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Abstract: Neurotransmitter catecholamines (dopamine, epinephrine, and norepinephrine) are liable
to undergo oxidation, which copper is deeply involved in. Catecholamine oxidation-derived neuro-
toxicity is recognized as a pivotal pathological mechanism in neurodegenerative diseases. Glutamate,
as an excitatory neurotransmitter, is enriched in the brain at extremely high concentrations. How-
ever, the chemical biology relationship of these two classes of neurotransmitters remains largely
unknown. In the present study, we assessed the influences of glutamate on the autoxidation of cate-
cholamines, the copper- and copper-containing ceruloplasmin-mediated oxidation of catecholamines,
the catecholamine-induced formation of quinoprotein, catecholamine/copper-induced hydroxyl
radicals, and DNA damage in vitro. The results demonstrate that glutamate, at a physiologically
achievable molar ratio of glutamate/catecholamines, has a pronounced inhibitory effect on cate-
cholamine oxidation, catecholamine oxidation-evoked hydroxyl radicals, quinoprotein, and DNA
damage. The protective mechanism of glutamate against catecholamine oxidation could be attributed
to its restriction of the redox activity of copper via chelation. This previously unrecognized link
between glutamate, catecholamines, and copper suggests that neurodegenerative disorders may
occur and develop once the built-in equilibrium is disrupted and brings new insight into developing
more effective prevention and treatment strategies for neurodegenerative diseases.
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1. Introduction

Catecholamines, such as dopamine and norepinephrine, take part in regulating a
variety of mental processes, including cognitive ability, attention, memory, mood, and
reward [1–5]. Catecholamines have adjacent hydroxyl groups on their benzene rings [6],
thus making them susceptible to autoxidation, and produce hydrogen peroxide [7–9],
semiquinone anion radicals [8,10], and quinones [11,12]. Quinones further initiate in-
tramolecular cyclization to form the end products of neuromelanin polymers [13–17]. All
these intermediates and end products may be toxic to neuron cells, and thus the autoxi-
dation of catecholamines is considered to be an important mechanism of neuron cell loss
in Parkinson’s disease [18–21]. Moreover, the disorder of copper homeostasis is involved
in neurological diseases, such as Parkinson’s disease [22,23]. Redox-active copper can
facilitate the oxidation of catecholamines via the formation of hydroxyl radicals [24,25]. It is
known that DNA is an especially sensitive site within the cell for copper-mediated damage
because copper ions have a high affinity for DNA, forming a DNA–Cu complex [26,27].
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Catecholamines and DNA-localized copper can cause DNA damage via the site-specific
attack of hydroxyl radicals on DNA [25,26].

Glutamate, as a neurotransmitter, plays an important role in learning, memory, neu-
ronal plasticity, and brain development [28–32]. The excessive stimulation of glutamate
receptors causes the excitatory toxicity of neuron cells [33,34]; thus, neurons are endowed
with high-affinity glutamate transporters to enrich glutamate [35]. Consequently, ex-
tracellular glutamate concentrations, or interstitial fluid glutamate concentrations, are
maintained in levels as low as 0.5–5 µM [36], and intracellular concentrations of glutamate
reach as high as 6–12 mM [35]. In contrast, the intracellular concentrations of dopamine,
the major catecholamine neurotransmitter in dopaminergic neurons, are only at the level
of 0.05–0.1 mM [37–39]. The present study investigated whether glutamate has an im-
pact on catecholamine oxidation in vitro. We found that glutamate was able to prevent
the autoxidation of catecholamines and autoxidation-associated quinoprotein formation,
the copper-mediated oxidation of catecholamines, catecholamine/copper-triggered DNA
damage, and quinoprotein formation.

2. Materials and Methods
2.1. Chemicals and Drugs

Dopamine (hydrochloride) (CAS. No: 28094-15-7) was purchased from Solarbio
Science & Technology Co., Ltd. (Beijing, China). Norepinephrine (CAS. No: 51-41-2),
epinephrine (CAS. No: 51-43-4), and glutamate (CAS. No: 6893-26-1) were obtained
from Macklin Biochemical Co., Ltd. (Shanghai, China). 3, 4-dihydroxyphenylacetaldehyde
(DOPAL) (CAS. No: 5707-55-1) was a product of Santa Cruz Biotech (Dallas, TX, USA). Ceru-
loplasmin (CAS. No: 9031-37-2), monoamine oxidase (MAO) (M7316), 2’,7’-dichlorofluorescin
diacetate (DCFH-DA) (CAS. No: 4091-99-0), 3-hydroxycinnamic acid (3-CCA)
(CAS. No: 531-81-7), dithiothreitol (CAS. No: 3483-12-3), glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) (CAS. No: 9001-50-7), and nitroblue tetrazolium (NBT)
(CAS. No: 298-83-9) were purchased from Sigma (St. Louis, MO, USA). The polyvinylidene
difluoride (PVDF) membrane was a product of Bio-Rad Laboratories, Inc. (Hercules, CA,
USA). Plasmid pBR322 DNA (#N3033L) was obtained from New England Biolabs (Beijing,
China). Other chemicals used were of the highest grade available.

2.2. Dopamine Oxidation Assessment

Dopamine was incubated in a 0.15 M, pH 7.4 phosphate buffer solution (PBS) at 37 ◦C.
With the increase in oxidation time, the dopamine solution gradually oxidized to yellow.
According to the results of spectral scanning, an absorption value of 410 nm was selected
to characterize the oxidation degree of the dopamine. Kinetic alterations were recorded
using a plate reader (Molecular Devices SpectraMax M2e, Sunnyvale, CA, USA).

2.3. Detection of Reactive Oxygen Species

To detect reactive oxygen species, dopamine was incubated in PBS (0.15 M, pH 7.4)
containing 50 µM of DCFH-DA at 37 ◦C. Dynamic changes in fluorescence intensity were
recorded using the aforementioned plate reader at an excitation wavelength of 488 nm and
an emission wavelength of 525 nm.

2.4. Detection of Hydroxyl Radicals

The chemicals were co-incubated with 3 mM of 3-CCA as a fluorescent probe at
37 ◦C. The dynamic curve of the fluorescence intensity was recorded using the afore-
mentioned plate reader. The excitation and emission wavelengths were 388 nm and
446 nm, respectively.

2.5. Detection of DNA Damage

DNA cleavage was evaluated by agarose gel electrophoresis using pBR322 plasmid
DNA. The DNA and chemicals were mixed in 0.15 M PBS (pH 7.4) at a final volume of
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50 µL and incubated at 37 ◦C. The samples were loaded by 6 × DNA loading buffer in
1% agarose gel containing 40 mM of Tris-acetate and 1 mM of EDTA (pH 8.0) as well as
Super/Gel Red (Tiangen Biotech, Beijing, China). In 1 × TAE gel buffer, electrophoresis
was carried out on a horizontal plate gel apparatus under 90 V conditions for 1 h.

2.6. NBT/Glycinate Redox-Cycling Staining of Quinoprotein

The chemicals and GAPDH were mixed in 0.15 M PBS (pH 7.4) at 37 ◦C and the
reaction was terminated by adding dithiothreitol. Then, 10% SDS polyacrylamide gels were
used for second-dimension electrophoresis. The proteins on the gel were transferred to a
methanol-soaked PVDF membrane in an electrophoresis transfer solution. The quinopro-
teins were stained by redox-cycling staining [40,41]. Briefly, the membrane was incubated
with 0.24 mM NBT in 2 M potassium glycinate (pH 10.0) in the dark to form purple bands,
then the stained membrane was rinsed with distilled water.

2.7. Dopamine Retention Detected by High Performance Liquid Chromatography (HPLC)

Dopamine was quantitatively detected by HPLC (Waters Instruments, Inc., Rochester,
MN). Chromatographic separation was performed on a Gemini 5 u C18 110 A column
(250 × 4.60 mm, Phenomenex Inc., Torrance, CA, USA). The separation conditions were as
follows: the column temperature was maintained at 30 ◦C, the flow rate was 1 mL/min, the
single injection volume was 10 µL, and the mobile phases were (A) 0.15% acetic acid–water
(ultra-pure water plus 0.15% acetic acid) and (B) acetonitrile. A gradient elution separation
method was set, the total detection time was 40 min, and phase A was taken as an example:
(1) Initial mobile phase proportion A: 85%, keep running for 10 min; (2) switch to another
gradient elution A: 77%, run for 15 min; (3) reduce to A: 71% within 1 min; (4) convert A:
0% at the 26th min and maintain for 4 min; (5) return to initial state A: 85% within 2 min
and maintain for 8 min; (6) switch to A: 80% at 40 min and maintain the balance system for
the next injection. The amount of dopamine in the eluent was measured by the absorbance
with wavelengths of 278 nm.

2.8. Determination of Ceruloplasmin Ferrous Oxidase Activity

Ceruloplasmin ferrous oxidase activity was determined using a kit purchased from
Jiancheng Bioengineering Institute (Nanjing, China).

3. Results and Discussion
3.1. Autoxidation of Dopamine and the Protective Role of Glutamate

Under alkaline and aerobic conditions, dopamine can undergo autoxidation to form
quinones and produce hydrogen peroxide [9,42]. The quinones further polymerize to form
macromolecular neuromelanin polymers, which increase the pigmentation of neurons in
the substantia nigra [43]. The pigmented dopaminergic neurons in the substantia nigra are
preferentially lost in Parkinson’s disease [13]. In the present study, 10 mM of dopamine
was used to observe time-dependent color development due to dopamine oxidation un-
der physiological conditions (a pH 7.4, 0.15 M PBS). Compared to dopamine alone, the
addition of −200 mM of glutamate effectively inhibited dopamine oxidation, while that
of −500 mM of glutamate almost completely inhibited the oxidation, as evaluated by the
color development at OD410nm (Figure 1A). Since dopamine autoxidation leads to the
formation of reactive oxygen species (ROS), 50 µM of DCFH-DA as a fluorescent probe
was used to detect the ROS produced by 10 mM of dopamine. The production of ROS
was significantly inhibited by −200 mM of glutamate, while 500 mM of glutamate nearly
entirely inhibited ROS production (Figure 1B). During the nonenzymatic autoxidation
process of dopamine, intermediate quinones can covalently react with cysteine sulfhydryl
groups in proteins or enzymes, leading to the formation of quinoproteins [8,44,45]. Quino-
protein adduct formation may play a role in the age-dependent selective vulnerability of
dopaminergic neurons in Parkinson’s disease [46]. To detect the production of dopamine-
quinoproteins, dopamine and GAPDH (with a free thiol group of a cysteine residue at
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position 151) were co-incubated at 37 ◦C for 1 h in vitro. As shown in Figure 1C, in the
absence of dopamine, quinoproteins were not observed (lane 2). After a 1 h co-incubation
of GAPDH and dopamine (5 mM), dopamine-quinoproteins could be clearly visualized
(lane 3). The addition of glutamate (500 mM, lane 1) sufficiently inhibited quinoprotein
formation. These results together suggest that glutamate has an inhibitory effect on the
autoxidation of dopamine. However, the specific mechanism involved is not clear. We
speculated that this may involve the nature of autoxidation. In fact, the spin limitation
of dioxygen is a dynamic barrier to the oxidation of biomolecules such as dopamine [47].
The direct reaction between the two requires a large amount of activation energy; thus, the
oxidation rate of biomolecules is very slow and the real autoxidation of biomolecules is a
negligible process [47]. However, many transition metals with various spin states can over-
come the spin limitation of dioxygen and thus increase the oxidation rate of biomolecules.
The commonly described autoxidation of biomolecules such as catecholamines is actually
promoted by transition metals [47]. David et al. proposed that the oxidation of dopamine
in the absence of added copper may be significantly influenced by the presence of metal
impurities [48]. In deionized water that was further purified by chromatography over
Chelex 100 resin prior to use, epinephrine does not autoxidize. However, epinephrine was
oxidized rapidly in deionized water, but this oxidation could be prevented by desferal (a
potent metal chelating agent) [49]. The autoxidation of (-)-epigallocatechin-3-gallate, a well-
documented redox-active catechin mainly found in green tea, can be largely prevented by
EDTA, indicating that trace amounts of transition metals are involved in the autoxidation
process [50]. Many buffer systems, especially phosphate, can form complexes with transi-
tion metals. Thus, in many experimental systems, the presence of trace metals in the buffer
is inevitable [47]. Put simply, there is no pure “autoxidation”. The essence of biomolecule
autoxidation is oxidation involving trace amounts of transition metals. It has been reported
that glutamate can react with copper by forming complexes [51,52]. Indeed, as shown
in Figure 1D, the characteristic blue color of glutamate-copper complexes is enhanced
as a function of the increased glutamate concentrations. Preformed glutamate-copper
complexes consistently show a compromised capacity to promote dopamine oxidation
as compared with free copper (Figure 1E). We thus speculate that the inhibitory effect of
glutamate on the autoxidation of dopamine could be attributed to glutamate’s restriction
on redox-active copper bound to dopamine or the buffer system. Since trace amounts
of transition metals, which promote the autoxidation of biomolecules, form complexes
with biomolecules and/or buffers, as much as 14 mM of EDTA was required to effectively
suppress the “autoxidation” of (-)-epigallocatechin-3-gallate [50]. The present study also
consistently showed that higher molar ratios of glutamate/dopamine were needed to fully
inhibit the autoxidation of dopamine. In the case of the free copper-promoted oxidation
of dopamine, which has been implicated in dopamine-associated toxicity [11,53], we esti-
mated that glutamate would be highly effective in preventing dopamine oxidation—i.e.,
to achieve an effective protective effect, the molar ratios of glutamate/dopamine are sig-
nificantly lowered compared to the case of dopamine “autoxidation”. Next, we examined
this possibility.

3.2. Glutamate Protects against Copper-Facilitated Dopamine Oxidation

It is surprising that substantial concentrations of both dopamine and copper (0.4 mM)
coexist in the substantia nigra, although the precise free copper concentration is not
known [48,54]. Moreover, many studies have shown that copper levels are elevated
in the cerebrospinal fluid (CSF) of patients with Parkinson’s disease [55,56]. Copper can
facilitate dopamine oxidation and meanwhile leads to the production of highly active
hydroxyl radicals and, accordingly, DNA damage [25,57]. These processes may contribute
to the observed loss of dopaminergic neurons in patients with Parkinson’s disease [58].
Therefore, we further evaluated the influence of glutamate on copper-accelerated dopamine
oxidation. As shown in Figure 2A, compared with 0.5 mM of dopamine alone, the addition
of 100 µM of copper hugely promoted the oxidation of dopamine. Glutamate at a concen-
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tration of 5 mM effectively suppressed copper-promoted dopamine oxidation (Figure 2A).
Concerning hydroxyl radical production by copper and dopamine, we used a hydroxyl
radical-specific probe, the 3-CCA, for the assessment. In a redox system of 0.5 mM of
dopamine and 50 µM of copper, hydroxyl radical production was clearly sensed by the
3-CCA. In this redox system, the addition of glutamate at a concentration of only 2.5 mM
substantially inhibited hydroxyl radical production (Figure 2B). In addition, we used HPLC
to detect dopamine retention. As shown in Figure 2C, the copper facilitated dopamine
oxidation in a time-dependent manner. After 3-h incubation of copper and 0.5 mM of
dopamine, about 30% of the dopamine remained. At the same time, it was observed that
the glutamate inhibited the copper-mediated dopamine oxidation in a dose-dependent
manner. Specifically, the retention of dopamine could be effectively increased by as low
as 1 mM of glutamate, and near-complete retention of dopamine could be achieved by
5 mM of glutamate (Figure 2C). We further characterized the influence of glutamate on
dopamine-initiated quinoprotein formation (Figure 2D). Following a 20-min incubation of
0.2 mM of dopamine and GADPH, quinoproteins were hardly detected (lane 1). Under the
circumstances, copper markedly promoted quinoprotein formation (lane 2). Nonetheless,
glutamate was able to dose-dependently inhibit copper-initiated quinoprotein formation.
A low concentration of glutamate (1 mM) could be significantly effective (lane 3), while
10 mM of glutamate almost completely inhibited copper-initiated quinoprotein formation
(lane 4). Altogether, these four lines of evidence clearly demonstrate that glutamate is
highly effective in inhibiting copper-facilitated dopamine oxidation.
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presented as mean ± range (n = 2). Note: DA: Dopamine, Glu: Glutamate.
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Figure 2. Glutamate protects against copper-induced dopamine oxidation. (A) Dopamine oxidation
measured by OD410 nm. (B) Hydroxyl radicals detected by 3-CCA. (C) Dopamine levels detected by
HPLC. (D) Dopamine-caused quinoprotein in GAPDH. Chemicals were mixed in 0.15 M PBS (pH 7.4)
and incubated at 37 ◦C for indicated time or 20 min for D. Data are presented as mean ± range
(n = 2). Note: DA: Dopamine, Glu: Glutamate.

3.3. Glutamate Protects against Ceruloplasmin-Facilitated Dopamine Oxidation and Dopamine
Oxidation-Caused Modification of Ceruloplamin

Ceruloplasmin, as expressed in human brain glial cells [59,60], is a ferrous oxidase.
Ceruloplasmin plays an important role in iron homeostasis by oxidizing toxic ferrous iron
so as to favor the strong binding of ferric iron to serum transferrin [61–63]. Ceruloplasmin
with six copper atoms [64,65] also catalyzes the oxidation of catecholamines [24,49,66–68].
Epinephrine oxidation rates enhanced by ceruloplasmin can be slowed down by a metal
chelating agent [49], suggesting that copper bound to either epinephrine or ceruloplasmin
is probably involved in this catalytic reaction. We thus inferred that glutamate would
be able to restrict ceruloplasmin-facilitated dopamine oxidation by forming complexes
with copper. To examine this possibility, we measured dopamine oxidation catalyzed by
ceruloplasmin and investigated the potential impact of glutamate on dopamine oxidation
catalyzed by ceruloplasmin using HPLC. Ceruloplasmin (equivalent to 5 µM of copper)
promoted the oxidation of 0.1 mM of dopamine, while 10 mM of glutamate inhibited the
ceruloplasmin-catalyzed oxidation of dopamine (Figure 3A). Despite the fact that cerulo-
plasmin ferrous oxidase can be suppressed by a metal chelating agent such as EDTA [69],
glutamate at levels that suppressed the dopamine oxidation activity of ceruloplasmin
(Figure 3A) did not affect the activity of ceruloplasmin ferrous oxidase (Figure 3B). This is
probably due to the different manner of copper dependence in the two types of activity.
Importantly, we found that ceruloplasmin-triggered dopamine oxidation, in turn, caused
the quinonization of ceruloplasmin with the formation of quinoproteins. As shown in
Figure 3C, in the absence of dopamine, quinoproteins were unable to be detected from
the ceruloplasmin (lane 1). In the presence of 1 mM of dopamine, the quinonization
of the ceruloplasmin was salient (lane 2). Nonetheless, 100–200 mM of glutamate was
highly effective in protecting against the quinonization of the ceruloplasmin (lane 3, 4).
Dopamine-caused quinonization of ceruloplasmin suggests that (1) oxidized products of
dopamine generated from ceruloplasmin include highly active and thus harmful quinones,
and (2) the reciprocal interaction of dopamine and ceruloplasmin may impair the ferrous
oxidase activity of ceruloplasmin due to quinonization, thus increasing the accumulation of
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ferrous ion, leading to hydroxyl radical-associated oxidative stress. Decreased ceruloplas-
min levels are associated with an earlier onset of Parkinson’s disease [70–72]. Many studies
have observed low ceruloplasmin ferrous oxidase activity in the substantia nigra and
CSF of Parkinson’s disease patients [73–75]. However, the relevant molecular mechanism
remains elusive. The interplay of dopamine and ceruloplasmin firstly identified herein may
be responsible, at least in part, for the loss of the ferrous oxidase activity of ceruloplasmin.
Fortunately, the reciprocal interaction of dopamine and ceruloplasmin, with a loss at both
sides, can be effectively halted by glutamate.
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3.4. Glutamate Inhibits Copper/Catecholamine-Induced DNA Damage

Since about 20% of copper is stored in the nucleus and copper is an essential com-
ponent of chromatin [76], DNA is the primary target of copper/catecholamine-derived
hydroxyl radicals [55]. As shown in Figure 4A, where lane 1 was the DNA prototype,
100 µM of dopamine perhaps had a weak damage effect (lane 2), and copper alone did not
damage the DNA (lane 3). Dopamine-induced DNA damage was aggravated by copper
in a dose-dependent manner (lane 6, 4). Specifically, while 10 µM of copper only initiated
secondary DNA damage (lane 6), DNA degradation was almost completed by 25 µM of
copper (lane 4). Under these conditions, −2.5 and 10 mM of glutamate, respectively, effec-
tively inhibited the DNA damage (lane 7, 5). Similarly, when the dopamine was replaced
with the same dose of norepinephrine or epinephrine (100 µM), copper was again found
to promote DNA damage (Figure 4B, lane 2, and Figure 4C, lane 3). Again, glutamate
dose-dependently inhibited the DNA damage (Figure 4B,C) and 10 mM of glutamate nearly
completely inhibited the DNA damage (Figure 4B, lane 4, and Figure 4C, lane 6). The pro-
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tective role of glutamate on dopamine/copper-triggered DNA damage could be attributed
to the inhibitory effect of glutamate on copper-promoted dopamine oxidation, as demon-
strated above. We thus inferred that the protective role of glutamate on norepinephrine or
epinephrine/copper-triggered DNA damage is also associated with the inhibitory effect
of glutamate on copper-promoted norepinephrine or epinephrine oxidation. This was
validated by our next experiment. Copper at a level of 100 µM greatly promoted the oxida-
tion of 1 mM of norepinephrine or epinephrine, as assessed by OD410nm (Figure 5A,B);
however, as little as 10 mM of glutamate substantially suppressed the copper-mediated
oxidation of the catecholamine (Figure 5A,B). Since the “autoxidation” of catecholamines
should be iterated as the “trace transition metal-mediated oxidation” of catecholamines,
and glutamate can restrain the “autoxidation” of dopamine by depriving the redox ac-
tivity of copper, we thus hypothesized that glutamate ought to prevent norepinephrine
or epinephrine from undergoing so-called autoxidation. Indeed, the oxidation of both
norepinephrine (10 mM) (Figure 5C) and epinephrine (5 mM) (Figure 5D), as assessed by
OD410nm, increased as a function of time; however, this was nearly completely inhibited
by 500 mM and 850 mM of glutamate, respectively, according to the results shown in
Figure 5C,D.
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3.5. Glutamate Protects against the Toxicity of 3, 4-Dihydroxy Phenylacetaldehyde

MAO [77] catalyzes the oxidative deamination of dopamine to form DOPAL, which is
then oxidized to DOPAL-quinone [78,79]. DOPAL, as the critical endogenous toxin causing
dopaminergic neuron loss in Parkinson’s disease, is 1000-fold more toxic than dopamine
in vivo [80]. DOPAL-induced protein modifications were enhanced by copper [81]. Ox-
idatively damaged DNA, caused by catecholamine-related neurotoxins, contributes to
neuronal death [26]. Although glutamate could not inhibit the MAO-mediated oxidation
of dopamine (Figure 6A), it was able to powerfully inhibit DOPAL-induced quinopro-
teins (Figure 6B), DOPAL/copper-enhanced quinoprotein formation (Figure 6C), and
DOPAL/copper-produced hydroxyl radicals (Figure 6D). The copper-mediated oxidative
toxicity of DOPAL was also observed in DNA. As shown in Figure 6E, DOPAL and copper
alone did not damage the DNA (lanes 1–3). However, when 100 µM of DOPAL was added
together with different concentrations of copper, copper-dependent DNA damage was
observed: secondary damage with 10 µM of copper (lane 6) and tertiary damage with 25
and 50 µM of copper (lane 5 and 4, respectively). A protective effect of 2.5 mM of glutamate
against copper-enhanced DOPAL damage to DNA was consistently observed at all the
copper concentrations examined (lanes 10 vs. 6; lanes 9 vs. 5; lanes 8 vs. 4).

3.6. Considerations of Molar Ratio of Glutamate to Dopamine

Unlike neuromodulators such as dopamine and norepinephrine that show a marked
regional distribution in the brain, glutamate is present at high concentrations in all cells
via a high-affinity uptake system [35]. The human neuron-specific glutamate trans-
porter (EAAT3) is densely expressed in dopaminergic neurons. The dense expression
of EAAT3 in dopaminergic neurons not only detoxifies extracellular glutamate but also
fulfills the high energy requirements of these cells, since glutamate participates in energy
metabolism via glutamate dehydrogenase, which is also co-expressed in dopaminergic
neurons [35]. It is known that the intracellular concentration of glutamate is approximately
10 mM [35] and that the dopamine concentration in dopaminergic neurons is at the range of
0.05–0.1 mM [37–39]; therefore, the molar ratio of glutamate to dopamine could reach 200
in dopaminergic neurons. It should be noted that the dopamine concentrations used in the
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various in vitro experimental systems were not identical in the present study. The major
reason why we did not use the same physiologically relevant concentration of dopamine
in each test system, including dopamine oxidation, dopamine-caused quinoprotein forma-
tion, and dopamine/copper-triggered DNA damage, was the different sensitivities of the
in vitro experimental approaches. Nonetheless, we always observed the protective effect
of glutamate on the pro-oxidant actions of dopamine under a molar ratio of 200. It should
be stated that these experiments were not carried out under physiological conditions and
may not be related to processes taking place in the brain.
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Figure 6. Glutamate attenuates side effects of DOPAL. (A) MAOmediated dopamine oxidation
detected by HPLC. (B,C) DOPAL-caused quinoprotein in GAPDH, in the absence or presence
of copper, respectively. (D) DOPAL-caused hydroxyl radical production detected by 3-CCA.
(E) Copper/DOPAL induced DNA damage.Chemicals were mixed in 0.15 M PBS (pH 7.4) and
incubated at 37 ◦C for indicated time or 1 h for B, 20 min for C and 30 min for E. Data are presented
as mean ± range (n = 2). Note: DA: Dopamine, Glu: Glutamate.

4. Conclusions

Glutamate and catecholamines are essential neurotransmitters that are endowed with
corresponding important physiological functions. Catecholamines are susceptible to un-
dergoing non-enzymatic and enzymatic oxidation, and copper is involved in both types
of oxidation. Catecholamine oxidation, along with the formation of ROS, highly reactive
quinones, and toxic DOPAL (in the case of dopamine), has been implicated as a causative
pathological mechanism in several neurodegenerative diseases, including Parkinson’s dis-
ease. For the first time, the present study demonstrates that the neurotransmitter glutamate,
which is enriched and reaches a level 200-fold higher than that of dopamine (the major cate-
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cholamine) in terms of molar concentration in the brain, has a pronounced inhibitory effect
on catecholamine oxidation in vitro when the molar ratio of glutamate/catecholamines is
lower than 200, via the chelating and restraining redox activities of copper.
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