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Simple Summary: The functional characterization of the BRD4-NUT fusion protein as the driver
of the highly aggressive NUT Carcinoma is fundamental to the understanding of the mechanisms
responsible for the genome-wide hyperacetylation of histones prior to their eviction during the final
stages of sperm cells maturation.

Abstract: In maturing sperm cells, a major genome re-organization takes place, which includes a
global increase in the acetylation of histones prior to their replacement by protamines, the latter being
responsible for the tight packaging of the male genome. Understanding the function of the oncogenic
BRD4-NUT fusion protein in NUT carcinoma (NC) cells has proven to be essential in uncovering
the mechanisms underlying histone hyperacetylation in spermatogenic cells. Indeed, these studies
have revealed the mechanism by which a cooperation between BRD4, a bromodomain factor of the
BET family, NUT, a normally testis-specific factor, and the histone acetyltransferase p300, induces the
generation of hyperacetylated chromatin domains which are present in NC cells. The generation of
Nut ko mice enabled us to demonstrate a genetic interaction between Nut and Brdt, encoding BRDT, a
testis-specific BRD4-like factor. Indeed, in spermatogenic cells, NUT and p300 interact, which results
in an increased acetylation of histone H4 at both positions K5 and K8. These two positions, when both
acetylated, are specifically recognized by the first bromodomain of BRDT, which then mediates the
removal of histone and their replacement by protamines. Taken together, these investigations show
that the fusion of NUT to BRD4 in NUT Carcinoma cells reconstitutes, in somatic cells, a functional
loop, which normally drives histone hyperacetylation and chromatin binding by a BET factor in
spermatogenic cells.

Keywords: NUT midline carcinoma; NUT carcinoma; spermatogenesis; BRDT; BRD4; BRD3; bromod-
omain; p300; CBP; NUTMI; histone hyperacetylation; protamine; histone-to-protamine replacement;
acylation; butyrylation; crotonylation

1. Introduction

NUT (Nuclear protein in Testis) is a testis-specific factor originally discovered as
a chromosomal fusion partner of BRD4 and BRD3, both members of the BET double
bromodomain-containing family of proteins, in an aggressive cancer known as NUT Carci-
noma (NC) [1,2].

These observations suggested that NUT could be a central element in the underlying
oncogenic molecular mechanisms. However, besides the specific expression of its encoding
gene in testis, nothing was known on the physiological and pathological functions of
NUT. The presence of members of the BET (Bromodomain and Extra-Termina) family,
especially BRD4 (bromodomain containing 4), in fusion with NUT in a large number of
NC cancer cases, suggested that the oncogenic activity driven by the BRD4/3-NUT fusion
proteins could involve a yet unknown cooperation between the two fusion partners. More
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specifically, since the proteins of the BET family are known acetylation readers, this strong
bias towards bromodomain factors among all the identified NUT fusion partners, suggested
that histone acetylation and acetylation reading factors could be important components of
the underlying oncogenic mechanism [3]. Furthermore, following this work, and because
of its physiological context of expression in male germ cells, the hypothesis was made
that NUT could also play a role in histone hyperacetylation associated with genome-wide
histone-to-protamine replacement, which occurs in the late phases of spermatogenesis [4].

Histone-to-protamine replacement is one of the most spectacular known large-scale
genome packaging reorganizations known in eukaryotes [5]. Despite its dramatic nature
and its essential role in procreation and species perpetuation, the molecular basis of this
remarkable and unique genome reorganization has remained a black box in biology for
many years.

Early investigations, which aimed at deciphering the molecular basis of these events
using mouse models, revealed that the process of histone-to-protamine replacement is
associated with the occurrence of a wave of histone hyperacetylation in mice [6], as well as
in various other species (please see [7], and references therein).

After the ground-breaking discovery that bromodomains are binders for acetylated his-
tones by Ming-Ming Zhou and colleagues [8], our laboratory hypothesized that bromodomain-
containing factors could also mediate events which are dependent on histone hyperacetyla-
tion in post-meiotic haploid spermatogenic cells (or spermatids) in relation to histone-to-
Protamine replacement.

Following this hypothesis, an in silico approach was used to identify putative testis-
specific bromodomain-containing factors as possible candidates capable of acting on hy-
peracetylated histones in spermatids. This strategy identified Brdt (bromodomain testis-
specific), a gene encoding a testis-specific member of the BET family, whose function was
completely unknown at that time, as a possible candidate [9]. Functional investigations
that followed revealed the capacity of ectopically expressed BRDT to dramatically compact
and reorganize chromatin in response to chromatin hyperacetylation induced by histone
deacetylase (HDAC) inhibitor, TSA, treatment [9,10]. Further structural studies showed
that BRDT’s first bromodomain (BD1) presents the remarkable property to specifically bind
histone H4 tail bearing simultaneous acetylation at K5 and K8 [11]. Since the co-acetylation
of these two lysines is a signature of hyperacetylated H4 [12,13], these studies reenforced
our hypothesis that BRDT could be a factor acting on hyperacetylated chromatin at the
time of histone-to-protamine replacement. This ability of BRDT to bind hyperacetylated H4
was also confirmed in vivo [14] and later BD1 was also shown to bind nucleosomal DNA,
in addition of H4K5acK8ac, increasing the stability of its interaction with hyperacetylated
H4-bearing nucleosomes [15]. Finally, by investigating various mouse Brdt genetic mod-
els, our laboratory confirmed the role of BRDT’s BD1 in the removal and replacement of
histones in spermatids [10].

However, despite this progress in our understanding of the connection between
H4 hyperacetylation and histone-to-protamine replacement, the origin of the histone H4
hyperacetylation wave has remained obscure.

In order to obtain a full understanding of the process of this acetylation-dependent
histone eviction, it appeared of crucial importance to discover the origin of spermatid-
specific H4 hyperacetylation.

Following a series of unsuccessful attempts in our laboratory to find mechanisms
underlying H4 hyperacetylation in spermatids, we thought that functional studies of the
fusion protein BRD4-NUT in cancer cells could shed some light on the connection between
histone acetylation and acetylation-dependent events in spermatids. Indeed, since NUT,
a testis-specific factor of unknown function, is fused to and cooperates with BRD4 in the
context of NC, the hypothesis was made that, in its physiological context, NUT cooperates
with BRDT, and that the NC chromosomal translocation observed in the context of somatic
cells cancer actually re-establishes this cooperation.
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Hence, functional studies of BRD4-NUT were undertaken [3] with the hope that
the understanding its function in the context of NC would also provide clues to fully
understand the role of histone hyperacetylation in spermatids.

This reasoning turned out to be correct, since these early investigations of the BRD4-
NUT fusion protein allowed our laboratory to unravel the mechanism by which this
functional cooperation between NUT and BRD4 could support the oncogenic activity of
the fusion protein. Indeed, the data obtained showed that BRD4-NUT drives chromatin hy-
peracetylation through a feedforward loop, resulting in the generation of hyperacetylated
chromatin foci. This loop involves an increased histone acetylation by an interaction be-
tween NUT and the histone acetyltransferase (HAT) p300 and the binding of this acetylated
chromatin by BRD4 [3] (Figure 1).

Hyperacetylated chromatin

Figure 1. BRD4-NUT and p300 cooperate to induce hyperacetylated chromatin domains through a
chromatin acetylation/binding loop feedforward mechanism. The mechanism schematized is based
on data published by Reynoird and colleagues [3]. The scheme represents our understanding of the
mechanism underlying the initiation and propagation of hyperacetylated chromatin domains leading
to the creation of multiple BRD4-NUT /p300-hyperacetylated chromatin foci. The initiation of the pro-
cess corresponds to the binding of acetylated nucleosomes by BRD4, the recruitment of p300 by NUT
and the enhancement of p300 catalytic activity, leading to the acetylation of adjacent nucleosomes.
These new sites of histone acetylation recruit additional BRD4-NUT molecules, which in turn recruit
p300 and a feedforward loop of histone acetylation-BRD4-NUT binding starts. The BRD4-NUT/p300
dependent histone acetylation propagation encounters opposing deacetylase activities constraining
the acetylation propagation. The limits of the acetylated chromatin foci are dynamic and could move
forward or backward depending on the opposing activities of acetylation and deacetylation.

These data also strongly suggest that NUT could be an excellent candidate factor,
which could drive the observed histone hyperacetylation associated with histone replace-
ment in spermatids.
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A research program was subsequently developed to investigate the role of NUT in
the histone hyperacetylation wave observed prior to histone removal in the physiological
context of haploid male germ cells.

2. NUT Is Specifically Expressed in Post-Meiotic Phases of Spermatogenesis

Spermatogenesis is a highly specialized differentiation program encompassing three
characteristic stages, which include mitotic (or pre-meiotic), meiotic and post-meiotic
phases. In the testis, a population of diploid adult stem cells, known as spermatogonia, is
either maintained as stem cells or committed to differentiation following mitotic divisions.
The committed spermatogonia-derived cells become spermatocytes while they undergo
two meiotic divisions to generate haploid post-meiotic cells named spermatids.

The post-meiotic maturation of spermatids involves several major morphological
and functional changes including a genome-wide chromatin remodelling and genome
reorganization, resulting in the extreme compaction of the male genome in mature sperm
cells [5,16,17]. Indeed, in these cells, the universal mode of eukaryotic chromatin organiza-
tion, based on units named nucleosomes (each nucleosome consists of an octamer of 4 core
histones, H2A, H2B, H3 and H4, around which the DNA is wrapped) shifts toward a new
genome packaging structure based on the association of DNA with non-histone small basic
proteins called protamines [5]. This histone-to-protamine transition allows a very tight
compaction of the genome in mature spermatozoa, which is essential to protect the paternal
genome during its transportation out of the parent organism through harsh environmental
conditions in order to reach the female gamete, the oocyte [16].

The molecular basis of the essential process of histone-to-protamine replacement has
remained one of the most obscure of all biological phenomena. The initial knowledge of
the molecular basis of histone-to-protamine replacement was limited to only a few facts
including a genome-wide hyperacetylation of histones [7] prior to their replacement and the
expression of several highly specific histone variants by spermatogenic cells [17]. However,
when this project was started in our laboratory, nothing was known about the mechanisms
driving this histone hyperacetylation, or its role in histone eviction, or the role of histone
variants.

The early published work on the activity of the BRD4-NUT fusion protein [3] identified
NUT as an excellent candidate in driving the histone hyperacetylation associated with
histone eviction in spermatids, which prompted our laboratory to specifically consider its
role in this process during mouse spermatogenesis.

This hypothesis was reenforced by considering the pattern of NUT expression during
spermatogenesis. Indeed, at the mRNA as well as protein levels, NUT first appears in
post-meiotic cells, just at the time when histone hyperacetylation starts [4].

3. NUT Is Essential for Histone H4 Hyperacetylation and Histone-to-
Protamine Replacement

To test our hypothesis, Nut ko mice were generated. Nut ko male mice turned out to be
infertile, with a total absence of spermatozoa. A more detailed analysis of spermatogenesis
demonstrated that spermatids disappear at the time of protamine assembly and histone
displacement [4]. This observation suggests that the absence of NUT could create an acute
cell toxicity when cells prepare to set up the process of histone-to-protamine replacement.

Because of a possible role for NUT in histone hyperacetylation, an unbiased quantita-
tive and qualitative proteomic analysis comparing the acetylation levels for each histone
lysine position between wild-type spermatid cells expressing NUT and their Nut ko coun-
terparts was carried out. Remarkably, this proteomic analysis, which was confirmed by
immunoblotting, demonstrated that NUT is required for the acetylation of histone H4,
specifically at K5 and K8. Since, as previously mentioned, the co-occurrence of H4K5acK8ac
is known as a signature of hyperacetylated H4 and that it is required for the binding of
BRDT itself involved in downstream events [10], these results supported the hypothesis that
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NUT is a critical actor in mediating the observed histone hyperacetylation in spermatids at
the time of histone eviction [4].

4. Genetic Interaction between NUT and BRDT

An unbiased histone acetylome analysis identified H4 lysine 5 and lysine 8 (H4K5K8)
as particularly sensitive to NUT-mediated H4 acetylation [4]. Considering that the previous
structural studies of BRDT’s bromodomains demonstrated that BRDT’s BD1 precisely
recognizes H4K5acK8ac [11], these new results appeared very relevant and exciting.

This observation suggested that BRDT’s action in spermatids would be dependent
on the prior action of NUT, and therefore the prediction was that spermatids from Nut ko
mice should show a phenotype similar as that of spermatids from Brdt delta-BD1 mice,
expressing a BRDT mutant protein deleted for its first bromodomain (BRDT delta-BD1).
Previous investigations had shown that spermatids expressing BRDT delta-BD1 are unable
to replace their histones [10]. In these cells, although protamines are normally expressed,
they are not incorporated and instead they accumulate around the nucleus [10,18]. Re-
markably, exactly the same phenotype is observed in Nut ko spermatids. Indeed, these
cells express protamines but, as observed in Brdt delta-BD1 spermatids, these protamines
remain around the nucleus and the histones are not displaced [4].

Hence, these observations strongly support the hypothesis that NUT and BRDT
function along the same molecular pathway, leading to histone-to-protamine replacement.
The requirement of NUT to induce the acetylation of H4 on K5 and K8 and the ability
of BRDT BD1 to specifically recognize and bind H4K5acK8ac and to displace histones,
perfectly explain the observed genetic interaction between NUT and BRDT (Figure 2).

Post-meiotic differentiation
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Figure 2. NUT is specifically expressed in post-meiotic spermatogenic cells and drives histone H4
hyperacetylation preceding histone eviction. The mechanism schematized is based on data published
by Shiota and colleagues [4]. NUT, which is specifically expressed in spermatids, recruits CBP/p300,
which are already expressed in all spermatogenic cell types. NUT stimulates their catalytic activity
leading to the acetylation of H4 on both its lysines 5 and 8, which is required for the binding of
the first bromodomain of BRDT. The binding of BRDT to H4K5acK8ac leads to the replacement of
histones by protamines and the final compaction of the haploid male genome.
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5. NUT-Mediated Histone H4 Hyperacetylation by p300

In vitro experiments using purified p300, histone octamer as a substrate, and the
subsequent histone acetylome analysis, showed that, as expected, p300 preferentially
acetylates H3, particularly at positions K18, K23 and K27, with limited activity on H4 tail
lysines [4]. Upon the addition of a purified NUT fragment capable of interacting with
p300, H4 K5 and K8 also become remarkably acetylated [4]. This in vitro experiment nicely
reproduces the in vivo situation, where the expression of NUT is associated with a clear
enhancement of H4K5K8 acetylation. Additionally, the immunoprecipitation of NUT and
the proteomic analysis of its associated proteome, confirmed the association of both p300
and CBP with NUT in spermatids. Therefore, from these experiments, it is possible to
confirm that the activation of the Nut gene expression in spermatids, and the recruitment
of CBP/p300 by NUT are major driver elements in inducing histone H4 hyperacetylation
and histone replacement.

The functional interaction between NUT and CBP/p300 was further supported when
the transcriptomic of Nut ko cells was compared to the transcriptomic of a mouse model
showing a slight decrease in CBP/p300 expression in their spermatids. Indeed, a significant
overlap was observed between genes affected by CBP/p300 down-regulation and genes
affected by the absence of NUT [4]. CBP/p300 protein down-regulation in spermatids
was obtained following a conditional ko of CBP and p300 in post-meiotic spermatogenic
cells [19].

Based on these studies it is possible to propose that histone hyperacetylation in
spermatids is directed by the ubiquitously expressed HATs, CBP and p300, which are
present at all stages of spermatogenesis [19]. The specific activation of NUT in spermatids
allows a switch of CBP and p300 towards a new activity, which is the targeted acetylation
of H4 k5 and K8, creating binding sites for BRDT at a genome-wide scale (Figure 2).

6. Conclusions and Future Perspective

The discovery of BRD4-NUT as a p300 mobilizing hyperacetylator machinery [3] shed
light on the still obscure mechanism of histone hyperacetylation during late spermatogene-
sis [4].

In both NUT carcinoma cells and post-meiotic male germ cells, these investigations
highlight a role for NUT in directing a p300-dependent histone acetylation and chromatin-
binding by a bromodomain containing factor.

In spermatids, it is the NUT-p300 complex that directs a genome-wide histone H4
hyperacetylation, providing binding sites for BRDT’s first bromodomain BD1, which acts
downstream of this acetylation wave. Interestingly, the three actors are also at play in
NUT carcinoma cells, involving the expression of the BRD4-NUT fusion protein in the
generation of foci of hyperacetylated chromatin characterizing NC cells. In this case, after
the initial binding of BRD4-NUT to an acetylated chromatin site (nucleation phasis), NUT
recruits p300, leading to local hyperacetylation and the recruitment of additional BRD4-
NUT, initiating a feedforward mechanism, which results in the spreading of chromatin
acetylation and BRD4-NUT binding (Figure 1). In the case of BRD4-NUT, the fusion of the
two proteins creates an obligatory cooperation between BRD4 and the NUT-p300 complex.
In spermatids, a similar cooperation between NUT-p300 and BRDT is observed, but a major
difference is that the three actors are free and are not bound to stay together (Figure 2).

The question is why, in NC, the fusion of BRD4 and NUT appears as an obligatory
event in ensuring its oncogenic activities. One reason is that NUT is a testis-specific gene
and, hence, the chromosomal fusion allows for its expression under the ubiquitous BRD4
promoter. The second reason could be that, if BRD4 and NUT were not fused, although
NUT could recruit and activate CBP/p300, there would be no anchoring point for this
complex, since NUT does not interact with BRD4; the free NUT-p300 complex would be
diluted all along numerous CBP/p300 histone and non-histone substrates.

The oncogenic role of an anchoring point for the localized recruitment of the NUT-p300
complex could also be at play in other NUT fusion oncogenes, involving a variety of non-
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BET partners [20]. In most of these cases, the NUT fusion partners are chromatin-binding
and transcriptional regulators and, hence, even if they cannot ensure the hyperacetylator
function of the BRD4-NUT fusion protein, they would be able to sequester CBP/p300 at the
anchoring points, leading to a global histone hypoacetylation outside of the recruitment
points. Indeed, in the case of BRD4-NUT, the sequestration of p300 in BRD4-NUT foci was
previously shown to impair p53 acetylation signalling [3] and to lead to a general histone
hypoacetylation due to the sequestration of CBP/p300 in the BRD4-NUT foci [21].

Therefore, the sequestration of CBP/p300 by the NUT fusion oncogenes could lead
to the impairment of the CBP/p300 signalling process, which could contribute to the
underlying oncogenesis.

In the case of the BRD4-NUT fusion, an interesting general conclusion of these investi-
gations is that a specific mechanism, involving a cooperation of two factors, a BET factor
and NUT, that normally operates in the very particular context of spermatids, has been
awakened in somatic cells due to a chromosomal translocation event.

Our full understanding of the oncogenic activity of BRD4-NUT and the underlying
mechanism now allows us to envision specific therapeutic strategies based on the inhibition
of BET bromodomains, CBP/p300 and HDACs by cell permeable small molecule inhibitors.

The work on spermatogenesis and functional investigation of BRDT has also revealed
another property of BET factors that could be exploited to improve the response of the
BRD4-NUT fusion protein to specific treatments, specifically to BET inhibitors.

Indeed, it is now clearly established that, in addition of acetylation, histones could
be modified by a series of competing acylations including propionylation, butyrylation,
crotonylation, succinylation, etc. [22]. Investigations from our laboratory and other groups
showed that most of the bromodomain-containing factors, and BETs in particular, are
unable to bind histones modified with longer chain acyl groups [23-26]. Accordingly,
we observed that H4-bearing butyrylation at K5 (H4K5bu) escapes the BRDT-dependent
histone removal in spermatids [23].

Based on these data, it is possible to hypothesize that a dynamic exchange between
acetyl and acyl groups at position H4K5 should destabilize the binding of BRDT or other
BETs to chromatin and increase their dynamics. A stable and permanent acetylation
would immobilize BET factors on chromatin, while a permanent longer chain acylation
(butyrylation, crotonylation) would inhibit BET factor binding. Both of these situations
would be associated with decreased activity of these factors.

Finally, using the context of B Acute Lymphoblastic Leukaemia (B-ALL), it has recently
been demonstrated that the metabolism-driven H4K5 acetylation/acylation ratio is able
to tune the stability of the binding of BRD4 with chromatin [26]. These data showed
that a metabolic activity that favours histone H4K5 butyrylation and crotonylation over
acetylation increases BRD4 dynamics and sensitivity to the BET inhibitor JQ1. By using a
BRD4-NUT expressing cell model, it was indeed possible to directly show that an increase
in the butyrylation-crotonylation/acetylation ratio increases the motility and dynamics of
BRD4-NUT chromatin binding.

Based on these observations, we can predict that cell metabolic pathways that favour
the long chain acylations of histones would increase the response of BRD4-NUT to BET
inhibitors (Figure 3).

Overall, these investigations highlight how the deep understanding of the biology of
BET factors, NUT and CBP/p300 and the consideration of their physiological context of
action, could help understanding their involvement in pathologies, specifically cancer, and
vice versa.

In our case, it was the willing to decipher the molecular basis of histone H4 hyper-
acetylation in the physiological context of the histone-to-protamine replacement in male
germ cells that led us to discover the functional interconnexion between BRD4, NUT and
p300 in the context of NUT Carcinoma cells [3].
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Figure 3. Metabolically controlled variations of the H4K5 acylation/acetylation ratio regulate the
dynamics of BRD4-NUT chromatin binding. The mechanism schematized is based on data published
by Gao and colleagues [26]. The activation of mitochondrial activity, especially an enhanced fatty acids
beta-oxidation, leads to increased levels of butyrylation and crotonylation of H4 lysine 5 compared
to its acetylation. Since BRD4 bromodomains are unable to bind H4K5bu or H4K5cr, the relative
increase of these two modifications loosens the interaction between BRD4 and acetylated chromatin,
leading to an increased dynamics of BRD4-NUT binding in the foci. Gao and colleagues showed
that, under these conditions, BRD4 becomes more sensitive to the BET bromodomain small molecule
inhibitor, JQ1. Therefore, based on these data, one can speculate that enhancing different metabolic
pathways favouring histone >3 carbon chain acylations, would make BRD4-NUT expressing NC
tumours more sensitive to a BET inhibitor treatment.

In many other cases of somatic cancers where testis-specific genes are aberrantly
expressed [27], the knowledge of their physiological role in male germ cells could similarly
shed light on new oncogenic mechanisms and give a basis for the development of specific
therapeutic strategies.
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