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Introduction
Through decades of  concerted multidisciplinary effort, the average 5-year survival rate for all childhood 
cancers now exceeds 80% (1), resulting in a population of  400,000 survivors in the United States in 2019 
(2). Despite this tremendous progress, childhood cancer survivors remain vulnerable to premature morbidi-
ty and mortality from treatment-related late effects (3), including diabetes mellitus (DM), dyslipidemia, and 
cardiovascular disease (4), with a 7-fold increased risk of  cardiac death compared with the age-matched 
general population (5). In particular, a history of  total body irradiation (TBI) or abdominal radiotherapy 
(RT) has been associated with an increased risk of  DM (6, 7). The molecular and cellular mechanisms 

BACKGROUND. Childhood cancer survivors who received abdominal radiotherapy (RT) or total body 
irradiation (TBI) are at increased risk for cardiometabolic disease, but the underlying mechanisms 
are unknown. We hypothesize that RT-induced adipose tissue dysfunction contributes to the 
development of cardiometabolic disease in the expanding population of childhood cancer survivors.

METHODS. We performed clinical metabolic profiling of adult childhood cancer survivors previously 
exposed to TBI, abdominal RT, or chemotherapy alone, alongside a group of healthy controls. Study 
participants underwent abdominal s.c. adipose biopsies to obtain tissue for bulk RNA sequencing. 
Transcriptional signatures were analyzed using pathway and network analyses and cellular 
deconvolution.

RESULTS. Irradiated adipose tissue is characterized by a gene expression signature indicative 
of a complex macrophage expansion. This signature includes activation of the TREM2-TYROBP 
network, a pathway described in diseases of chronic tissue injury. Radiation exposure of adipose 
is further associated with dysregulated adipokine secretion, specifically a decrease in insulin-
sensitizing adiponectin and an increase in insulin resistance–promoting plasminogen activator 
inhibitor-1. Accordingly, survivors exhibiting these changes have early signs of clinical metabolic 
derangement, such as increased fasting glucose and hemoglobin A1c.

CONCLUSION. Childhood cancer survivors exposed to abdominal RT or TBI during treatment exhibit 
signs of chronic s.c. adipose tissue dysfunction, manifested as dysregulated adipokine secretion 
that may negatively impact their systemic metabolic health.
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underlying this strong clinical association remain unknown but have been postulated to arise from RT-in-
duced injury to endocrine organs, such as the hypothalamic-pituitary axis (8) and pancreas (9). However, 
another important endocrine organ, the abdominal adipose tissue, has received comparatively less consid-
eration as a target of  RT-induced injury.

Formerly seen as an inert lipid storage depot, adipose tissue is now recognized as a complex endocrine 
organ with a central role in systemic metabolic homeostasis (10). It displays significant regional variation 
in form and function, with both metabolically “protective” depots such as s.c. adipose tissue (SAT) and 
“unhealthy” depots such as visceral adipose tissue (VAT) (11). Consequently, RT-induced injury to the 
abdominal adipose depots could facilitate development of  DM through disruption of  their physiologic 
functions in maintaining whole-body energy balance. This hypothesis is supported by a small number of  
animal studies. TBI-treated mice exhibit reduced proliferative and adipogenic capacity in SAT (12) and 
develop systemic insulin resistance on high-fat diets, accompanied by decreased insulin responsiveness of  
preadipocytes isolated from VAT (13). TBI-treated macaques follow a similar course; notably, their SAT is 
characterized by increased macrophage infiltration (14), which in humans correlates with markers of  poor 
metabolic health such as fatty liver and insulin resistance, independent of  total adiposity (15).

Despite these intriguing results from preclinical models, no studies have yet examined the direct effects 
of  radiation on human adipose tissue. We sought to address this knowledge gap by identifying molecular 
changes in adipose tissue from adult survivors of  childhood cancer previously treated with abdominal RT 
or TBI, compared with individuals treated with chemotherapy only or healthy controls. We focused on 
relatively healthy subjects with no prior diagnosis of  obesity or DM to determine if  early changes could be 
detected that might later be validated as biomarkers for eventual progression to overt DM or as targets for 
therapeutic interventions that might mitigate this pathology.

Results
Clinical and metabolic characteristics of  study subjects. We recruited 35 adult participants (≥18 years) in 4 
categories: (a) survivors of  childhood cancer with prior history of  TBI, (b) survivors previously exposed 
to abdominal (ABM) RT, (c) survivors treated with chemotherapy (CHM) only without any prior RT 
exposure, and (d) healthy volunteers (CTL) with no prior cancer diagnosis. Participants were recruit-
ed from the MSKCC Long-Term Follow-Up Clinic (survivors) and the Rockefeller University Hospital 
(controls). All survivors received chemotherapy as part of  their treatment. One CHM subject was later 
excluded after discovery of  prior neck/mediastinal RT, while 4 subjects did not have RNA sequencing 
(RNA-seq) data due to inadequate biopsy material. This resulted in a study cohort of  30 subjects (n = 8 in 
TBI group, 7 in ABM, 6 in CHM, 9 in CTL) with clinical metabolic profiling data and RNA-seq results 
from an abdominal SAT biopsy (Figure 1A). The clinical characteristics of  each group are summarized 
in Table 1, with additional details of  treatment histories in Supplemental Table 1 (supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.153586DS1). Overall, the CHM 
group completed cancer treatment significantly more recently than the ABM and TBI groups and tended 
to be younger, while RT dose was higher in the ABM group compared with TBI, as expected given the 
characteristic differences between these treatment regimens. The TBI group was notably enriched for 
subjects with a history of  allogeneic BM transplant (BMT).

The groups were not significantly different from one another on standard anthropometric surro-
gates for metabolic health such as BMI, waist/hip ratio (WHR), weight, and percent lean or fat mass 
as assessed by air displacement plethysmography (Figure 1, B–D, and Supplemental Figure 1, A and 
B). Dyslipidemia was observed in one participant in the TBI group with abnormally high triglycerides 
(Supplemental Figure 1C); that participant also had the lowest HDL (Figure 1E), which was overall 
significantly lower in the TBI group (42.6 ± 13.6 versus 65.5 ± 15.7 mg/dL for CHM group, adjusted P 
= 0.014). LDL and total cholesterol were not significantly different among groups (Supplemental Fig-
ure 1, D and E). The ABM and TBI groups had significantly higher fasting glucose levels (103.4 ± 13.8 
and 105.4 ± 8.7 mg/dL, respectively) compared with CHM participants (88.3 ± 8.3 mg/dL; Figure 1F, 
adjusted P < 0.05 for both comparisons), while the TBI group had significantly higher HbA1c levels 
(5.84% ± 0.47%) compared with the CHM (5.00% ± 0.27%, P < 0.001) and CTL (5.19% ± 0.29%, P 
< 0.01) groups. Furthermore, 5 of  9 participants in the TBI group and 2 of  7 in the ABM group were 
prediabetic (HbA1c ≥ 5.7%), while no participants in either CTL or CHM groups were prediabetic 
(Figure 1G, P < 0.01 for Fisher’s exact test comparing RT to non-RT participants). High-sensitivity 
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C-reactive protein, a marker of  atherosclerotic cardiovascular disease risk (16), was in the low-risk 
range (<2.0 mg/L) for all participants (Supplemental Figure 1F). Given the dependency of  many met-
abolic outcomes on age and the trend toward younger age in the CHM group, we performed ANCOVA 
to compare the group differences observed in HDL, fasting glucose, and HbA1c while controlling for 
age. HDL was no longer significantly different across the groups after adjusting for age (P = 0.079 for 
group effect, P = 0.014 for age effect); however, fasting glucose (P = 0.011 for group, P = 0.023 for 
age) and HbA1c (P = 0.00046 for group, P = 0.0044 for age) retained their differences across groups 
after adjusting for age. Post hoc pairwise comparisons with Tukey’s multitest correction showed sig-
nificant differences in HbA1c between the TBI group and either the CHM (P = 0.002) or CTL groups 
(P = 0.0007). Post hoc pairwise comparisons for glucose did not reveal any significant between-group 
differences. Similar results were obtained with ANCOVA for group and time since treatment for the 
CHM, ABM, and TBI groups, although fasting glucose also lost between-group significance on this 
analysis in addition to HDL. HbA1c differences among the 3 survivor groups remained significant (P 
= 0.013 for group; P = 0.15 for time since treatment), with post hoc pairwise comparisons showing 
a significant difference between CHM and TBI groups after Tukey’s multitest correction (P = 0.029).

Gene expression signatures of  irradiated human SAT. To gain insight into the molecular pathways that char-
acterize irradiated adipose tissue, we isolated and bulk sequenced RNA from needle aspirations of  SAT 
from the right or left lower abdominal quadrants of  each participant (Supplemental Table 1). Principal com-
ponent analysis (PCA) of  all 23,434 transcripts showed no separation of  the subject groups (Figure 2A), 

Figure 1. Study schematic and participant characteristics. (A) Participant flow diagram. (B–G) BMI, waist/hip ratio, fat mass %, fasting serum high density 
lipoprotein (HDL), fasting serum glucose, and glycated hemoglobin (HbA1c) measurements in CTL (n = 9, except D, which is missing 2 subjects), CHM (n = 6), 
ABM (n = 7), and TBI (n = 8) groups. *P < 0.05; **P < 0.01; ***P < 0.001 on 1-way ANOVA with Tukey’s multitest correction for post hoc pairwise comparisons.
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likely reflecting the heterogeneity of  our study cohort. Nevertheless, differential gene expression analysis 
using DESeq2 (17) uncovered a number of  significant changes in the TBI group compared with the CTL 
(74 genes) and CHM (1191) groups (Supplemental Figure 2, A and B), while the ABM group had signifi-
cantly fewer differences compared with these 2 groups (2 and 36, respectively; Supplemental Figure 2, C and 
D). This discrepancy between the TBI and ABM groups may be due to a significant portion of  the ABM 
cohort (5 of  7) being treated before 2000 or at other institutions, thus precluding the ability to ensure that the 
abdominal SAT biopsy site coincided with the RT field.

Given the large number of  pairwise comparisons with 4 subject groups, we used a polar coordi-
nate-based method (18) to visualize differentially expressed genes (DEGs) in 3-way comparisons using the 
likelihood ratio test for statistical significance (Figure 2, B–E). We observed some overlap in genes upreg-
ulated in both the TBI and ABM groups compared with the CHM group (Figure 2B) or, to a lesser extent, 
the CTL group (Figure 2C). We also noted that the majority of  all differences observed were driven by the 
TBI and ABM groups, with few differences between the CTL (Figure 2, C–E) and CHM (Figure 2, B, D, 
and E, and Supplemental Figure 2F) groups; there were also few differences between the TBI and ABM 
groups (Supplemental Figure 2E). The genes upregulated in both the TBI and ABM groups (Supplemental 
Table 2) are enriched for immune-related terms by gene ontology (GO) analysis, including positive regula-
tion of  production of  the cytokines IL-4, IL-6, and IFN-γ and myeloid processes such as neutrophil degran-
ulation and phagocytosis (Figure 2F and Supplemental Table 3). GO analysis of  the genes upregulated in 
the TBI or ABM groups, but not necessarily both, produced similar results (Supplemental Figure 2G).

Weighted gene correlation network analysis (WGCNA). Constraining RNA-seq analysis to the evaluation 
of  individual DEGs can miss smaller but coordinated changes across biological pathways or networks. 
To circumvent this limitation, we employed an unbiased approach using WGCNA (19) to identify groups 
or modules of  genes displaying correlated expression across all samples (Supplemental Table 4). We then 
correlated module expression scores for each study subject with their clinical traits (Supplemental Figure 
3A). This analysis revealed 2 modules (green and purple) with highly significant correlations with HbA1c, 
WHR, and HDL. The green module was positively correlated with a profile of  worse metabolic health, 

Table 1. Clinical characteristics of study participants

CTL (n = 9) CHM (n = 6) ABM (n = 7) TBI (n = 8) P value
Age at study (years) 38 ± 11.2 26.3 ± 4.0 35 ± 14.5 36 ± 9.4 0.24A

Age at diagnosis (years) — 15.7 ± 5.4 7.3 ± 7.8 13.4 ± 7.7 0.12A

Time since treatment (years) — 8.3 ± 4.1 25.0 ± 11.8 21.7 ± 9.0 0.0099A

Sex (M:F) 6:2 3:3 3:4 6:2 0.54B

RaceC

 White 8 6 6 7
 Non-White 1 (multiracial) 0 1 (Asian) 1 (Asian)
RT dose to abdomen (Gy) — — 29.4 ± 10.8 14.1 ± 9.1 0.009D

History of allogeneic BMT — 2E 0 7
History of autologous BMT — 2E 2 1
Diagnosis
 AML 2 4
 ALL 1 2
 CML 1
 NHL 1
 HL 3
 Sarcoma 1
 Wilms 1
 Neuroblastoma 3
 Ovarian small cell carcinoma 1

Data are presented as mean ± SD. AOne-way ANOVA. BFisher’s exact test, 2-sided. CSelf-identified. DStudent’s t test, 2-sided, unequal variance. EOne CHM 
subject had both autologous and allogeneic transplant; only the allogeneic transplant was considered when examining relationships between BM transplant 
(BMT) and outcomes. CTL, healthy controls; CHM, chemotherapy only group; ABM, abdominal RT group; TBI, total body irradiation group; AML, acute 
myelogenous leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myelogenous leukemia; NHL, non-Hodgkin lymphoma; HL, Hodgkin lymphoma.
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while the purple module was correlated with improved metabolic health (Figure 3, A–C), and it revealed 
the opposite finding for the purple module (Figure 3, D–F). However, when we used quantitative set analy-
sis of  gene expression (QuSAGE) (20) to determine which modules were enriched in participants who had 
received RT compared with those who had not, only the green module was significantly upregulated in the 
former (P < 0.001; Figure 3G). Expression scores for the green module were significantly higher in the TBI 
group compared with the CTL and CHM groups, and they were higher in the ABM group compared with 
the CHM group (Figure 3, H and I), while no differences among groups were observed for the purple mod-
ule (Supplemental Figure 3B). When PCA is restricted to just the 1347 green module genes, the TBI and 
ABM groups separate from CHM and CTL along PC1 (Figure 3J), indicating the ability of  this module to 
discriminate among the different groups.

Similar to results obtained with the DEGs identified by DESeq2, GO analysis of  green module 
genes also produced terms related to inflammatory pathways (Figure 3K and Supplemental Table 5). 
Indeed, there was overrepresentation of  DEGs in the green module compared with other modules 
(Supplemental Table 6). In contrast, the purple module was enriched for GO terms related to fatty acid 
catabolism (Supplemental Figure 3C). Since this module could not distinguish between RT and non-RT 
participants, we investigated whether a confounding variable was driving its expression pattern. Age is 
a well-known risk factor for metabolic syndrome and, thus, a possible determinant of  both green and 
purple module expression, given their association with a worse and an improved metabolic profile, 
respectively. ANCOVA examining the effect of  group on green module expression while controlling for 
age showed a highly significant group effect (P = 0.00047) but a more modest age effect (P = 0.045), 
while purple module expression showed a significant effect for age (P = 0.00075) but not for group (P = 
0.32). In addition to age, BMT status and time since treatment are also potential confounders. ANCO-
VA models examining the effect of  group and time since treatment or group and BMT status on green 
module scores showed significant effects for group (P = 0.0027 in model with group and time since 
treatment; P = 0.0017 in model with group and BMT status) but not time since treatment (P = 0.34) or 
BMT status (P = 0.69) in the subset of  childhood cancer survivors.

Figure 2. Gene expression signatures of irradiated adipose tissue. (A) Principal component analysis of RNA-seq results. Ellipses show 95% CI. (B–E) 
Polar-coordinate volcano plots comparing TBI, ABM, CHM; TBI, ABM, CTL; ABM, CHM, CTL; and TBI, CHM, CTL groups. Individual genes are represented 
as points. Radial coordinates of each gene are calculated based on the gene’s expression Z score in each of the subject groups labeled on the radial axes; 
proximity to an axis indicates increased expression in the group indicated on that axis. Colored points indicate significantly upregulated genes in the 
labeled subject groups; significance is determined by a P value cutoff of 0.01 using the likelihood ratio test implemented in DESeq2. (F) Gene ontology (GO) 
enrichment analysis of genes upregulated in both TBI and ABM groups, scored as –log10 of the adjusted P value from topGO.
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The top green module genes identified by QuSAGE include a number of  macrophage markers such as 
SPP1, MMP9, TREM2, ACP5, ALCAM, and VSIG4 (Supplemental Figure 4A and Supplemental Table 7). 
Interestingly, both proinflammatory (SPP1, MMP9; refs. 21, 22) and immunomodulatory (VSIG4, TREM2; 
refs. 23, 24) signals are present. The transcriptional profile of  a number of  these genes (SPP1, MMP9, ACP5, 
ALCAM, VSIG4), as well as several identified as DEGs by DESeq2 (FCER1G, HAVCR2, HLA-DRA, LGMN, 
C1QB) was recapitulated by quantitative PCR (qPCR) (Supplemental Figure 4B, P = 0.0047 for group effect 
on rank-transformed mixed effects model), with upregulation across all genes in the TBI group relative to 
the CHM (FDR-adjusted post hoc P = 0.0017) and CTL groups (adjusted P = 0.008) and in the ABM group 
relative to the CHM (adjusted P = 0.04) but not the CTL group (adjusted P = 0.22). In contrast, levels of  
adipogenesis-related genes PPARG, ADIPOQ, and FABP4 were unchanged across subject groups (P values 
from 0.11 to 0.992 on Kruskal-Wallis test) (Supplemental Figure 4C).

Single-cell deconvolution reveals macrophage enrichment in irradiated adipose tissue. Given the observed GO 
enrichments in inflammatory pathways, we hypothesized that an immune population in irradiated adipose 
tissue, likely composed of  macrophages, was the cellular origin of  this gene expression signature. We used pre-
viously published single-cell RNA-seq (scRNA-seq) data from SAT of obese nondiabetic and diabetic patients 
(25) and the CIBERSORTx (26) algorithm to deconvolute our bulk RNA-seq data into cell type fractions. To 
better match the origin of  our RNA samples, we reclustered the scRNA data set using only cells originating 
from SAT, excluding VAT cells included in that study (Figure 4A and Supplemental Table 8). We used this 
clustering in CIBERSORTx to calculate the fractions of  each cell type in our adipose samples (Figure 4B). 

Figure 3. WGCNA modules associate with metabolic health. (A–C) Correlation of green module expression with HbA1c, waist/hip ratio, and HDL across 
all subjects. (D–F) Correlation of purple module expression with HbA1c, waist/hip ratio, and HDL across all subjects. (G) QuSAGE enrichment scores (–log10 
of the FDR-adjusted P values) for each WGCNA module in the comparison of subjects who received RT (TBI and ABM groups) with those who did not (CTL 
and CHM groups). Cutline corresponds to P = 0.05. (H) Green module scores (calculated from WGCNA’s eigengene function; *P < 0.05, **P < 0.01, ***P < 
0.001 on 1-way ANOVA with Tukey’s multitest correction for post hoc pairwise comparisons). (I) Heatmap of green module gene expression. (J) Principal 
component analysis of gene expression matrix restricted to only green module genes. Ellipses show 95% CI. (K) Gene ontology (GO) enrichment of green 
module genes, scored as –log10 of the adjusted P value from topGO.
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Notably, we observed a trend toward enrichment of  myeloid clusters m1 and m2 in the ABM and TBI groups, 
with a concomitant decrease in the fraction of  adipose progenitor cells p1 and endothelial cells e1 (P = 0.0003 
for interaction between participant group and cell type on repeated-measures ANOVA after aligned rank 
transformation; post hoc pairwise comparisons are given in Supplemental Table 9). Both m1 and m2 clusters 
are enriched for CD68+ cells and are identified as macrophages by SingleR annotation (Supplemental Table 
8). They are also enriched for several genes of  interest found by WGCNA/QuSAGE or DESeq2 (representa-
tive genes shown in Supplemental Figure 5, A and B), suggesting that adipose tissue–associated macrophages 
are the origin of  the inflammatory gene expression signature described above. Although there was a decrease 
in the p1 and e1 fractions in the TBI and ABM groups, our previous DEG analyses did not reveal any markers 
mapping to these clusters; thus, we could not conclude whether this change represented an absolute decrease 
in cell numbers or merely a relative decrease due to expansion of  the macrophage population. Intriguingly, 
there was also a trend toward increases in the p3 fraction in the ABM and TBI groups (Figure 4B and Sup-
plemental Table 9). This progenitor cluster expresses a number of  collagen-related genes and is annotated as 
fibroblasts by SingleR (Supplemental Table 8). Tissue fibrosis is a commonly observed chronic effect of  RT 
exposure at therapeutic doses (27), raising the possibility that enrichment of  the p3 cluster in the TBI and 
ABM groups represents expansion of  a fibroblast-like population in irradiated adipose tissue. Moreover, fibro-
sis has been implicated in the development of  adipose tissue dysfunction, especially when facing the challenge 
of  caloric excess (28), and thus could represent a causal mechanism underlying RT-induced adipose injury.

To further characterize the enriched macrophage population, we subclustered m1 and m2 cells into 7 new 
groups, labeled M-A, M-B, M-C, M-D, M-E, M-F, and M-G (Figure 4C and Supplemental Table 10). We repeat-
ed CIBERSORTx deconvolution by substituting these subclusters for the original m1 and m2 clusters. The 
results (Figure 4D) show a significant enrichment of  M-A and a trend toward enrichment of  M-D and M-G 
macrophages in the TBI and ABM groups (post hoc pairwise comparisons from Kruskal-Wallis test given in 
Supplemental Table 11). Cluster M-A corresponds to a largely inflammatory phenotype expressing several 
of  the top significant genes identified in this study, including MMP9, ACP5, and ITGB2, as well as ITGAX 
(CD11c) and CD9, markers of  crown-like structure macrophages (Supplemental Figure 5C) (29, 30). How-
ever, it also expresses a number of  immunomodulatory markers such as TREM2 and galectins 3 and 9 (Sup-
plemental Figure 5C) (24, 31, 32), suggesting a more complex phenotype beyond promoting inflammation. 
Notably, clustering at a higher resolution did not separate these markers into different cell clusters, indicating 
that the coexpression of  these markers in M-A is not an artifact of  underclustering (Supplemental Figure 5D). 
Clusters M-D and M-G express SEPP1 and MS4A6A (Supplemental Figure 5E), macrophage markers that 
have been studied in a variety of  contexts including atherosclerotic plaque formation (33), tumor infiltration 
(34, 35), and Alzheimer’s disease (36). M-D is additionally marked by specific expression of  FCGBP, a differ-
entially regulated gene in our data set (Supplemental Tables 2 and 7), and GPR34, a relatively uncharacterized 
lysophospholipid receptor (37), while M-G is specified by expression of  CD206 (MRC1), which has been asso-
ciated with inhibition of  preadipocyte growth and differentiation (38) (Supplemental Figure 5E). The enrich-
ment of  diverse macrophage phenotypes in RT-exposed adipose tissue suggests a dynamic remodeling of  the 
tissue, even decades after the initiating event (mean time since RT 23.2 ± 9.8 years in TBI and ABM groups).

Impaired adipokine secretion in chronic adipose tissue response to RT. Using the list of  DEGs compiled 
through DESeq2 and WGNCA/QuSAGE, we next conducted pathway analysis using NDex Bio’s inte-
grated query feature (39), which uncovered the TYROBP causal network as the top-scoring pathway 
(Figure 5A), with 19 of  60 pathway genes represented in our gene list (P < 1 × 10–12). QuSAGE of  the 
C2 canonical pathway gene sets from MSigDB (40) also reveals this network as a top hit (Supplemental 
Figure 6A). TYROBP, also called DAP12, is a transmembrane adaptor that links myeloid surface recep-
tors to downstream signaling effectors (41). The current network annotation does not include a major 
upstream regulator of  TYROBP, the transmembrane receptor TREM2 (24), nor its downstream signaling 
cascade centered on SYK (24), which includes NLRP3 activation (42) (Figure 5A). Additionally, MS4A4A 
has been shown to regulate cleavage of  TREM2 to its soluble form (36). TREM2, SYK, NLRP3, and 
MS4A4A transcripts are all upregulated in the TBI and ABM groups (Supplemental Tables 2 and 7), thus 
extending representation of  the TYROBP network to 23 genes. As expected, gene expression scores for 
the 23-gene TREM2-TYROBP signature were enriched in the ABM and TBI groups compared with the 
CTL and CHM groups (Figure 5B) and were strongly and positively correlated with HbA1c (r = 0.60, P < 
0.001) and WHR (r = 0.68, P < 0.0001) and negatively correlated with HDL (r = –0.58, P < 0.001; Figure 
5C). ANCOVA examining TREM2-TYROBP expression across groups while controlling for age showed 
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a significant group effect (P = 0.00063), while age was not significant (P = 0.064). Enrichment of  select 
components of  the network in the TBI and ABM groups was confirmed by qPCR (Supplemental Figure 
6B, P = 0.0051 for group effect on rank-transformed mixed effects model; FDR-adjusted P = 0.052 for 
ABM versus CHM; P = 0.002 for TBI versus CHM; P = 0.007 for TBI versus CTL).

The TREM2-TYROBP network was originally described in an analysis of  central regulators of  gene 
expression in the brains of  patients with Alzheimer’s (43); however, increasing evidence also supports activ-
ity of  this pathway in SAT, with associated adverse metabolic outcomes. In the DioGenes (44) and MET-
SIM (45) studies of  overweight or obese participants, SAT expression of  components of  the TREM2-TY-
ROBP network was found to correlate with clinical measures of  insulin resistance (Supplemental Tables 
12 and 13). In another study of  obese adolescents with MRI-based measurements of  VAT and SAT depot 
sizes, participants with more VAT showed decreased insulin sensitivity and increased macrophage infiltra-
tion and expression of  NLRP3 inflammasome–related genes in SAT biopsies (46). Overall, TREM2-TY-
ROBP network activity in SAT appears to be linked to impaired systemic glucose homeostasis, possibly 
through disruption of  the endocrine function of  adipose, which includes secretion of  signaling molecules 
or adipokines that regulate global homeostatic processes such as insulin sensitivity. We profiled a number 
of  known adipokines (Supplemental Figure 6C) and observed a qualitative decrease in serum adiponec-
tin (Figure 6A) and a statistically significant increase in PAI-1 in the ABM and TBI groups (Figure 6B). 
Although leptin levels were not different among the groups, the leptin/adiponectin ratio, which has been 

Figure 4. Cell type deconvolution. (A) UMAP of Seurat clustering of SAT cells from Vijay et al. (25). p, progenitor; m, myeloid; t, T cell; b, B cell; e, endothe-
lial clusters. (B) CIBERSORTx deconvolution of bulk RNA-seq data using signature matrix derived from clusters in A. (C) Subclustering of m1 and m2 mac-
rophage populations. (D) Deconvolution using signature matrix with m1 and m2 clusters expanded to the subclusters identified in C. Differences among 
groups in B were tested using repeated-measures ANOVA after aligned rank transformation, which showed significant interaction between group and cell 
type (P = 0.0003). FDR-adjusted P values for post hoc pairwise comparisons were calculated using estimated marginal means on only group comparisons 
within each cell type, not all possible pairwise comparisons within the data. Differences among groups in D were tested using the Kruskal-Wallis test, fol-
lowed by the Dunn test for post hoc comparisons with FDR adjustment. #P < 0.05, ##P < 0.01 on post hoc pairwise comparisons without FDR adjustment; 
*P < 0.05, **P < 0.01 on post hoc pairwise comparisons with FDR adjustment. Data are shown as mean ± SD.
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shown to be a predictor of  metabolic syndrome (47) and insulin resistance (48), was significantly increased 
in the TBI group and trending upward in the ABM group (Figure 6C). These changes may explain the early 
phenotype of  insulin resistance in the TBI and ABM groups (Figure 1, F and G), as adiponectin improves 
insulin sensitivity (49), while PAI-1 promotes insulin resistance (50). As with the clinical metrics associated 
with worse metabolic health, adiponectin and PAI-1 levels are also correlated with the TYROBP network 
(Figure 6, D and E) and green module (Supplemental Figure 6D) expression in the expected directions.

Discussion
We report here the first study to our knowledge of  the late response of  human adipose tissue to therapeu-
tic radiation for childhood cancer. This response constitutes an important mechanistic link between the 
pathophysiology of  RT-induced injury to normal tissue and the clinical observation that many childhood 
cancer survivors treated with TBI or abdominal RT suffer increased risk of  cardiometabolic diseases such 
as DM (4, 6, 7). Although significant efforts have been made to deintensify childhood cancer treatments 
to decrease the risk of  late effects, there remain sizeable populations of  high-risk patients who will require 
more intensive treatments (51, 52). Understanding the molecular and cellular mechanisms driving develop-
ment of  late effects in this patient population will enable early identification of  those at risk and implemen-
tation of  interventions to prevent progression to debilitating disease.

Figure 5. TREM2-TYROBP network expression. (A) TYROBP causal network. The original annotation of this network (nodes and connectivity) is shown in 
black (43, 74), with red outlines for genes that were upregulated in the TBI and ABM groups. Additional connectivity inferred from the literature (24, 42) is 
shown in orange. (B) Expression score of the 23 genes of the TREM2-TYROBP network upregulated in TBI and ABM subjects. **P < 0.01, ***P < 0.001 on 
1-way ANOVA with Tukey multitest correction. (C) Correlation of TREM2 -TYROBP network expression scores with HbA1c, WHR, and HDL.
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RT-induced injury to the adipose tissue, a major endocrine organ, has received comparatively lit-
tle consideration as a mechanism for the development of  DM, despite animal data suggesting that RT 
exposure reduces the proliferative capacity of  preadipocytes (12) and leads to adipose tissue macrophage 
accumulation (14), changes that have been linked to systemic insulin resistance in animal models and 
human patients (53–55). Our data expand these findings by characterizing a diverse macrophage pop-
ulation in irradiated SAT that is composed of  cells with both proinflammatory and tissue-remodeling 
functions (Figure 4D). This macrophage population is marked by upregulation of  the TYROBP network 
(Figure 5A), a damage-response pathway first implicated in the control of  amyloid plaques by microglia 
in Alzheimer’s disease (24). More recent work has uncovered additional roles for this pathway in the 
clearance of  dying adipocytes in obese VAT (56). Although our data do not reveal the triggering signal 
for TREM2-TYROBP activation in irradiated adipose, the persistence of  this pathway in the TBI and 
ABM groups suggests ongoing tissue injury and immune remodeling, with negative consequences for 
normal adipose function, including altered secretion of  adipokines such as adiponectin and PAI-1 that 
have significant roles in regulating systemic insulin responsiveness. In particular, we observed decreased 
adiponectin and increased PAI-1 levels in the TBI and ABM groups (Figure 6, A and B), which could 
explain their emerging phenotype of  insulin resistance (Figure 1, F and G) (49, 50). PAI-1 is addition-
ally linked to the development of  atherosclerotic plaques and coronary artery thrombosis (57); thus, 
the increased levels seen in the TBI and ABM groups could explain the increased risk of  cardiovascular 
disease seen in similar cohorts of  childhood cancer survivors (4).

Notably, while SAT is thought to secrete the majority of  circulating adiponectin (58), PAI-1 is secreted 
primarily by VAT (59) but is also increased in SAT of  obese patients (60). Therefore, the increased circu-
lating levels of  PAI-1 in the TBI and ABM groups could indicate expansion of  VAT, increased secretion 
by SAT as it takes on more VAT-like properties, or both. Although not profiled in this study, the VAT 
of  childhood cancer survivors who received TBI or abdominal RT may also become dysfunctional. One 
hypothesis for the pathogenesis of  metabolic syndrome is exhaustion of  existing adipose tissue capacity to 
accommodate caloric excess, leading to ectopic deposition of  lipids and subsequent development of  insulin 
resistance (61). As DM can develop in the absence of  obesity in childhood cancer survivors (6), an analo-
gous mechanism of  adipose dysfunction, albeit from RT instead of  caloric excess, could explain the glucose 
dysregulation observed in survivors treated with abdominal RT or TBI.

Figure 6. Dysregulated adipokine secretion. (A and B) Serum adiponectin (A) (P = 0.03 on 1-way ANOVA; no 
significant post hoc pairwise comparisons) and PAI-1 levels (B) (*P < 0.05, ****P < 0.0001 on one-way ANOVA 
with Tukey’s multi-test correction). (C) Leptin-adiponectin ratio. *P < 0.05 on 1-way ANOVA with Tukey multitest 
correction for post hoc pairwise comparisons. (D and E) Correlation of TREM2 -TYROBP network expression scores 
with serum adiponectin and PAI-1 levels.
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Although the inciting events leading to adipose dysfunction are different between childhood cancer 
survivors and obesity in the general population, our data show that they converge on similar molecular and 
cellular signatures, including macrophage infiltration (54) and activation of  the TREM2-TYROBP network 
(44–46). Intriguingly, the highest BMI of  our study cohort occurred in the CTL group, and this participant 
consistently behaved more similarly to the TBI and ABM groups compared with other CTL or CHM 
participants, including on scores of  green module and TREM2-TYROBP network expression, although 
the macrophage cell fraction was not elevated. Given the cross-sectional nature of  our study with sam-
pling from only 1 time point fairly distant (>20 years) from completion of  RT, we cannot rule out events 
occurring early after treatment that would be specific to RT-induced injury and only later converge on the 
more common pathways of  adipose dysfunction that lead to insulin resistance. These early processes may 
include radiation-induced tissue hypoxia (62) and extracellular matrix remodeling (63), both of  which have 
also been implicated in the pathogenesis of  adipose tissue dysfunction (64).

Our study has a number of  limitations, primarily a small and heterogeneous population, which may 
limit the generalizability of  the findings. In general, we found larger effect sizes in the TBI group compared 
with the ABM group, and this could be a result of  the uncertainty of  sampling irradiated adipose in the 
ABM group or of  the physiologic action of  other tissues that are irradiated in TBI, such as the hypotha-
lamic-pituitary axis or pancreas, on adipose function and overall metabolic health. Finally, RT treatment 
techniques have changed significantly within the past 10–15 years, with increasing usage of  conformal 
fields and proton therapy, possibly limiting the applicability of  our findings to future cohorts of  survivors. 
However, adipose appears to be a radiosensitive tissue, based on prior animal studies (12) and our data 
showing profound and chronic gene expression changes even after receipt of  the low doses used in TBI. 
Current RT-planning practice does not give special consideration for minimizing RT dose to adipose; there-
fore, our findings will likely remain clinically relevant.

The goal of  this study was to identify molecular changes in irradiated abdominal adipose to serve as 
foundational data for hypothesis generation and future validation in prospective cohorts. Future work pro-
filing earlier changes in irradiated adipose can uncover the pathogenic mechanisms that lead to the molecu-
lar changes we observed. Orthogonal studies such as MRI or CT determination of  individual adipose depot 
sizes and core biopsies to determine the tissue architecture of  irradiated adipose will enable better under-
standing of  changes in adipose biology at different scales. Finally, mechanistic studies using mouse models 
can confirm the specific molecular pathways that link RT adipose injury to the development of  cardiomet-
abolic disease, with the eventual goal of  targeting these pathways therapeutically to alter the disease course.

Methods
Subject recruitment and procedures. Patients followed in the MSKCC Long-Term Follow-Up Clinic were screened 
for eligibility prior to scheduled clinic visits. Adult (≥18 years of  age) survivors of  childhood cancer who had 
completed treatment 2 or more years prior to enrollment were eligible. Treatment consisted of  either expo-
sure to abdominal RT (ABM, n = 51) or TBI (n = 64) in conjunction with chemotherapy, or chemotherapy 
alone with no RT exposure (CHM, n = 45). RT to other sites was allowed in the ABM and TBI groups. A 
control group (CTL) of  healthy volunteers (n = 16) was recruited by the Rockefeller University Hospital. 
Exclusion criteria (designated “medical contraindication” in Figure 1A) included BMI ≥ 30 kg/m2; diagnosis 
of  DM; pregnancy; current use of  adipose-altering medications (insulin, thiazolidinediones, atypical antipsy-
chotics, topiramate, or stimulants), anticoagulants, NSAIDs, or aspirin; HbA1c > 6.5%; platelet count, PT, 
and PTT outside normal limits; and known symptomatic coronary artery disease. Subjects were also excluded 
if  they had inadequate SAT for biopsy as determined on physical exam. Power calculations determined that 
40 subjects (10 per group) were needed to provide 80% power at 5% significance to detect moderate-to-large 
effect sizes in ANOVA models, assuming that the average coefficient of  variation was 70%. The protocol 
was opened in June 2017, and the last subject was enrolled in January 2020 before the principal investigators 
decided to proceed with data analysis, given slow accrual. At that point, 35 subjects had enrolled.

During a single clinical visit after an overnight fast, participants underwent venipuncture to obtain 
blood samples for complete blood count (CBC), prothrombin time/partial thromboplastin time (PT/PTT), 
lipid panel, HbA1c, fasting glucose, and high sensitivity C-reactive protein (hsCRP). Additional serum and 
plasma samples were banked for later investigational testing. Body composition (percent lean and fat mass) 
was measured using a BodPod air plethysmograph (COSMED); 2 CTL subjects did not complete this 
measurement due to equipment malfunction and were excluded from analyses of  body fat and lean mass 
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composition. Biopsy of  the abdominal SAT was performed under local anesthesia through a small incision 
in the lower abdomen, followed by aspiration of  2–3 g of  tissue with a 4 mm blunt-end liposuction needle. 
Patients were discharged after biopsy and monitored by telephone for postprocedure complications, which 
were minor (primarily bruising, discomfort) and resolved without sequelae.

RNA isolation and sequencing. RNA was extracted from frozen adipose tissue with Trizol (Invitrogen) 
and purified with RNAeasy columns (Qiagen). RNA integrity number (RIN) was measured with a bioan-
alyzer (Agilent). Library preparation was performed by the Rockefeller Genomics Resource Center using 
100 ng of  total RNA and the TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Human/
Mouse/Rat (Illumina). Libraries were prepared with unique barcodes and pooled at equal molar ratios. 
The pool was denatured and sequenced on an Illumina NovaSeq 6000 sequencer using v.1.5 reagents, an 
S1 flow cell, and NovaSeq Control Software v.1.7.0 to generate 50 bp paired-end reads, following the man-
ufacturer’s protocol. The sequencing data for 27 of  the 30 participants are available from GEO, accession 
GSE184148; 2 CHM and 1 CTL participants declined to have their data shared publicly.

RNA-seq data processing and differential expression analysis. Sequencing reads were aligned and quantified using 
Salmon (v.0.8.2) (65). Differential gene analysis was performed using DESeq2 (17) (R package v.1.20.0) with 
default negative binomial modeling and Wald’s test with a significance cut-off  of adjusted P < 0.05. For all 
downstream applications (WGCNA, QuSAGE, cell type deconvolution) requiring normalized read counts, 
results from the variance stabilized transformation (VST) algorithm implemented in DESeq2 were used. The 
R packages volcano3D (18) and EnhancedVolcano (66) were used to plot 3-way and pairwise gene expression 
comparisons, respectively. Pairwise volcano plots were generated using direct output from DESeq2. For 3-way 
comparisons, the likelihood ratio test was used as the statistical test for between-group difference.

GO analysis. GO enrichment was performed with topGO (67) (v.2.42.0) using Fisher’s exact test. 
Enrichment scores are taken to be –log10(raw P value) of  each term.

WGNCA and QuSAGE. The WGCNA (19) R package (v.1.70.3) was used to construct modules of  
correlated gene expression in a blockwise manner to reduce computation time. Correlation was calculated 
using the “bicor” algorithm implemented in the package and a soft thresholding power of  24 (empirically 
determined) to reach scale-free topology. The module eigengenes calculated by the package function “mod-
uleEigengenes” were used as module expression scores where indicated, and this function was adapted to 
calculate aggregate expression for other groups of  genes such as those comprising the TREM2-TYROBP 
network. QuSAGE (20) (R package v.2.24.0) was performed using the WGNCA modules as gene sets or 
the C2 canonical pathways from MSigDB (40) and compared the ABM and TBI subjects together (RT 
group) against the CTL and CHM subjects together (non-RT group). Individual gene enrichment scores or 
“activities” in QuSAGE are calculated as mean fold changes between comparison groups. Top genes are 
considered as those whose lower bound of  the 95% CI around the gene enrichment score is greater than the 
mean enrichment score of  the entire module, which is the pathway enrichment score.

Cell type deconvolution. The normalized count matrix from the scRNA experiment published in Vijay et. 
al (25) was downloaded from GEO (accession number GSE136230). Seurat v.4.0.1 (68) was used to cluster 
the subset of  cells isolated from SAT, using the first 25 principal components and a resolution of  0.75. Clus-
ter markers were obtained from the “FindAllMarkers” function with a requirement of  marker expression 
in at least 25% of  cells in a cluster. Cluster identities were verified against identities published in Vijay et al. 
(25) and automated annotation using SingleR (v.1.4.1) (69) and the Encode and Human Primary Cell Atlas 
databases (70–72). Comparisons of  the Vijay clusters (25) and our reclustering results are shown in Sup-
plemental Table 8. The cluster-annotated normalized count matrix was forwarded to CIBERSORTx (26) 
to calculate an adipose tissue signature matrix. The bulk RNA-seq data (VST-normalized) was then decon-
voluted against this matrix using the recommended S-mode batch correction. The resulting cell fraction 
data were modeled using the aligned rank transformation method for repeated measures with interaction 
(73), which was appropriate given that the fractions sum to unity and are thus not entirely independent. 
FDR-adjusted P values for post hoc pairwise comparisons were calculated using estimated marginal means 
and are listed in Supplemental Table 9. The FDR was calculated using only group comparisons within each 
cell type, instead of  possible pairwise comparisons within the data.

Macrophage subcluster deconvolution. The cells from clusters m1 and m2 were subsetted from the larger data 
set and clustered at resolution 0.35 using the first 15 principal components, which resulted in 7 clusters. Clus-
ter markers were obtained from the “FindAllMarkers” function with a requirement of  marker expression in 
at least 25% of  cells in a cluster; these are listed in Supplemental Table 10. Repeated clustering at resolution 
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1.0 resulted in 12 clusters, which did not result in separation of  cluster M-A markers (Supplemental Figure 
5C) into different clusters (Supplemental Figure 5D), suggesting that using resolution of  0.35 did not result 
in underclustering. Cell type annotation of  the single-cell count matrix was updated with the macrophage 
subcluster identities M-A to M-G in place of  m1 and m2 identities. CIBERSORTx was repeated with this 
annotation with the same settings as above. The resulting macrophage fractions were plotted and tested for 
differences among the groups using the Kruskal-Wallis test, followed by the Dunn test for post hoc compari-
sons with FDR adjustment. Results are listed in Supplemental Table 11. The Kruskal-Wallis test was select-
ed, as the macrophage fractions did not follow a normal distribution. Aligned rank transformation was not 
used, given that multiple macrophage clusters had no representation in a large number of  samples, resulting 
in a large number of  ties and increased type 1 errors for the aligned rank method.

qPCR. cDNA was synthesized from 1 μg of  RNA using the High Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosciences). Of  note, 2 samples (1 from ABM group, 1 from CHM group) did not have 
sufficient RNA remaining after sequencing to generate cDNA for qPCR, resulting in 28 samples available 
for analysis. qPCR was performed using Power SYBR Green (Invitrogen) in 384-well plate format on the 
QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher Scientific). Relative gene expression difference 
was calculated using the ΔΔCT method normalizing to EEF2. Relative expression values of  all transcripts 
reported in Supplemental Figure 4B or Supplemental Figure 6B were modeled as linear mixed effects mod-
els with individual samples as a random effect and subject group as a fixed effect. Due to the nonnormal 
distribution and heteroscedasticity of  the data, a rank transformation was performed prior to running the 
model. Post hoc pairwise comparisons between groups were performed FDR correction on Tukey contrasts.

Serum adipokine analysis. Subject serum samples were sent to Eve Technologies for analysis on their 
Human Metabolic Hormone Array 9-Plex (HDMET9) and Human Adipokine Array 5-plex (HDADK5) 
assays to profile leptin, adipsin, resistin, lipocalin-2, adiponectin, and PAI-1 levels.

Statistics. Analyses were performed in R or GraphPad Prism. Unless otherwise described in the 
main text or the relevant section of  the Methods, 1-way ANOVA with Tukey multitest correction for 
post hoc pairwise comparisons was used to determine differences among treatment groups. Two-tailed 
Student’s t test was used for comparison when only 1 groups were relevant (e.g., RT dose in TBI and 
ABM groups). One-way ANCOVA was performed using type III sum of  squares. The underlying statis-
tical models of  DESeq2, WGCNA, QuSAGE, topGO, and Seurat were used with default settings unless 
otherwise indicated. P values less than 0.05 were considered significant.

Study approval. Written informed consent was obtained from all participants prior to enrollment in the 
study. This study and all relevant procedures were reviewed and approved by the IRB of  both MSKCC 
(protocol no. 17-314) and The Rockefeller University (protocol no. PCO-0902).
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