulatory domains that come together to generate ROS to facilitate
redox-signaling events (more extensively reviewed in [55]). Most NOX isoforms are reported to couple
NADPH oxidation to the direct production of superoxide, which can dismutate to H2O2. An exception
is mammalian NOX4, which is suggested to have the capacity to generate H2O2 directly [56]. Multiple
NOX proteins have been localized to the ER, but it remains unclear whether the detection of these NOX
at the ER reflects a transient or steady-state ER localization. At present, the isoforms most accepted as
predominantly ER-localized NOX are mammalian NOX4 [57] and the yeast Yno1/Aim14 [58], although
the subcellular localization of NOX4 may not be limited to the ER [59,60]. As the ER appears to be
an activation compartment for several isoforms, NOX at the ER in transit to the surface may also
contribute to ER ROS production.

Experimental outcomes for NOX4 [61], and topology predictions for Yno1/Aim14 [58], suggest
that the C-terminal globular domain is oriented into the cytoplasm for both these ER-localized
NOX, releasing superoxide and/or H2O2 into the cytoplasm. In general, NOX are a well-established
mechanism for the generation of high local ROS concentrations, and these enzymes are anticipated to
contribute towards substantial levels of proximal ER ROS. The oxidoreductase PDI has been shown to
influence the activities of several NOX isoforms [62], demonstrating an additional case where the PDI
oxidoreductases are coupled to ROS generation and/or turnover.

Breakdown of endogenous and exogenous substrates by the diverse members of the cytochrome
P450 (CYP) family of heme monoxygenases also generates superoxide and H2O2 [63,64]. CYP is a
large protein family of soluble and transmembrane proteins. Most characterized CYP are located at
the ER membrane (microsomal CYP), although CYP members are found also at the mitochondria
and plasma membrane. CYP are most recognized for their role in the metabolism of exogenous
xenobiotics and drugs; CYP also mediate important endogenous activities, including the biosynthesis
of steroids, sterols, and fatty acids [65]. Early studies established the NADPH-dependent production
of H2O2 by liver microsomal CYP [66]. It is now appreciated that various steps in the CYP reaction
cycle can generate H2O2 and superoxide [63,64]. The CYP active site appears oriented towards the
cytoplasm [67], although the general CYP topology is still debated.

3.2. Mitochondria-Associated Membranes

Mitochondria are arguably the most recognized intracellular sources of ROS. Healthy mitochondria
are a major source of superoxide, which can be produced stochastically through the inefficient transfer
of electrons at several points in the electron transport chain (ETC) [68]. Superoxide generated in
the mitochondria can be dismutated to H2O2 by the mitochondrial superoxide dismutases located
in the mitochondrial matrix (SOD2) and intermembrane space (SOD1). The enzymes that facilitate
disulfide bond formation in the inner membrane space also generate H2O2 as a byproduct [69,70]. In
an analogous system to ERO1-PDI pathways, electrons removed during the formation of a disulfide
bond in a mitochondrial protein are transferred to the flavoprotein Erv1/ALR via the oxidoreductase
Mia40/CHCHD4. Erv1/ALR can generate H2O2 upon transfer of electrons to molecular oxygen,
although a buildup of H2O2 as a consequence of oxidative folding is limited in part by use of
cytochromes as an alternative electron acceptor [71–74]. In addition, the mitochondria contain several
peroxidases that convert H2O2 to water [75].

Multiple sites along the vast ER membrane form tight physical contacts with the mitochondria;
these dynamic linkages are termed mitochondria-associated membranes (MAMs). MAM are recognized
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for their role in Ca2+ and lipid exchange between the ER and mitochondria [76]. Several sources and
modulators of ROS have been localized to the MAM, including ERO1 [77]. As the mitochondria and ER
are both sites of ROS production and turnover, it seems logical that MAMs would also serve as a site of
H2O2 exchange. Nanodomains of H2O2 at MAMs have been detected upon the efflux of Ca2+ from the
ER [78]. Peroxide accumulation was shown to trigger further ROS mobilization at the mitochondria
(likely via the ETC), which was communicated to the ER to facilitate additional ER Ca2+ efflux [78].
Although direct action of the mitochondrial peroxide at the ER membrane was not established, it was
speculated that the release of ER Ca2+ stores in response to mitochondria H2O2 reflects the direct
modification and modulation of specific thiols in the ER IP3 receptor by H2O2 [78].

In general, the specifics as to when mitochondrial H2O2 can diffuse and impact surrounding
organelles, including the ER, has not been fully resolved. Notably, a recent study using a newer,
more sensitive H2O2 sensor (termed HyPer7) concluded that H2O2 does not readily diffuse out
of the mitochondria matrix into the cytoplasm, suggesting that the majority of H2O2 generated
in the matrix will not reach and influence the ER [79]. These studies followed ROS generated by
the chemogenetic substrate-controlled D-amino oxidase (DAO), which arguably models a level of
physiological ROS. Alternatively, release of a burst of ROS from the mitochondria (likely H2O2) has
been established to occur through a process termed ROS induced ROS release (RIRR) [80]. The
biphasic RIRR process includes the slow generation of trigger ROS, which leads to a subsequent
ROS burst upon the dissipation of the mitochondrial membrane potential. The regulated opening of
mitochondrial pores on the outer membrane allows for ROS release from the mitochondria, which can
diffuse to other proximal organelles, such as the ER and neighboring mitochondria. The release of
ROS from a mitochondrium, and the detection of this ROS by surrounding mitochondria, has been
highlighted as a means of signal amplification, converting a lower amount of ROS into a pathological
ROS, through the further stimulation of superoxide production by the ETC. Overall, a role for the
triggered release of mitochondrial ROS release under select conditions to initiate signaling beyond
the mitochondria is emerging, with a potentially lesser role for released basal ETC ROS in signaling
outside of the mitochondria.

3.3. Additional Proximal Sources of ER H2O2

The vast ER membrane network makes physical contact with numerous additional organelles
beyond the mitochondria. Regions of close contact between organelles have been generally termed
membrane contact sites (MCS), and (as true for the MAMs) these stable or transient sites of physical
contact with the ER are thought to enable the efficient transfer of metabolites between compartments [81].
Significant enzymatic sources for H2O2 exist distributed throughout the cell, including plasma
membrane NOX [82] and peroxisomal beta-oxidation [83], and intriguing connections have been made
between these local sites of ROS generation and ER function. For example, activity of the plasma
membrane-localized NOX2 has been linked to the induction of the ER unfolded protein response
(UPR) stress pathway attendant with hypertension and atherosclerosis [84]. Catalase deficient mice
(deficient in the turnover of peroxisomal H2O2) also show an elevated UPR [85]. What remains to be
determined is whether a physical presence of H2O2 derived from non-ER sources is being directly
sensed at the ER (e.g., through thiol switches), or whether the impact on the ER is a downstream,
indirect outcome, relying on additional events and mediators. With the continual advent of tools to
monitor H2O2 diffusion, and the ability to detect the oxidation of macromolecules by H2O2, it will
be exciting to follow the potential detection of additional ER-organelle ROS nanodomains. Notably,
redox-signaling events need not be limited to the ER and a single proximal organelle; for example, a
proposed redox triangle between the ER, mitochondria, and peroxisome has been outlined [86].

4. ER Targets of H2O2

As introduced above, H2O2 production and consumption are well integrated into the fundamental
cellular processes carried out by the ER. The ER is the primary site for the folding and assembly of
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proteins that are ultimately distributed throughout the secretory pathway, delivered to the plasma
membrane, and secreted into the extracellular space [87]; H2O2 is both generated and consumed
during the formation of disulfide bonds in folding nascent chains. Similarly, the ER is involved in the
biogenesis of lipids and steroid hormones, which are subsequently distributed throughout the cell; CYP
activities are essential for these pathways. Moreover, the ER serves as a tightly regulated intracellular
calcium store [88], and regulated calcium release by the ER can be influenced by the presence of ROS.
Below we focus on the developing understanding of how fluctuations in H2O2 production at the ER
from these various sources are sensed. We concentrate our discussion on the outcomes for peroxide
sensing at the ER, including the emerging mechanisms that act to couple H2O2 generation at the ER
with the modulation and/or preservation of essential ER functions.

It is generally agreed that many signaling events initiated by H2O2 serve to alter cellular metabolism
in response to ROS and/or change cellular activities to limit or alleviate the potential damage associated
with excessive levels of ROS. However, the mechanisms for signal transduction remain poorly defined.
At the ER, several proteins with cysteine residues susceptible to direct oxidation by H2O2 have been
identified. In this section, we outline what is currently known about three ER proteins susceptible to
oxidation by H2O2. We discuss what leads to the modification of these proteins by H2O2, the emerging
downstream consequences of protein oxidation, and some of the outstanding questions relating to the
pathways involving these enzymes.

4.1. The Molecular Chaperone BiP

BiP (GRP78) is the ER-localized member of the Hsp70 chaperone family [89], and is often described
as a “master regulator” of ER functions [90–92]. The “master” moniker refers to the many roles
BiP plays in ensuring ER homeostasis, including helping to bring proteins into the ER through the
translocon, facilitating the turnover of terminally unfoldable proteins, and acting to modulate the UPR
stress response pathway. BiP expression is essential to life; mammals lacking BiP fail to develop [93]
and yeast strains lacking BiP (alternatively known in yeast as Kar2) are inviable [94,95]. BiP structure
and function is well conserved throughout eukaryotes. A feature shared by the BiP orthologs is
a conserved cysteine residue proximal to the site of nucleotide binding. Several mammalian BiP
orthologs contain an additional conserved cysteine at the junction between the nucleotide-binding
domain (NBD) and the substrate-binding domain (SBD).

The conserved cysteine in the BiP NBD is susceptible to reversible oxidation by H2O2

(Figure 4). BiP modification ensues when lumenal ER peroxide levels increase, which can occur
as a byproduct of several events. Activity of the disulfide bond-forming enzyme ERO1 is regulated
post-translationally [96–98], which helps moderate the amount of H2O2 produced by ERO1. When
ERO1 activity is de-regulated in yeast cells (achieved through overexpression of a constitutively
active mutant of ERO1), the increased activity of ERO1 results in the formation of a sulfenic acid
at the conserved BiP NBD cysteine (yeast BiP Cys63) [99]. BiP is presumed to detect the increased
H2O2 generated by the de-regulated ERO1 directly; it is generally accepted that cysteine oxidation by
peroxide does not require an enzyme mediator. Oxidation of BiP in the ER lumen is also observed
upon treatment of cultured yeast cells with peroxide [99]. Treatment of recombinant mammalian
(mouse) BiP protein with peroxide has established that the analogous cysteine is susceptible to direct
oxidation; the presence of a sulfonic (–SO3H adduct) was reported for purified BiP treated with an
excess of H2O2 [100]. The formation of a sulfonic acid adduct, versus a sulfenic acid, likely reflects the
high level of H2O2 used in the treatment of the recombinant protein in the absence of any peroxidases,
driving the cysteine towards overoxidation.

A unique pathway to NBD cysteine oxidation has been outlined also for mammalian BiP, wherein
BiP oxidation is a downstream event coupled to the direct oxidation of the peroxidase GPx7 (also
known as NPGPx) [100]. Focusing on mouse BiP, Wei et al. [100] proposed that oxidation of GPx7
by H2O2 results in the transfer of a disulfide bond from oxidized GPx7 to BiP via a thiol-disulfide
exchange reaction. Here the outcome is an intermolecular BiP disulfide connecting the conserved NBD
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cysteine (Cys41) with the second conserved cysteine found in mammalian orthologs (mouse Cys420) [100].
In vitro treatment of recombinant mouse BiP with peroxide also yields an intramolecular Cys41-Cys420
disulfide [100]. Whether a route to an intramolecular disulfide via direct H2O2 modification occurs
in cells remains unknown. It is possible that both GPx7-dependent and GPx7-independent (direct
peroxide-mediated disulfide formation) pathways for mouse BiP disulfide bond formation occur in cells.
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Figure 4. The Saccharomyces cerevisiae Hsp70 BiP is reversibly modified by H2O2. A conserved cysteine
(red circle) in the nucleotide-binding domain (NDB, orange) of yeast BiP can be oxidized in the presence
of elevated H2O2. Upon oxidation, BiP ATPase activity is inhibited yet the peptide-binding domain
(grey) maintains an ability to hold polypeptides (blue). Oxidation of BiP can be reversed by Sil1, which
restores the canonical Hsp70 chaperone cycle.

Cysteine-glutathione adducts (–SSG) have also been identified at the NBD cysteine in both yeast
and mammalian BiP. Glutathionylation can be a consequence of further modification of the sulfenic
acid adduct by reduced glutathione (GSH) or direct oxidation by oxidized glutathione (GSSG) [101].
Glutathionylated mammalian BiP has been recovered in large-scale proteomic studies [102,103].
Glutathionylation of BiP, and similarly the formation of an intramolecular disulfide in mouse BiP, may
limit irreversible oxidation (–SO3H) due to the further oxidation of BiP by peroxide.

A functional outcome for BiP oxidation is an enhanced ability to limit the aggregation of denatured
proteins [99,100]. For yeast BiP, the increased chaperone activity has been shown to occur coincident
with a loss of ATPase activity, and oxidized yeast BiP has been described as an ATP-independent
protein holdase [99]. BiP holdase activity has been proposed to benefit cells during oxidative stress by
limiting the aggregation of oxidant-damaged, mal-folded proteins [99]. In keeping with a potential
cellular advantage for BiP oxidation during conditions of rising oxidants, a yeast strain containing an
unmodifiable BiP allele (BiP-C63A) as the only cellular copy of BiP shows an increased sensitivity to
overexpression of de-regulated ERO1 and exogenous H2O2 application [99]. Notably, the BiP-C63A
mutant retains normal ATPase and chaperone activities, and the yeast strain with a BiP-C63A allele is
viable and is indistinguishable from a wild-type strain when grown under non-stress conditions [99].

BiP activity is essential for many processes within the ER beyond just protein folding and assembly,
and how BiP oxidation may adapt other ER activities during increased peroxide levels remains largely
unexplored. The potential for additional impacts for BiP oxidation is highlighted by recent observations



Cells 2020, 9, 2314 9 of 21

relating to how the interaction of BiP with the protein translocon may be altered upon oxidation.
BiP has been proposed to act as a translocon “plug” that limits movement of calcium across the
Sec61 protein translocon [104,105]. Recently, a new role for the Sec61 translocon as a transporter for
glutathione (GSH) was outlined [106]. BiP in its reduced state was suggested to allow GSH import into
the ER lumen, while a BiP allele that mimics cysteine oxidation (BiP-C63W) [99] appeared to block
GSH entry [106]. A block in GSH movement into the ER (upon flooding the cytoplasm with GSH)
could be correlated also with oxidation of the BiP cysteine [106]. Limiting GSH import into the ER is
suggested to benefit cells exhibiting high ERO1 activity; an ability of BiP to sense peroxide generated
by ERO1, and decrease GSH movement into the ER, has been proposed to limit an accumulation of
oxidized glutathione in the ER, which may disrupt the redox poise and limit the ER oxidative folding
capacity [106].

The reversibility, and thereby transience, of BiP oxidation is important to ensure that altered
chaperone activity is not prolonged once H2O2 levels return to a basal state. Although BiP alleles that
mimic constitutive oxidation benefit cells grown under overly oxidizing conditions, these same alleles
put cells at a competitive disadvantage in the absence of stressor [99,101]. In yeast, the BiP nucleotide
exchange factor Sil1 has been shown to reduce and remove BiP cysteine adducts [107]. The identity of
a mammalian reductase remains undiscovered. A Sil1 ortholog is present in mammals [108] and the
mammalian orthologs contain N-terminal cysteines [107], yet whether the mammalian N-terminal SIL1
cysteines are present after signal sequence processing and/or are active in the reduction of oxidized
BiP has not been elucidated. Moreover, how Sil1 reductase activity in yeast is maintained remains
unknown. What reduces the N-terminal cysteines in Sil1 to allow for reducing activity, and whether
such activity is regulated to allow for an accumulation of oxidized BiP, are questions that need to
be addressed.

4.2. The Transmembrane Protein Kinase IRE1

The type I membrane protein IRE1 is an ancient and evolutionarily conserved sensor of ER-stress.
IRE1 mediates the UPR (unfolded protein response): a signaling pathway triggered when the protein
folding demand exceeds the protein-processing capacity of the ER (recently reviewed in [109,110]).
The IRE1 lumenal domain monitors the folding capacity within the ER. When unfolded proteins
accumulate in the ER, IRE1 becomes activated and self-associates, which upregulates the kinase and
RNase activities of its cytosolic domains. Activated IRE1 undergoes trans-autophosphorylation and
mediates a splicesome-independent splicing reaction that results in the production of the transcription
factor XBP1 (in mammals) or Hac1 (in yeast), and the transcription of select genes that increase the
ER folding and degradation capacities [111]. Transient activation of the UPR helps cells maintain an
ER protein folding capacity that matches the varying folding demands conferred by developmental
and environmental events. If adaptive UPR signaling cannot establish a sufficient folding capacity,
apoptosis is triggered, leading to cell death [112,113]. IRE1 is the only identified sensor for the UPR in
yeast. Metazoans contain two IRE1 isoforms (IRE1α and IRE1β) and three distinct UPR sensors: IRE1,
PERK, and ATF6.

A peroxide-sensing cysteine has been identified in the cytoplasmic domain of IRE1, within the
kinase activation loop. IRE1 sulfenylation was first uncovered at Cys663 in the nematode Caenorhabditis
elegans after exposure to arsenite [114] (Figure 5). Arsenite treatment was observed to increase the
activity of the BLI-3 NOX, and knockdown of BLI-3 diminished arsenite-induced IRE1 sulfenylation,
suggesting NOX-induced ROS as a source for the peroxide detected by IRE1 [114]. Worm IRE1
sulfenylation was observed also as a consequence of ROS production by the mitochondria in response
to paraquat treatment, and upon perturbation of lumen ER enzymes, including ERO1 [114]. In mammals,
an accumulation of sulfenylated IRE1α has been detected in a spontaneously hypertensive rat (SHR)
model [115]. IRE1α modification was lessened upon inhibition of the ER-localized NOX4 [115].
Although it seems likely that the modified IRE1α cysteine is positionally analogous to that observed in
worms, which rat cysteine is oxidized in the hypertensive rat model remains to be determined.
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Figure 5. Oxidation of the Caenorhabditis elegans IRE-1 kinase domain inhibits canonical unfolded
protein response (UPR) signaling and promotes an antioxidant response. High levels of hydrogen
peroxide (H2O2) triggers oxidation of a conserved cysteine (red circle) in the activation loop in the
kinase domain, which inhibits kinase activity and prevents activation of the RNase domain, preventing
canonical UPR signaling. Dissociation of BiP from IRE-1 is normally associated with UPR induction,
and BiP remains associated with oxidized IRE-1 [114]. Oxidation results in the recruitment of the
scaffold TRF-1 and kinase NSY-1, which mediate initiation of an antioxidant transcriptional response
through the transcription factor SKN-1.

The impact of IRE1 sulfenylation is a dramatic re-coordination of the downstream signaling
by IRE1. Formation of a sulfenic acid inhibits IRE1 kinase activity, which prevents the splicing of
mRNA encoding XBP1 [114]. Alternatively, oxidation activates the activity of the worm NRF2/SKN-1
transcription factor, well established for its role in mounting an antioxidant response [114,116]. IRE1
sulfenylation generates a scaffold for recruitment of TRAF2 and the kinase NSY-1, which initiates
a p38 MAP kinase cascade that results in activation of the transcription factor NRF2/SKN-1 [114].
Worms with an IRE1 mutation that cannot be sulfenylated (C663S) do not survive arsenite treatment,
demonstrating an advantage for IRE1 sulfenylation [114].

A phenotypic analysis suggests the potential for an analogous oxidant response pathway in
yeast, although distinctions were observed. An attenuation of canonical UPR signaling was seen in
the presence of arsenite (in worms and yeast) or peroxide (in yeast), and attenuation required the
conserved cytoplasmic IRE1 cysteine [114,117]. The inhibitory effect of arsenite persisted even in
the presence of established chemical inducers of the UPR, consistent with an inactivation of IRE1
kinase activity [114,117]. Yet, if and/or what alternative signaling is activated in yeast upon IRE1
modification remains to be elucidated. Hog1, the homologous yeast p38 MAP kinase, is activated
by arsenite exposure [117,118]; yet, activation does not require the IRE1 cysteine [117]. The ultimate
transcriptional output is also bound to be different. In yeast, the transcription factor-based oxidative
stress response is mediated through direct oxidation of the Yap family of transcription factors, which is
distinct from the phosphorylation-based events described for SKN-1 [119]. Furthermore, no growth
defect was observed for the yeast IRE1-C832S mutant in the presence of arsenite [117], leaving open
the question as to what benefit may be conferred through the potential oxidation of yeast IRE1 Cys832.

Despite intriguing hints from reports focused on yeast and mammalian cells [115,117], whether
sulfenylation is a conserved event used to alter the downstream signaling of IRE1 to mediate an
antioxidant response remains an open question. Potential distinctions between the consequences
observed for worm IRE1 sulfenylation and the potential mammalian response to IRE1 sulfenylation
have been observed. The vascular cells from the SHR rat with elevated sulfenylated IRE1 also showed
increased phosphorylated IRE1α and spliced XBP1 [115], distinct from the block in canonical UPR
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signaling observed in arsenite-treated worms [114]. Whether this reflects an inability of sulfenylated
IRE1α to downregulate the canonical UPR, if the observed XBP1 splicing is a product of unmodified
IRE1α, and/or if the sulfenylated IRE1α reflects oxidation at the cysteine in the kinase activation loop
are unknown.

How IRE1 sulfenylation is reversed is unclear, and determining what downregulates the oxidant
response will provide additional insight into this pathway. Notably, the potential for H2O2-mediated
modification of IRE1 to initiate a terminal (versus adaptive) response is also intriguing. Recruitment of
TRAF2 to IRE1 is best characterized in the context of pro-apoptotic signaling, where TRAF2 association
with IRE1 initiates a JNK cascade that feeds into the intrinsic apoptosis pathway [120,121]. Whether
adaptive and terminal signaling of oxidative stress occurs through IRE1, as reported for the canonical
UPR, remains to be determined.

4.3. The SERCA2 Calcium Pump

The sarco/endoplasmic reticulum calcium transport ATPase (SERCA) is a P-type ATPase family
member that pumps calcium from the cytosol into the ER lumen against its concentration gradient.
SERCA pump activation allows cells to clear cytosolic Ca2+ to downregulate events like muscle
contraction and restore ER Ca2+ for future signaling events. ER Ca2+ levels are intimately tied also
to overall ER homeostasis. Maintaining Ca2+ levels in the ER is required for the activities of several
ER chaperones that are governed by Ca2+ binding [122]. Vertebrates contain three SERCA genes:
SERCA1–3. Alternative splicing generates more than 10 different protein isoforms, which show unique
developmental expression and tissue distribution patterns [123,124].

Three of the SERCA2 cysteines have been identified as especially prone to oxidation: a cysteine in
the cytoplasmic P domain (Cys674) and a pair of cysteines positioned in a lumenal ER loop (Cys875
and Cys887). Below we discuss first how physiological levels of H2O2 are proposed to modulate Ca2+

signaling through SERCA2 Cys674. Following, we discuss a second pair of lumenal SERCA2 cysteines
(Cys875/887) also proposed to undergo redox-regulation.

4.3.1. SERCA2 Cys674

Glutathionylated and sulfonylated forms of SERCA2 Cys674 have been detected, and oxidation
has been linked to several types of ROS and ROS sources. Increased levels of glutathionylated Cys674
are reported during conditions associated with increased SERCA2 activity, including upon muscle
relaxation [125,126] and during VEGF-induced endothelial cell migration [127,128]. Glutathionylation
has been ascribed to the presence of peroxynitrite (ONOO−) derived from nitric oxide (NO) and
superoxide [125]. A mechanism for glutathionylation via nitroxyl (HNO), independent of peroxynitrite,
has also been suggested [126]. NOX2 and NOX4 have been implicated as sources of superoxide and/or
peroxide that influence endothelial SERCA2 Cys674 glutathionylation [127]. Glutathionylation of
cellular SERCA2 can be stimulated also by exogenous H2O2 addition [127].

Irreversiblity sulfonylated SERCA2 Cys674 has been recovered from cells of senescent [129],
artherosclerotic [125,130], and obese [131,132] animals. SERCA2 sulfonylation is also correlated with
myocardial fibrosis in human patients with non-ischemic cardiomyopathy [133]. In the Zucker diabetic
rat model, sulfonylation is observed alongside elevated H2O2 and an upregulation of NOX4 [131],
and NOX4 knockdown was shown to lessen the levels of H2O2 and SERCA2 sulfonylation [131].
In senescent mice, modification of SERCA2 was decreased upon overexpression of catalase, which
reduces H2O2 to water [129].

Dual outcomes are described for SERCA2 Cys674 oxidation, dependent on the nature of the redox
modification at Cys674 (Figure 6). Reconstitution experiments with purified SERCA2 demonstrate
glutathionylation of Cys674 facilitates activation of SERCA2 and increased ER Ca2+ uptake [125].
Overexpression of wild-type or a C674S mutant of SERCA2 in HEK293 or human aortic endothelial
cells establish Cys674 as the glutathionylation site [125] and that Cys674 modification is linked to an
increase in SERCA2 activity [125,127,128,130]. Relaxation of rabbit carotid artery (in response to NO),
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inhibition of vascular smooth muscle migration (by NO), and increased endothelial cell migration
and tube formation (in response to VEGF), can be correlated with the presence of glutathionylated
SERCA2 [125,128,130]. Consistent with the importance for glutathionylation in SERCA function, mice
containing a heterozygous SERCA2 C674S knock-in (SKI mice) exhibit impaired developmental and
ischemic angiogenesis [134].
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Figure 6. Mammalian SERCA2 oxidation at the cytosolic Cys674 modulates Ca2+ uptake into the ER in
response to nitric oxide (NO). Cys674 (red circle) is located within the SERCA2 P domain, between
the nucleotide binding domain (N) and the transmembrane domains (TMDs). The presence of NO in
combination with cellular ROS and reduced glutathione results in SERCA2 glutathionylation (–SSG)
and increased pumping of Ca2+ from the cytosol into the ER lumen. An accumulation of sulfonylated
SERCA2 (–SO3H) is associated with a lack of responsiveness to NO and various disease pathologies,
including artherosclerosis. A, actuator domain.

Conversely, SERCA2 Cys674 sulfonylation is associated with a decrease in SERCA2 activation.
An increase in sulfonylated Cys674 in artherosclerotic aorta samples correlates with a decrease in
glutathionylated SERCA2 and a lack of stimulated Ca2+ uptake upon NO addition [125]. Similarly, the
increased leveled of sulfonylated SERCA2 in diabetic mouse smooth muscle correlates with abnormal
vascular smooth muscle cell migration [131]. As mentioned above, overoxidation is associated with
aging and several disease pathologies. It has been proposed that the transition between a SERCA2
with the capacity to undergo reversible glutathionylation, and a SERCA2 unable to respond to redox
changes upon overoxidation, reflects a movement between physiological and pathological levels of
ROS [125]. The decreased responsiveness of sulfonylated SERCA2 to NO may help explain the decrease
in NO-dependent vascular relaxation associated with biological aging.

What reverses the glutathionylation of SERCA2 to modulate SERCA2 activity remains to be
elucidated. Cysteine sulfonylation is considered an irreversible modification, and overoxidized
SERCA2 may be subject to cellular turnover via degradation [135]. What facilitates (or limits) the
accumulation of overoxidized SERCA2 needs also to be uncovered.

4.3.2. SERCA2 Cys875 and Cys887

SERCA2 Cys875 and Cys887 are located in a lumenal loop (L4) connecting TMD 7 and 8, and this
pair of cysteines has been implicated in redox regulation of SERCA2 calcium pump activity. Multiple
oxidation forms for the Cys875/887 pair have been detected or inferred, including sulfenylated or
disulfide-bonded states. H2O2 generated from overexpressed ERO1α has been linked to SERCA2
cysteine sulfenylation [136]. SEPN1 is an enzyme implicated in reversing sulfenylated SERCA2
cysteines [136]. A decreased ability to isolate a SERCA2–SEPN1 complexes from cells containing a
Cys875/887 mutant, implies the L4 cysteines are the site of SERCA2 sulfenylation [136]. A 50% decline
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in a free thiol at SERCA2 Cys875 (Cys875 oxidation) was observed also in proteomic studies of mouse
cardiac lysate upon treatment with H2O2, though what reversible oxidation state occurred at Cys875
was not established [137]. Overexpressed SERCA2b has been recovered with predominantly reduced
L4 cysteines under basal growth conditions, and these cysteines shifted to predominantly oxidized
state upon knockdown of the reductant ERdj5 [138]. Given the propensity for ERdj5 to reduce disulfide
bonds, it has been proposed that ERdj5 maintains SERCA2 in a reduced state [138].

Oxidation of Cys875 and/or Cys887 has been linked to the negative regulation of SERCA2 activity.
Knockdown or knockout of SEPN1 or ERdj5 (both implicated in SERCA2 Cys875/887 reduction)
correlates with decreased SERCA2 activity and lower [Ca2+]ER [136,138–140]. Overexpression of a
mammalian SERCA2 with mutated cysteine residues 875 and 887 (reasoned to behave like a reduced
SERCA2) in Xenopus oocytes increased Ca2+ oscillation frequency relative to that observed with
wild-type SERCA2, suggesting an increase in SERCA2 pumping [141]. Reduction of the L4 cysteines
appears to be regulated in response to calcium availability in the ER lumen. SEPN1 and ERdj5 adopt
inactive oligomeric states when lumenal calcium levels are sufficiently high [138,142]. Activation of
the SEPN1 and ERdj5 reductases under low [Ca2+]ER is proposed to help refill depleted ER calcium
stores. Coordinated expression of ERO1α and SENP1 has led to the speculation that SENP1 may work
also to prevent dysregulation of Ca2+ homeostasis as a consequence of ERO1-generated peroxide and
hyper-oxidation of lumenal SERCA2 cysteines [136]. Consistent with this potential role for SEPN1,
overexpression of ERO1α compromises muscle function in SEPN1 KO [136,143].

Two members of the PDI family (ERp57 and TMX1) have been suggested to mediate oxidation of
the L4 cysteines and facilitate decreased SERCA2 activity [141,144]. When co-expressed with SERCA2b
in the Xenopus oocyte, ERp57 reduces the frequency of calcium oscillations (decreases SERCA2 activity),
and the effect of ERp57 is abolished upon mutation of the ERp57 active sites, which are required for
disulfide bond catalysis by ERp57 [141]. TMX1 overexpression correlates with decreased Ca2+ uptake
by the ER, and the activity of TMX1 required its active site cysteines. However, it should be noted that
the impact of ERp57 or TMX1 levels has not been linked directly to L4 cysteine oxidation [141,144].
Moreover, the upstream signals that may modulate oxidation of SERCA2 by ERp57 or TMX1, and
whether Ca2+ levels and/or H2O2 regulate the interaction of these enzymes with SERCA2, remain
largely unclear. A model for Ca2+-regulated association of ERp57 and SERCA2 has been proposed,
wherein a complex of ERp57 with the Ca2+-binding chaperones calnexin or calreticulin modulates
interaction with the L4 loop dependent on [Ca2+]ER [141]. Interestingly, the impact of ERp57 on Ca2+

oscillations was observed for SERCA2b but not SERCA2a, and it was postulated that the isoform
specificity may relate to the divergent C terminus in SERCA2b [141]. It will be exciting if one can
confirm an isoform specific regulation via the lumenal cysteines that connects to the unique structural
conformations influenced by the C terminus [145,146]. However, not all studies suggest isoform
specific oxidation/reduction of SERCA2; SEPN1 was shown to associate with both SERCA2a and
SERCA2b [136].

5. Conclusions and Future Directions

An increasing number of studies focused on the importance of H2O2 as a signaling molecule, and
the ER as a source of ROS and redox-based signaling events, have appeared in the literature over the
last two decades. Advances in mass spectrometry and the chemical probes for the detection of cysteine
adducts suggests that 10–20% of the proteome thiols are susceptible to post-translational cysteine
oxidation [24]. A recent proteomic study focusing on an enriched ER fraction identified ~900 reactive
cysteines within secretory proteins; ~500 of these proteins were characterized as partially oxidized,
suggestive of controlled oxidation events versus stable disulfide bonds [147]. Yet, an understanding of
the mechanistic and physiological outcomes for individual protein oxidation events has emerged for
only a small fraction of those proteins identified as susceptible to oxidation. In addition, connecting
specific physiological sources of ROS to the oxidation of a select protein target remains a work
in progress.
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As outlined above, significant strides have been made in parsing these connections for several
ER proteins. These studies reveal biochemical and metabolic changes initiated in response to H2O2

levels that can increase cell survival. We foresee similar unique pathways will emerge from the
further characterization of other ER targets of ROS. In addition, we anticipate future research efforts
will begin to address the outstanding questions related to redox modification of BiP, IRE1, and
SERCA2, including some of the unknowns highlighted in the main text relating to conservation of
these pathways across species, sources of H2O2 for modification, and the yet-to-be identified enzymes
that facilitate reversibility. One expects the next decade will bring further insights into mechanisms
for redox signaling by BiP, IRE1, and SERCA2 and also an understanding of the crosstalk between
these pathways.
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