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Innate immunity serves as a first line of defense against
infectious agents, and germ-line-encoded pattern recognition
receptors detect stressed and infected cells and elicit potent
effector activities that accomplish efficient microbe contain-
ment. Recent evidence demonstrates that these pattern-
sensing systems are also applicable to the recognition of
tumor-derived stress-related factors. In particular, toll-like
receptors and cytosolic sensors for DNA and RNA recogni-
tion utilize endogenous host elements containing microbial
components, danger-associated molecules, and/or nucleic
acids to stimulate innate signaling pathways and generate
protective immune responses against nascent tumors in
animal models and humans. In this review, we describe
recent advances and perspectives about antitumor mecha-
nisms and clinical application of innate immune signals and
pathways.

Introduction

Innate immunity serves as a first line of defense against infection,
as germ-line encoded pattern recognition receptors (PRRs) rapidly
detect stressed or infected cells, thereby triggering potent effector
mechanisms aimed at accomplishing efficient microbe contain-
ment.1 Although the importance of innate immune signals in
sensing microbes has been established, the molecular machineries
whereby innate immunity communicates with oncogenic stresses
and regulates tumorigenesis remain elusive. In this review, we
oversee the role of each PRRs and their effectors in generating
protective antitumor immunity and their potential clinical
application.

The Role of TLRs in Antitumor Immunity

Toll-like receptors (TLRs) serve as pattern recognition receptors
that recognize conserved structures of pathogens and endogenous
compounds known as “danger signals.”2 Since the initial observa-
tion by William Coley that dying bacterial components display
antitumor capacities, it has been becoming apparent that TLRs
function as essential and minimal elements in boosting antitumor
immunity as adjutants by utilizing various sets of microbial

components and endogenous host elements. Most notably, TLR
stimulation breaks the tolerogenic status of antigen-presenting
cells (APCs), such as macrophages and dendritic cells (DCs), to
tumor self-antigens, through the upregulation of costimulatory
molecules and proinflammatory cytokines, and triggers innate and
adaptive arms of effector responses.3,4 In particular, type I inter-
ferons (IFNa/β), upon the recognition of subsets of TLR (TLR3,
TLR4, TLR7, TLR8, TLR9), has been fully defined as their
tumor suppressive effectors.5,6 Mice with targeted mutations of
the type I interferon receptors or wild type animals administered
neutralizing antibodies to type I IFN manifested enhanced
susceptibility to chemical carcinogenesis and tumor transplanta-
tion.7 Protection in these systems involved host immunity and p53
tumor suppressor function in cancer cells.8 Thus, IFNa/β mediates
critical though distinct functions in tumor immune surveillance.

Furthermore, recent studies have explored that TLR ligands in
antigen-presenting cells preferentially target ingested apoptotic
cells to endosomal pathways in dendritic cells, and support
forming peptide-MHC class II complex and enhance the recogni-
tion of immunogenic targets by antigen-specific T lympho-
cytes.9,10 In this regard, the administration of TLR agonists may
sense APCs to facilitate cross-presentation of immunogenic tumor
antigens and trigger specific T cell responses (Fig. 1).

Consistent with the positive role of TLR in delineating
protective antitumor immunity, the possibility of TLR ligands as
anticancer therapies has been under intense investigation in
preclinical studies. The stimulation of TLR8 with its ligands (Poly-
G3 and ssRNA compounds) markedly attenuated suppressive
activities of regulatory Foxp3+T cells, which serve as key players in
restraining effective antitumor immune responses.11,12 Therefore,
the manipulation of TLR8 signaling and functions may be suitable
therapeutic strategies for restraining Treg cell functions and
improving the efficacy of cancer immunotherapy.

The application of synthetic TLR7 agonists, imiquimod, effec-
tively eradicates superficial basal cell carcinomas.13 TLR7 also
serves as a receptor for certain sets of siRNA to stimulate IFNa
secretion in pDC, enabling simultaneous target of oncogene and
innate immunity.14

As mechanisms of action, TLR8 and TLR7 similarly causes
secretion of IFN-a and other proinflammatory cytokines through
activation of MyD88-TRAF6 mediated pathways in plasmacytoid
dendritic cells (pDC), and stimulate various components of innate
and adaptive immune systems.12 Moreover, TLR-7/8 agonists also
render dendritic cells to acquire cytotoxic activities against tumor
cells in TRAL-dependent mechanisms.15
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CpG oligonucleotide (ODN) that target TLR9 signals are also
evaluating as a suitable candidate to stimulate antitumor immune
responses. CpG ODN is composed of three subclasses that have
different structural and biological properties: In particular, A-class
CpG ODN triggers massive secretion of IFNa in pDC, and B-class
ODN stimulates B cells but induce relatively little pDC secretion
of IFNa. Any class of CpG oligonucleotide stimulates immune
cells that constitutively express TLR9, as B cells and pDCs, with a
predominant pattern of Th1 cytokine and chemokines secretion,
serving TLR9 agonists as strong Th1 vaccine adjuvant.16 However,
recent studies have revealed that A-class ODN mainly targets pDC
to secrete IFNa and activate NK cells, while simultaneously mediate
immune suppressive effects through induction of indolamine 2,3-
dioxygenase (IDO)17,18 and generation of Tregs.19 On the other
hands, B-class ODN sensitizes naive B cells to antigenic stimuli and
promotes the differentiation them into antibody-producing plasma
cells, driving strong Th1 T cell responses.

Several combinatorial strategies of CpG ODN with peptide
vaccines, cell vaccines, chemotherapy, showed some clinical

efficacy in reducing tumor burden and prolonging patient’s
survival.20,21 These encouraging results in clinical trials with
CpG ODN provides a rationale of using TLR agonists to
accelerate antitumor reactions in patients, although it remains
unclear whether they are sufficient to overcome multiple
layers of immune evasion systems accumulated at tumor
microenvironments.

TLR4 agonists also create pro-inflammatory milieu at tolero-
genic tumor environments, through production of various
cytokines and chemokines. The therapeutic efficacy of adoptive
antitumor immunotherapy relied on the activation of enteric
microbiota and subsequent activation of TLR4 signals.22

Furthermore, TLR4 signals trigger immunogenicity of apoptotic
tumor cells induced by chemotherapeutic agents, due to interaction
with HMGB-1. Cancer patients who carried a TLR4 loss-of-
function allele relapsed much quicker following chemotherapy
compared with those who have wild type copies, demonstrating
that TLR4 agonists potentiate immunogenicity and clinical
efficacies of anticancer therapies in certain subsets of patients.23,24

Figure 1. TLR and DC cross-presentation of tumor antigens. Upon pahgocytosis of dying tumor cells, the cargo is internalized into phagosomes.
If microbial or endogenous danger signals serving as TLR agonists are contained in tumor cells, the engagements of TLR along with phagosomal
membranes facilitates the assembly of phagosomal-lysosomal fusion machinery and the processing of tumor-associated antigens, and makes MHC class
II amenable to binding of antigenic peptides. The resultant peptide-MHC comlex enables tumor-specific CD4+T cells to recognize and kill tumors.
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TLR3 agonists activate IFN and NFkB signals, and stimulate
antitumor immune responses. Myeloid dendritic cells (mDC)
stimulate IFNc secretion and cytotoxicity of NK cells through
coordinated interplay of TLR3 and MDA5-dependent dsRNA
recognition.25,26 The TLR3 agonists showed an excellent
antitumor efficacy in preclinical models.27,28

Taken together, these findings highlight the therapeutic
potential of TLR agonists as new types of adjuvant that strongly
stimulate durable antitumor immune responses.

The Role of RLHs in Antitumor Immunity

Recent studies have been validating the utility of targeting cytosolic
PRRs, RIG-I like helicase pathways (RLHs), in generating
antitumor responses. RLHs trigger the production of IFNa/β,
the critical antitumor innate cytokines, but also coordinate tumor
cell apoptosis in cell-autonomous fashion. Indeed, the introduction
of RIG-I or MDA5 ligands mimetic into human melanoma cells
can stimulate the mitochondrial pathway of apoptosis in BH3-only
protein Noxa-dependent but IFNa-independent way, culminating
for tumor cell death in the cell-autonomous manner.29 In contrast,
the targeted delivery of 3p-RNA enables ovarian tumor cells to
activate IFN-mediated innate signals and induce various immuno-
genic cytokines and chemokines, leading to apoptotic tumor cell
death and ingestion by APC.30 These findings demonstrate that

RIG-I may delineate immunologic or non-immunologic pathways
in triggering intrinsic tumoricidal responses in coordinate and
distinct way (Fig. 2).

Other studies explored the possibility of RIG-I-mediated
recognition of innate immunity in boosting antitumor responses.
The synthetic Bcl-2-targeted siRNA conjugated to RIG-I ligand
3pRNA results in the profound antitumor responses through
inhibition of Bcl-2 and RIG-I-dependent IFNa secretion in
tumor cells.31,32 Furthermore, RIG-I/MDA-5 pathways are
involved in antitumor effect of synthetic retinoic acid CD437.33

Taken together, cytosolic PRRs may serve as therapeutic targets
to activate innate responses, and possibly overcome immuno-
suppressive environments arising in established tumors.

The Role of NLRs in Antitumor Immunity

NOD-like receptor (NLR) family proteins are characterized by
their broad sensing systems to recognize not only PRRs but also
endogenous host molecules associated with inflammation termed
as danger-associated molecular pattern (DAMP), including uric
acids, alum salt, silica.34,35 In this context, NLRs may serve as host
defense systems involved in infectious and sterile inflammation
caused by pathogens and environmental insults, respectively.
Indeed, the mutation of NLR gamily protein NOD2 is associated
with susceptibility of inflammatory bowel disease (IBD), which is

Figure 2. Intrinsic and immune-mediated antitumor actions of RIG-I. The RIG-I-mediated triggering of cytosolic PRRs results in the coordinated activation
of IFNa/b-dependent innate responses and mitochondrial death pathways mainly mediated by Bcl-x-related protein Puma and Noxa, triggering tumor
killing through the cell-autonomous and immune-mediated mechanisms.
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manifested by chronic colonic inflammation and deregulated host
response to enteric commensal microbiota and endogenous
stresses.36,37 However, although IBD frequently cause cancer
development in the background of unresolved inflammations,
whether NOD2 is involved in tumorigenesis remains obscure. In
this regards, the molecular mechanisms by which the interplay
between NOD2 sensing systems and host microenvironments
regulate carcinogenesis is required for further clarification.

On the other hands, recent studies unveiled the protective
functions of NOD1 in tumorigenesis. The disruption of NOD1
functions rendered MCF-7 breast cancer cells to resist apoptotic
cell death and promote in vivo tumor growth.38 Moreover,
NOD1 deficiency caused the progression of colon carcinogenesis
in the background of carcinogen exposure or Apc mutation. As
mechanisms of tumor-protective effect, NOD1 signaling pathway
positively regulates intestinal tissue integrity as well as restrains
deregulation of commensal microbiota followed by disrupted
barrier function.39 These findings further highlight the import-
ance of NOD1 proteins in linking host innate immunity with
tissue homeostasis.

Other NLR family proteins, called inflammasomes, that regulate
the processing and maturation of IL-1β and IL-18, is critical to
regulate proper innate immune responses to various environmental
insults, including gout, type2 diabetes.40-42 Recent reports demon-
strated that the inflammasome protein NLRP3 serves as a negative
regulator of tumorigenesis during carcinogen-induced colon
cancer.43 In this study, NLRP3 protects colonic tissues upon
chemical insults in caspase-1 and IL-1β-dependent fashion.

Besides the role of NLRP3 in regulating inflammation and colon
cancer, inflammasomes may be associated with broad modes of
carcinogenesis and antitumor immunity. Recent report implicates
that NLRP agonist ATP plays a role in recruiting phagocytes to
facilitate phagocytic removal of apoptotic cells.44 In addition, ATP
further boosts innate responses in coordination with PPRs by inter-
acting with thioredoxin-interacting protein TXNIP and generating
ROS.45 In this regard, it is possible that upon the recognition of
dying tumor cells with phagocytosis, the release of ATP from dying
tumor cells senses DCs to activate NLRP3 inflammasome and
secrete IL-1β, by which antitumor effector CD8+ T cells were
efficiently primed to induce antitumor immunity (Fig. 3). Indeed,

Figure 3. NLRP3-mediated antitumor responses. ATP and PRRs released from dying tumor cells consequent to cytotoxic therapies send the “find-me”
signals to dendritic cells to facilitate the uptake of apoptotic tumor cells, and trigger the ROS production to activate NLRP3-mediated inflammasome
pathways. The resultant activation of inflammasome results in the release of IL-1b, which may contribute to the tumor-specific CTL responses.
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recent study validated the role of ATP from chemotherapy-sensitized
tumor cells in stimulating NLRP3-mediated IL-1β and tumor-
specific CD8+T cell responses.46 In addition, the oncogenic
pathways, such as Bcl-2 anti-apoptotic families, as well as autophagic
responses, may influence the biologic activities of inflammasome
pathways by interacting with key signaling components,47,48

underscoring the broad and heterogeneous functions of inflamma-
somes in regulating various modes of stress responses in tumor cells.

AIM2 has been identified as NLR-independent regulators of
inflammasome that senses cytoplasmic DNA.49-52 Interestingly,
prior to identification as a DNA sensor, AIM2 has been recognized
as a tumor suppressor triggering apoptosis and suppressing tumor
growth in melanomas.53 As one of the mechanisms by which AIM2
suppress tumorigenicity, AIM2 triggers programmed cell death
associated with caspase-1-dependent inflammation, termed as
pyroptosis, in tumor cells.52,54 AIM2 also suppresses proliferation
of HCT116 colon cancer cells by cell cycle arrest, but induces genes
related to tumor invasion and metastasis.55 Taken together, it
remains unresolved how AIM2 regulates oncogenesis and antitumor
innate responses during the course of tumorigenic process.

Conclusion

In this review, we provide the overview in the role of innate
immune signals to regulate protective antitumor responses.
Although pattern recognition of microbes is critical to sense

various types of cells to orchestrate inflammatory and
antimicrobial cascades and to efficiently trigger protective
immunity, it remains to be determined whether inflammatory
responses consequent to the recognition of microbe and
endogenous molecules in tumor cells could be protective or
supportive to tumorigenicity. Accumulating evidences have
been revealed that the quality of tumor microenvironments
may determine the direction of interplay of tumors and host
innate immunity throughout the different stages of carcino-
genesis.56,57 In this regard, the detailed evaluation of molecular
intersection between innate signals and oncogenic pathways
should provide the useful insight into the mechanisms of
tumor recognition of innate immunity as well as exploration of
new therapeutic approaches targeting innate immune signals
in future.
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