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INTRODUCTION

Pancreatic cancer, particularly pancreatic adenocarcinoma, 
is the fourth leading cause of  cancer deaths in the Western 
world, and prediction curves predict that it will be the 
second most common cause around 2030 just after lung 
cancer.[1] Initiation and progression of  this disease results 
from the interaction of  genetic events combined.[2,3] The 
existence of  a link between chronic inflammation and cancer 
has been recognized for more than 150 years, because of  the 
pioneering work of  Rudolf  Virchow, particularly recognized 
in the context of  pancreatic ductal adenocarcinoma (PDAC).
[4,5] Many human cancers result directly from chronic 
inflammation. However, even in cancers with no preceeding 
inflammation, tumor‑elicited inflammation, inflammatory 
secretions, and infiltrating immune cells play critical roles in 
cancer initiation, promotion and progression to malignant 
metastasis. The mechanisms involved in inflammation 
associated with cancer are not completely understood. This 
review sheds light on the relationship between pancreatitis 
and pancreatic cancer [Table 1].

NUCLEAR FACTOR‑κB (NF‑κB)

NF‑κB is constitutively activated in pancreatic cancer,[6‑8] 
and there is substantial evidence in pancreatic cancer 
that supports the involvement of  cona dense stroma 
with infiltration of  innate immune cells.[9,10] NF‑κB 
is a transcription factor known to participate in the 
communication between tumor and immune cells.[11] 
The NF‑κB subunit p65 is ubiquitously expressed in 
mammalian cells, and when constitutively activated, it is 
associated with cellular transformation.[12] The abnormal 
activation of  NF‑κB contributes to significant cell 
proliferation and migration in pancreatic cancer.[13‑15] 
There are two distinct pathways involved in the regulation 
of  NF‑κB activation: the canonical and noncanonical 
pathways. The canonical pathway is controlled by IkB 
kinase (IKK) complex, which comprises IKKa, IKKb, 
and IKKc. The noncanonical pathway is regulated by 
IKKa and the NF‑κB‑inducing kinase.[16] In preneoplastic 
cells, the p65 subunit of  NF‑κB functions as a tumor 
suppressor by maintaining cells in senescence.[17] 
Furthermore, following loss of  tumor suppressors and 
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escape from senescence, expression of  oncogenic 
Ras causes p65 to switch its function to a tumor 
promoter, to protect transformed cells against immune 
surveillance.[18] This concept of  NF‑κB switching 
from a tumor suppressor to tumor promoter during an 
early phase of  tumorigenesis was recently supported 
in genetically engineered mouse model of  pancreatic 
cancer.[19] Ongoing research did indicate that NF‑κB is 
able to modulate inflammatory macrophages through 
direct regulation of  GDF‑15. GDF‑15 is highly expressed 
in pancreatic cancer compared with other cancers.[20] 
Growth and differentiation factor 15  (GDF‑15), also 
known as macrophage inhibitory cytokine 1 (Mic‑1), is 
an NF‑κB‑regulated gene whose production by tumor 
cells and signaling in macrophages serve as an important 
promoter of  early cancer development. Secreted GDF‑15 
inactivates tumor infiltrating macrophages by negatively 
regulating transforming growth factor (TGF)‑B‑activated 
kinase 1 (TAK1), which in turn causes NF‑κB activity to 
be downregulated expression of  NF‑κB target genes Tnf  
and iNOS. In the absence of  TNF and NO, macrophages 
are no longer able to eliminate tumor cells, thus allowing 
the expansion of  a developing tumor. GDF‑15 is limited 

to pancreatic cancer, because immune surveillance is 
considered a general feature of  tumorigenesis.[16]

INTERLEUKIN‑6 (IL‑6)

Chronic inflammation can lead to production of  
cytokines that upregulate proinflammatory cytokines, 
such as interleukin‑6  (IL‑6), and affects progression of  
pancreatic cancer.[4,5,21‑24] IL‑6 activates certain intrinsic 
molecular pathways through specific receptors, ligands 
and enzymes, with biologic response of  cell and tissue, for 
example, Janus‑Kinase‑Signal Transducer and Activator 
of  Translation3 (JAK‑STAT3), Mitogen‑activated protein 
kinase (MAPK), and androgen receptor.[25‑29] IL‑6 promotes 
pancreatic intraepithelial neoplasia  (PanIN).[21] The 
myofibroblast‑like pancreatic stellate cells  (PSCs) reside 
in a quiescent state in the normal pancreas, but transition 
to an activated state under pathological conditions such 
as inflammation or cancer.[30‑33] PSC secretion contains 
high levels of  IL‑6, which can promote pancreatic cancer 
cell proliferation through Nrf2‑mediated metabolic 
reprogramming.[34] IL‑6‑JAK2‑STAT3 promotes pancreatic 
growth and progression. This is inhibited naturally by 
SOCS3 which downregulates the molecular pathway and 
overall prevents cell proliferation. During oncogenesis, 
IL6/STAT3 controls restraining action of  SOCS3 through 
hypermethylation of  its promoter by increasing DNA 
methyltransferase1.[35] IL‑6 can independently activate 
Pim‑1‑kinase, a proto‑oncogene target of  the STAT3. 
The serine/threonine kinase activation is closely related to 
pancreatic cancer oncogenesis and tumor transformation. 
Associated with the progression of  cell cycle and linked to 
the G1/S and G2/M checkpoints, Pim‑1‑kinase is required 
in cell proliferation. Moreover, the enzymes are implicated 
in the synthesis of  certain transcription factors, cell survival 
by apoptosis avoidance, drug resistance by producing 
gemcitabine and erlotinib, and intrinsic irradiation resistance 
in pancreatic cancer.[36,37] IL‑6 through STAT3 activation 
confers PC cells’ aniokis resistance, which finally enhances 
metastasis.[38,39] Furthermore, the proinflammatory 
cytokine inhibits radiation‑induced apoptosis along with 
the increasing expression of  antiapoptotic proteins B‑cell 
lymphoma (Bcl‑2).[40]

TOLL‑LIKE RECEPTORS (TLRS)

Toll‑like receptors (TLRs) are type I membrane receptors, 
pattern recognition receptors of  the innate immune 
system.[41] There is evidence of  TLR involvement in 
pancreatic cancer.[42] Inflammation of  pancreas results 
in damage‑associated molecular patterns  (DAMPs) 
and growth factors such as vascular endothelial growth 

Table 1: A summary of inflammation and pancreatic cancer
Inflammatory 
factors

Role

NF‑κB Switches from tumor suppressor to tumor promoter 
during an early phase of tumorigenesis

IL‑6 Promotes pancreatic intraepithelial neoplasia
TLRs TLR4 promotes angiogenesis and TLR9‑induced 

epithelial cell proliferation
TGF‑β Plays tumor promoter through genomic instability, 

neo‑angiogenesis, immune evasion, cell motility, and 
metastasis

TNF‑α Activates transcription factor NF‑κB
IL‑1‑α Favors metastatic and invasive behavior of pancreatic 

cells by inducing k63‑linked polyubiquitination of 
TRAF6 leading to activation of NF‑κB

IL‑4 Increases expression of antiapoptotic proteins 
and mediates the downregulation of cell adhesion 
molecules

IL‑8 Mimics VEGF and promotes angiogenesis
IL‑1‑β Stimulates autophagy and induces endoplasmic 

reticulum stress
COX‑2 A key enzyme responding to various cytokines and 

growth factor
SPINK‑1 Mutations lead to premature trypsinogen activation 

and resultant hereditary pancreatitis
ROS Induces oxidative damage to DNA, lipids, and proteins
CP KRAS mutations are found in patients with CP
Autophagy Cleaning of damaged organelles to guarantee 

pancreatic cell survival
CXCL‑12 Enhances growth and restricts immune surveillance 

through local autocrine and paracrine mechanisms

NF‑κB: Nuclear factor‑κB; IL‑6: Interleukin‑6; TLR: Toll‑like receptor; 
TGF: Transforming growth factor; TRAF6: TNF‑receptor‑associated factor 
6; TNF: Tumor necrosis factor; VEGF: Vascular endothelial growth factor; 
COX: Cyclooxygenase‑2; SPINK‑1: Serine protease inhibitor Kazal type‑1; 
ROS: Reactive oxygen species; CP: Chronic pancreatitis
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factor (VEGF) during subsequent healing.[43,44] DAMPs 
that arise from inflammation and cellular injury can 
stimulate TLRs and consequently induce TLR signaling 
that supports an inflammatory microenvironment.[45,46] 
Enhanced expression of  TLRs has been described in 
a variety of  different tumor entities, and depending on 
the cancer type, it could be linked to either favorable or 
poor prognosis.[47‑51] TLR ligands are known to promote 
cancer cell survival, migration, and tumor progression. 
For example, TLR agonists have shown to induce tumor 
cell viability and metastasis in human lung cancer.[52] It 
has been shown that TLR7 or ‑8 expression is associated 
with UICC stage in pancreatic cancer, and stimulation 
increases tumor cell proliferation and resistance to 
the cytostatic agent 5‑fluorouracil in pancreatic cancer 
cells.[48] Endogenous ligands, such as heat‑shock proteins, 
fibrinogen, hyaluronic acid fragments, and high‑mobility 
group box  1, arising from damaging events promoted 
through inflammatory processes, are known to induce 
TLR2,  ‑4, and  ‑9 which play a role in inflammation 
linked to pancreatic cancer.[43,53] TLR4 signaling activates 
the PI3K‑AKT pathway thereby inducing cancer 
cells to secrete multiple inflammatory mediators 
and cytokines.[54‑56] TLR4 promotes angiogenesis of  
pancreatic cancer through upregulating VEGF through 
PI3K‑AKT.[57‑59] TLR9 ligation induced epithelial cell 
proliferation in PSCs.[60] So far, single studies have shown 
that TLR2 is expressed in pancreatic cancer tissue and has 
been suggested as potential target for immunotherapy.[61]

TRANSFORMING GROWTH FACTOR‑β (TGF‑β)

TGF‑β signaling is one of  the 12 core signaling pathways 
involved in pancreatic cancer. Mutation is at least one 
of  the TGF‑β signaling genes which occurs in 100% of  
the pancreatic cancer. TGF‑β plays a tumor suppressor 
in early‑stage pancreatic cancer by promoting apoptosis 
and inhibiting epithelial cell cycle progression but plays 
a tumor promoter in late stage by genomic instability, 
neoangiogenesis, immune evasion, cell motility, and 
metastasis.[62] TGF‑β is a cytokine with a dichotomous role 
in oncogenesis. In normal tissue development and early 
oncogenesis, the TGF‑β signaling complex is a cell cycle 
regulator and induces apoptosis. The canonical pathway 
of  TGF‑β signaling starts with binding two TGF‑β 
receptor type  II  (TGF‑β RII) to two TGF‑β receptor 
type  I  (TGF‑β RI) to activate SMAD pathway.[63,64] The 
receptors dimerize, when the ligand binds, triggering the 
activation of  TGF‑β RI kinase activity and switching it to 
a docking site for SMAD proteins.[65] SMAD2 and SMAD3 
are activated by the TGF‑β RI.[66] Once phosphorylated by 
TGF‑β RI, SMAD2 and ‑3 dimerize forming the SMAD 

2/3 complex.[67] The SMAD 2/3 dimer joins with SMAD4, 
creating a hetero‑hexameric complex.[67] TGF‑β/SMAD4 
signaling pathway controls the signal transduction from cell 
membrane to nucleus and is responsible for a wide range of  
cellular processes, including proliferation, differentiation, 
apoptosis, migration, as well as cancer initiation and 
progression.[65] Therefore, as the core mediator of  canonical 
TGF‑β signaling pathway, SMAD4 plays a pivotal role in 
the switch of  TGF‑β function on tumorigenesis.

TUMOR NECROSIS FACTOR‑α (TNF‑α)

Tumor necrosis factor‑α (TNF‑α) is a master regulator of  
inflammation and a key player in the cytokine network.[68,69] 
TNF‑α is a type II transmembrane protein with signaling 
potential as a membrane‑integrated protein or a soluble 
cytokine released by proteolytic cleavage.[70] There are 
several reports emphasizing the detrimental functions of  
TNF‑α in pancreatic cancer.[71‑73] Previously, it has been 
shown that TNF‑related apoptosis ligand (TRAIL) could 
promote tumor growth in murine pancreatic cancer by 
editing the tumor’s immunological environment.[74] There 
are two specific reports for TNF‑α: TNFR1 and TNFR2. 
TNFR1 is associated with inflammation by activation of  
the transcription factor NF‑κB, JNK, and p38‑MAPK.[75] 
TNFR1 activation causes formation of  caspase‑containing 
complexes and through multiple complex pathways 
including activation of  the proapoptotic Bcl‑2 family 
proteins and reactive oxygen species  (ROS)–inducing 
apoptosis.[76] TNFR2 mediates anti‑inflammatory signaling. 
Egberts et  al.[77] have shown that for human pancreas 
cell lines, stimulation with TNF‑α strongly increased 
invasiveness with only a moderate antiproliferative effect. 
TNF‑α can be produced by tumor cells, and its presence 
in the tumor microenvironment further stimulates the 
production of  other cytokines and chemokines. This 
results in the enhancement of  primary tumor growth 
and metastases, angiogenesis, and chemoresistance, 
and the immune evasive tumor microenvironment is 
established.[68,69]

INTERLEUKIN‑1‑α (IL‑1‑α)

IL‑1‑α is abundantly present in the tumor microenvironment 
and exerts multiple effects in the tumor stroma, including 
tumor‑promoting effects.[78,79] In pancreatic cancer, IL‑1‑α 
is expressed exclusively by the malignant cells of  the tumor 
and is immunohistochemically detected in most tumors.[80,81] 
IL‑1‑α‑positive pancreatic cancer cell lines were shown to 
induce a specific inflammatory profile of  the PSCs, and 
under IL‑1‑α stimulation, PSCs induce migration of  PDAC 
cells in vitro.[58,80] Moreover, induction of  IL‑α expression 
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in pancreatic cancer cell lines has shown to promote 
metastatic and invasive behavior in an orthotopic mouse 
model.[82] In the presence of  IL‑1‑α, a specific expression 
profile was induced in PSCs, which was characterized by 
increased expression of  MMP1 and MMP3 as well as 
reduced levels of  MMP2, TIMP2 and TIMP3. TIMP3 
has previously been found to preferentially inhibit the 
activity of  MMP1 and MMP3,[83] and reduced expression 
of  TIMP3 could enhance their proteolytic activity, resulting 
in remodeling of  the tumor stroma. Induction of  IL‑1‑α 
expression in pancreas cell lines has shown to favor their 
metastatic and invasive behavior in vitro and in preclinical 
models.[82] IL‑1‑α has been detected in a majority of  
pancreatic cancers, and high expression is associated with 
poor clinical outcome.[80] Moreover, binding of  IL‑1‑α 
to its receptor induces k63‑linked polyubiquitination of  
TNF‑receptor‑associated factor 6 and activates TAK1, 
which induces activation of  IKK2/B, c‑Jun N‑terminal 
kinase, and p38 MAPK to activate NF‑κB.[84]

INTERLEUKIN‑4 (IL‑4)

The immune‑modulatory cytokine interleukin‑4 (IL‑4) 
and its associated receptor chains interleukin‑4‑receptor‑α 
(IL‑4‑R‑α) have been shown to be overexpressed in 
pancreatic cancer.[85,86] IL‑4 is mainly produced by 
CD4+ T cells[87] and binds to its transmembrane receptor 
chain  (IL‑4Rα), a 140‑kDa protein. The subsequent 
association with the common γ chain  (γc) forms the 
type‑I‑IL‑4‑receptor  (γc).[88] On nonhematopoietic cells, 
the type‑II‑IL‑4‑receptor  (IL‑4/IL‑4Rα) represents 
the predominant IL‑4 receptor.[88] IL‑4 can exert 
growth‑stimulating and proinvasive effects in several cancer 
cells including the pancreas.[89‑91] It is found abundantly in 
the surroundings of  tumor cells, secreted by infiltrating 
lymphocytes[92] as well as by the tumor cells themselves.[90,91] 
The presence and biological responsiveness of  the IL‑4 
receptor in pancreatic cancer cells by growth inhibition 
is by Pseudomonas exotoxin coupled to IL‑4, as well 
as growth promotion by exogenous IL‑4 in pancreatic 
cancer cells.[86,91] One of  its receptor chains, IL‑4Rα, 
was shown to be overexpressed in several solid human 
tumors and was associated with locally advanced tumor 
staging, increased propensity for metastases, and poor 
overall survival.[93‑95] In pancreatic cancer, exogenous IL‑4 
increased the growth of  cultural cancer cells, possibly 
by stimulating growth‑promoting pathways such as 
MAPKs.[91] Besides, previous studies have demonstrated 
an increased risk for lymph node metastases in a human 
pancreatic cancer specimen with high IL‑4 receptor 
expression.[96] Furthermore, IL‑4 increased the expression 
of  antiapoptotic proteins leading to promoted cell 

survival[90] and mediated the downregulation of  cell 
adhesion molecules, promoting invasiveness.[89] On 
nonhematopoietic cells, IL‑4 will activate STAT3 through 
type‑II‑IL‑4‑receptor.[97] Activated STAT3 can stimulate 
pro‑oncogenic pathways in cell survival, apoptosis, invasion 
and tumor immune surveillance.[98,99]

INTERLEUKIN‑8 (IL‑8)

Interleukin‑8 (IL‑8) is a proinflammatory factor, belonging 
to CXC chemokine family.[100,101] Many studies have 
revealed that pancreatic cancer produces IL‑8, which 
can promote angiogenesis and invasion of  tumors.[102] It 
has been found that IL‑8 can mimic the role of  VEGF, 
transactivate VEGFR2, and promote angiogenesis.[103] In 
acute pancreatitis, IL‑8 is even higher and is considered a 
reliable indicator in evaluating the severity of  inflammation 
and necrosis.[104] Investigation has proved that pancreatic 
cancer cell lines have high levels of  IL‑8 in supernatant 
and high level of  its mRNA expression.[105] Nomura 
et al.[106] demonstrated that high IL‑8 expression was closely 
correlated with the aggressive behavior of  pancreatic 
cancer cells.

INTERLEUKIN‑1‑β (IL‑1β)

A considerable body of  evidence has shown a key role for 
interleukin‑1β  (IL‑1β) in acute pancreatitis.[107,108] IL‑1β 
can stimulate autophagy in macrophages and induce 
endoplasmic reticulum stress[109‑111] which causes the release 
of  Ca2+  in the cytoplasm.[112] This causes subsequent 
activation of  trypsinogen through impaired autophagy in 
acute pancreatitis. Lee et  al.[113] proposed that autophagy 
inhibits IL‑β signaling by downregulating the expression of  
p62, which is an important scaffold in the IL‑1β pathway 
whose increased expression promotes IL‑1β production. 
Exogenous IL‑1β could induce endogenous IL‑1β mRNA 
expression and protein production. Moreover, IL‑1β plays 
an important role in neuroendocrine tumors because it 
directs cancer cells to either neuroendocrine differentiation 
or to development of  adenocarcinoma and increase in 
carcinoembryonic antigen.[114] Barber et al.[115] reported that 
the + 3954C/T polymorphism of  IL‑1β gene predisposes 
to pancreatic cancer, and Cigrovski et al.[116] suggested that 
there is an association between IL‑1β‑511 C/T genotype 
and the susceptibility to pNET, especially functional pNETs.

CYCLOOXYGENASE‑2 (COX‑2)

Cyclooxygenase‑2  (COX‑2) is a key enzyme implicated 
in inflammation and has been reported to be elevated in 
pancreatic cancer.[117] High levels of  COX‑2 is correlated 
with poor prognosis.[118‑120] As an inducible isoform of  
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COX, COX‑2 could respond to various cytokines and 
growth factors.[121,122] Multiple binding elements had been 
identified within the COX‑2 promoter for TP53, NF‑κB, 
and other transcription factors. Structural analysis of  this 
promoter suggested a high affinity for Sp1, as multiple 
GC sequences were identified within the promoter. An 
SP1/COX‑2 signaling axis can be formed by Sp1 which 
transcriptionally activates COX‑2 expression, which has 
significance to pancreatic cancer.[123]

SERINE PROTEASE INHIBITOR KAZAL 
TYPE‑1 (SPINK‑1)

Mutation in the serine protease inhibitor Kazal 
type‑1  (SPINK‑1 gene) increases the chance of  an 
individual in developing chronic pancreatitis  (CP) 
12‑fold.[124] The incidence is autosomal recessive because 
of  the need for mutations in both copies of  the SPINK‑1 
gene, thus one mutant copy is inherited from each parent 
who are unaffected carriers. Mutations in the SPINK‑1 
gene lead to premature trypsinogen activation and resultant 
pancreatitis.[125‑127] SPINK‑mutation‑associated pancreatitis 
is extremely rare, with less than 1% of  carriers proceeding to 
develop pancreatitis.[128] Hereditary pancreatitis significantly 
increases the risk of  pancreatic malignancy.[125‑128] While up 
to 2% of  the general population carry SPINK1 mutations, 
the actual number of  individuals with SPINK‑1‑associated 
pancreatitis is extremely rare, with less than 1% of  carriers 
going on to developing pancreatitis.[129] The prevalence 
of  SPINK1 mutations in patients with idiopathic CP has 
been reported to be between 16% and 23% with a case 
series reporting that SPINK1 mutations were 16.9% more 
common in patients with chronic and recurrent acute 
pancreatitis than controls.[124,128,130] SPINK1 encodes a 
pancreatitis secretory trypsin inhibitor which is released 
by pancreatic acinar cells when there is inflammation. 
Mutation in the SPINK1 gene leads to trypsin uninhibited 
which increases the risk of  pancreatitis.[131] Most patients 
have heterozygous SPINK1 mutations leading to complex 
inheritance patterns, although SPINK1 variants have 
also been associated with autosomal recessive familiar 
pancreatitis, alcoholic pancreatitis and tropic pancreatitis.[132]

REACTIVE OXYGEN SPECIES

Reactive oxygen species (ROS), natural by‑products from 
mitochondrial respiration and other cellular processes, play 
important roles as second messengers in cell signaling.[133] 
However, when present at high concentration, ROS can be 
detrimental to cells by inducing oxidative damage to DNA, 
lipids and proteins.[134] Cells eliminate excess intracellular 
ROS through expression of  antioxidant genes regulated by 

the ROS‑detoxifying machine. In tumor cells, antioxidant 
enzymes are often induced because of  elevated levels 
of  intrinsic ROS.[135] Expression of  mutant oncogenic 
KrasG12D, commonly present in PDAC, keeps the master 
transcription factor NRF2 elevated at the basal rate to 
mount an antioxidant response.[136‑138] There is a shift in the 
redox‑induced oxidative stress, overwhelming their adaptive 
antioxidant capacity and promoting ROS‑mediated cell 
death.[139,140]

CHRONIC PANCREATITIS

CP is a well‑known risk factor for pancreatic malignancy, 
including PDAC.[141‑143] A large, retrospective cohort 
study found a 14‑fold increased risk of  pancreatic cancer 
in patients with CP.[141] A point mutation in the KRAS 
oncogene, which leads to its constitutive activation, is 
considered the initial event in pancreatic carcinogenesis. 
This is followed by mutations in tumor suppressor genes 
p16, p53 and DPC4. It has been shown previously that 
KRAS mutations are found in CP only after a disease 
duration of  more than 3 years.[144] A hypothesis has been 
proposed by Real et al.[145] in which KRAS mutation might 
favor the appearance of  dysplasia only when occurring in 
initiated pancreatic cells harboring allelic loss in a crucial 
tumor suppressor gene, such as INK4A or Tp53, while 
halting progression when occurring in a truly normal 
cell. In pancreatic cancer tissue, the frequency of  point 
mutation in the 12th codon of  KRAS genes ranges from 
72% to 95%[146‑149] and from 50% to 90% in pancreatic 
juice.[150‑154] Many studies have also shown that this mutation 
is detectable in circulating DNA of  patients with pancreatic 
cancer, though at a lower frequency.[155‑157]

AUTOPHAGY

Pancreatitis facilitates and accelerates the transformation 
of  pancreatic cells if  the oncogene KRAS is mutated.[158] A 
fundamental question which remains without clear answers 
in the field of  pancreatology is the mechanisms by which 
pancreatitis promotes the formation of  preneoplastic 
lesions (PanIN). A part of  the answer to this question is 
provided by studies that show autophagy is systematically 
activated during pancreatitis, often to participate in the 
protection of  pancreatic cells, to curb the progression of  
the disease, and to help during its recovery phase.[159,160] 
In pancreatic acinar cells, induction of  autophagy is 
accompanied by the activation of  gene expression 
Vacuole Membrane Protein 1 (VMP1). VMP1 encodes a 
transmembrane protein that was identified and cloned in 
2002 precisely because of  its extraordinary activation during 
the acute phase of  the pancreatitis.[161] Overexpression 
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of  VMP1 can trigger autophagy in many cells.[161‑164] 
VMP1 is involved in the formation of  the phagophore[164] 
after its direct interaction with the autophagic protein 
becline‑1,[162] the protein tumor protein p53‑inducible 
nuclear protein 2  (TP53INP2),[165] and possibly its 
counterpart  TP53INP1.[166] During pancreatitis, the 
physiological role of  autophagy consists mainly of  cleaning 
the organelles damaged to maintain homeostasis of  the cell 
guaranteeing better pancreatic cell survival.[167] It is likely that 
at least one part of  the protective effect of  autophagy during 
the acute phase of  the disease is related to sequestration of  
zymogen grains that contain the enzymes’ digestive organs 
responsible for self‑digestion during pancreatitis. This effect 
would have a dual mission for pancreatic cell: on one hand, 
zymophagia (autophagy zymogen granules) would reduce 
the availability of  digestive enzymes, and, on the other 
hand, these organelles could satisfy the exceptional need 
of  metabolism that accompanies cell growth during the 
regeneration phase.[168] The expression of  VMP1 protein 
triggers autophagy which is induced and maintained by the 
mutation of  oncogene KRAS. This is strongly strengthened 
during pancreatitis. A hypothesis states that autophagy is 
more likely to be induced by pancreatitis, based on the 
overexpression of  VMP1, ensuring the energetic need of  
cells presenting an active mutation of  oncogene KRAS, thus 
allowing their transformation.[169] The use of  chloroquine, 
an inhibitor of  the autophagic flow,[170] reverses the effects 
of  VMP1 on pancreatic cancer initiation induced by 
oncogene KRAS.[169] Such observations reinforce the idea 
that the pathways that regulate autophagy are activated 
by pancreatitis and can later contribute to the process of  
pancreatic carcinogenesis. The concept that inhibition 
of  autophagy could be used to prevent progression of  
prepancreatic neoplastic lesions to pancreatic cancer is 
further supported in the study and more studies are required 
to shed light on this.

In addition, Yang et al.[171] showed that when autophagy was 
inhibited in tumor itself, tumor regression was observed 
and there was partial mediation by macrophages. Further 
studies are required to show benefits of  combining 
macrophages’ modulators with autophagy inhibitors.[172,173] 
As shown previously,[174] in the study by Yang et  al., it 
was found that autophagy could regulate macrophage 
infiltration by degradation of  inflammation regulators 
by directly affecting cytokine secretion. However, the 
limitation of  the study by Yang et al.[171] is that the impact 
of  autophagy inhibition was shown only in stellate cells 
other than different host cell types in pancreatic cancer 
microenvironment.[175] More studies are required to guide 
trials with newer autophagy inhibitors.

CXCL‑12

CXCL‑12 is a chemokine also known as stromal‑derived 
factor 1 α  (SDF‑1 α). It is known to be the ligand of  
CXCR4 receptors.[176,177] High expression of  CXCL‑12 and 
CXCR4 receptor activation in tumors enhances growth 
and restricts immune surveillance in the tumor through 
local autocrine and paracrine mechanisms.[178] This axis 
promotes epithelial–mesenchymal transition  (EMT) and 
increases the invasive phenotype of  pancreatic cancer 
cells.[179,180] It has been shown that CXCL‑12/CXCR44 
interactions enhance metastatic spread to sites of  high 
CXCL‑12 expression by providing chemotactic survival and 
proliferative signals that guide implantation and support 
growth.[178,181] The activation of  CXCR4 in pancreatic 
cancer leads to increased expression of  Smoothened, Gli1, 
and EMT markers.[179] There is also production and release 
of  sonic hedgehog (SHH) to potentiate paracrine signaling 
interactions with stromal cells.[179,182] This CXCR4 and SHH 
interaction contributes to extensive stromal deposition 
and creates a physical barrier that may explain the lack 
of  vasculature in pancreatic tumors even with increased 
expression of  VEGF. In addition, peripheral and central 
CXCL‑12‑mediated signaling exert contrasting effects for 
nociception, that is, CXCL‑12‑mediating analgesia through 
modulation of  Schwann cells. This explains decreased pain 
sensation among patients with pancreatic cancer who bear 
increased pancreatic gliosis with cellular hypertrophy of  
pancreatic glia.[183]

IMMUNE CHECKPOINT INHIBITION

Recently, checkpoint inhibitors have been investigated 
as a novel mode of  cancer treatment as tumor cells 
often take advantage of  immune checkpoints to avoid 
detection and being under attack.[184] The potential 
advantage of  immunotherapy is its ability to detect 
specific tumor cells, creating a durable response and much 
better survival‑prognosis.[185] Royal et al.[186] noted delayed 
progression in one patient with 3 mg/kg of  ipilimumab, 
and Le et al.[187] reported an overall survival of  5.7 months 
in patients treated with ipilimumab and GVAX vaccine. 
Moreover, Aglietta et  al.[188] observed a median overall 
survival of  7.4  months with tremelimumab. However, 
immunotherapy has little success with pancreatic cancer 
because it is a highly aggressive malignancy, characterized 
by delayed diagnosis and treatment resistance.[189] The 
tumor microenvironment is composed of  a dense fibrotic 
stroma of  extracellular matrix components and a variety of  
inflammatory cells.[190] This gives the ability of  pancreatic 
cancer to evade host immune surveillance[191] and accounts 
for one of  the reasons for poor effect of  immunotherapy.
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CONCLUSION

Pancreatic cancer is a deadly cancer worldwide. 
Inflammation has emerged to be a key mediator of  
pancreatic cancer development. Further research is needed 
to elucidate the mechanisms through which inflammation 
contributes to tumor initiation and progression.
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