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Abstract: This paper investigates the dynamic event-triggered predictive control problem of interval
type-2 (IT2) fuzzy systems with imperfect premise matching. First, an IT2 fuzzy systems model
is proposed, including a dynamic event-triggered mechanism, which can save limited network
resources by reducing the number of data packets transmitted, and a predictive controller, which can
predict the state of the system between the two successful transmitted instants to deal with unreliable
communication networks. Then, according to the Lyapunov stability theory and imperfect premise
matching method, sufficient conditions for system stabilization and the controller gain are obtained.
Finally, the validity of the proposed method is demonstrated by the numerical examples.

Keywords: interval type-2 fuzzy systems; imperfect premise matching; dynamic event-triggered
mechanism; predictive controller

1. Introduction

Networked control systems (NCSs) have attracted more attention during the past
decades [1–6] due to their wide engineering applications, are control systems that connect
various physical devices through a communication network with limited bandwidth in
reality. To save communication resources and maintain system performance, the event-
triggered mechanism (ETM) has been adopted recently to control the transmission of
signals in the communication network. In [7–11], static ETM is used, in which the thresh-
olds are always fixed scalars that do not really reflect the system dynamics, thereby leading
to certain conservatism. It is desirable to have triggering laws whose threshold parame-
ters are adaptively tuned depending on dynamical changes with the purpose of further
reducing frequencies of signal transmissions. Following this line, a dynamic or adaptive
ETM is designed in [12–16] by introducing an internal dynamic variable. However, some
dynamic ETM might have a singular problem and degrade into a traditional time-triggered
mechanism, which may restrict its use in practical applications. Recently, the multiplicative
and additive internal dynamic variables of ETM are designed to avoid singular phenom-
ena [17,18]. However, ETM may cause some practical problems due to the event triggered
interval being too large for practical applications. Therefore, we set the maximum event-
triggered interval to avoid these problems.

The static event-triggered predictive control method is proposed in [19,20], and its
controller can obtain the estimated state of the system by introducing a predictor, which
not only saves communication resources but also contributes to obtaining good system
control performance. However, the static event-triggered predictive control method can
not really reflect the system dynamics. Therefore, inspired by the aforementioned works, it
is meaningful to design a dynamic event-triggered predictive control scheme.

The T-S fuzzy model plays an important role in the actual engineering, which can be
used to represent some systems with nonlinear dynamics by the local linear subsystems
under several IF-Then rules. In addition, it can also solve some nonlinear problems. For
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example, nonlinear disturbances can be represented by local linear disturbances. Therefore,
the fuzzy model is widely used in practice and is very meaningful to study. Considering
the nonuniform sampling, Wang et al. [21] proposed a fuzzy event-triggered asynchronous
dissipation control method for the T-S fuzzy Markov jump system. Ma et al. [22] inves-
tigated the problem of adaptive fuzzy output feedback control for a class of stochastic
nonlinear systems with full state constraints and actuator failures. Since the sensor and
controller transmit signals through a communication network, it is not practical to assume
that the fuzzy system and the fuzzy controller have the same premise variables. Therefore,
an imperfect premise matching method is used to break this limitation. Asalm et al. [23]
provided a fuzzy controller design method under ETM for a class of nonlinear systems with
time-varying delays and mismatched premise variables. In reality, it is not easy to acquire
membership functions because of the uncertainty of the parameters. To overcome this
difficulty, the interval type-2 T-S (IT2) fuzzy model is proposed by bounding the member-
ship function [24–26]. However, the problem of network packet loss in the communication
network has not been solved in the above work, which inspired this work.

Motivated by the above discussions, the purpose of this paper is to design a dynamic
event-triggered predictive controller for the IT2 fuzzy system, which has different premise
variables from the IT2 fuzzy system and can compensate for the negative effects of the
communication network. First of all, a new IT2 fuzzy system model is provided, which
includes a dynamic ETM that can reduce the burden of communication networks and a
predictive controller that can solve the problem of network packet loss. Then, the sufficient
conditions for system stabilization are obtained by the Lyapunov stability theory and im-
perfect premise matching method, and the controller gain and event-triggered parameters
are obtained by the given stabilization conditions. The main contributions are as follows:

• A novel IT2 fuzzy model is proposed, which unifies the dynamic ETM and the
predictive control method in a framework to compensate the negative effect of network
packet loss. Unlike the traditional T-S fuzzy model [27], it does not require the
membership function be known by bounding it.

• A method of designing the dynamic event-triggered predictive controller containing
global membership boundary information is provided to deal with imperfect premise
mathing. Unlike the networked parallel distributed compensation method [28], it does
not require the controller to have the same premise variables as the studied T-S fuzzy
system by the imperfect premise matching method.

This paper is organized as follows. Section 2 is the system description including IT2
T-S fuzzy model and dynamic ETM. In Section 3, the stability of the system is analyzed, and
sufficient conditions for system stabilization are obtained. Finally, a numerical example is
given to illustrate the effectiveness of the design method.

Notations: Throughout this paper, the asterisk ∗ in a matrix is used to denote a term
that is induced by symmetry. X > 0 (X ≥ 0) means X is a symmetric and positive definite
(positive semi-definite). I and 0 denote identity and zero matrix, respectively.

2. System Description

Figure 1 depicts the diagram of IT2 fuzzy systems with dynamical fuzzy event-
triggered predictive controller (FETPC). The event-triggered predictive control method
in this paper includes ETM1 to transmit sampled data to the predictor, ETM2 to transmit
the predicted state to the controller, and the networked data-dropout compensator (NDC)
to store the predicted data packets. The sensor and FETPC are connected through a
communication network, while the FETPC and actuator are directly connected without
communication networks. To make this framework more clear, detailed descriptions of
some components will be given below.
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Figure 1. Diagram of the considered IT2 fuzzy systems.

2.1. IT2 Fuzzy Model

Considering the following networked IT2 fuzzy systems.
Rule ε: IF f1(x(k)) is Mε

1, and · · · , and fp(x(k)) is Mε
p, THEN:

x(k + 1) = Aεx(k) + Bεu(k), (1)

where fν(x(k)) and Mε
v (ν = 1, 2, · · · , p; ε = 1, 2, · · · , r) denote the premise variables and

the fuzzy sets, x(k) ∈ Rn and u(k) ∈ Rn are system state and control input, respectively.
Aε and Bε are constant matrices with appropriate dimensions. The activation intensity of
rule ε can be defined:

Wε(x(k)) = [hε(x(k)) hε(x(k))],

where hε(x(k)) = ∏
p
ν=1 µ

Mε
ν
( fν(x(k))) and hε(x(k)) = ∏

p
ν=1 µMε

ν
( fν(x(k))) with µ

Mε
ν
( fν

(x(k))) ∈ [0, 1] and µMε
ν
( fν(x(k))) ∈ [0, 1] denoting the lower and upper grades of mem-

bership, respectively.
Then the system (1) can be formulated by:

x(k + 1) =
r

∑
ε=1

hε(x(k))[Aεx(k) + Bεu(k)], (2)

in which hε(x(k)) = κεhε(x(k)) + κεhε(x(k)) satisfies 0 ≤ hε(x(k)) ≤ 1 and ∑r
ε=1 hε(x(k))

= 1. κε ∈ [0, 1] and κε ∈ [0, 1] are the nonlinear weighting functions that satisfy κε + κε = 1.

Remark 1. Unlike the T-S fuzzy model [19] for predictive control of networked nonlinear system
with imperfect premise matching, the membership of IT2 fuzzy model is no longer a definite value,
but in an interval. IT2 fuzzy model not only extends the traditional T-S fuzzy model, but also has
the characteristic of dealing with uncertainty.

2.2. Dynamic ETM

In order to save limited communication resources, a dynamic ETM is designed to
release the sampled signals to the communication network. Let e(k) = x(k)− x(kn) be the
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error between the current state x(k) and the latest triggered state x(kn). Then, the next
event-triggered instant depends on the ETM1 (see Figure 1).

kn+1 =min{kn + T, Tk},

Tk =min{k|k > kn,
1
ρ

φ(k) + δxT(k)x(k)

− eT(k)e(k) ≤ 0}, n = 0, 1, 2, · · · ,

(3)

where 0 < δ < 1 and ρ > 0 are given constants, T is the upper bound of the interval of
adjacent triggering instants. The variable φ(k) is designed as:

φ(k + 1) = τφ(k) + δxT(k)x(k)− eT(k)e(k), (4)

where τ ∈ (0, 1) is a given constant and φ(0) = φ0 > 0. Parameters τ and ρ satisfied
τρ > 1. In interval [kn, kn+1), φ(k) ≥ 0 can be obtained by combining (3), (4) and τρ > 1.

Remark 2. The dynamic ETM1 contains an internal dynamic variable φ(k), which can dynam-
ically adjust the intensity of the ETM1 according to the system state. It can be seen that when
φ(k)→ 0, the dynamic ETM1 becomes the static ETM [19].

2.3. FETPC under Premise Matching

Due to the limited network resources and the unreliability of the communication
network, some sampled data will not be transmitted to the controller, so the predictor is
set in the controller. Considering the controller model can not share the premise variables
with the system, the model of fuzzy predictive controller is described as

Rule w: IF g1(x̂(k)) is Nw
1 and · · · and gq(x̂(k)) is Nw

q , then,

x̂(k + 1) = Âw x̂(k) + B̂wu(k), (5)

Rule l: IF g1(x̂(k)) is Nl
1 and · · · and gq(x̂(k)) is Nl

q, then,

û(k) = Kl x̂(k), (6)

where gγ(x̂(k)) and Nw,l
γ (w, l = 1, 2, · · · , o; γ = 1, 2, · · · , q) denote the premise variables

and the fuzzy sets, x̂(k) is the predicted system state, Âw and B̂w represent constant matrices
with appropriate dimensions. Similarly, the model of fuzzy predictive controller can be
described as:

x̂(k + 1) =
o

∑
w=1

ηw(g(x̂(k)))[Âw x̂(k) + B̂wu(k)], (7)

û(k) =
o

∑
l=1

ηl(g(x̂(k)))Kl x̂(k), (8)

where:

ηw = κwWw(x̂(k)) + κwWw(x̂(k)), 0 ≤ ηw(x̂(k)) ≤ 1,
o

∑
w=1

ηw(x̂(k)) = 1, κw ∈ [0 1], κw ∈ [0 1], κw + κw = 1,

ηl = κlW l(x̂(k)) + κlW l(x̂(k)), 0 ≤ ηl(x̂(k)) ≤ 1,
o

∑
w=1

ηl(x̂(k)) = 1, κl ∈ [0 1], κl ∈ [0 1], κl + κl = 1.
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Noting that the premise variables of the predictor and the controller are the same, but
they are inconsistent with the premise variables of the fuzzy system.

2.4. Model of Networked T-S Fuzzy Systems

In this section, we will carefully analyze the process of data transmission in the
network and design the program for the event-triggered predictor.

Denote tsi (i = 1, 2, ...) the time series when trigger states are successfully sent to the
controller by ETM1 (3), the closed-loop system (1) can be predicted as:

x̂(t̂si+j + k + 1|tsi ) =
o

∑
w=1

ηwg(x̂)[Âw x̂(t̂si+j + k|tsi )

+ B̂w

o

∑
l=1

ηl g(x̂)Kl x̂(t̂si + j|tsi ),
(9)

where k ∈ {0, 1, 2, · · · , t̂si+j+1 − t̂si+j − 1} and j ∈ {0, 1, 2, · · · , θi}. In the time interval [tsi ,
tsi+1 ), the states of the system (9) are x(tsi ), x̂(tsi + 1), x̂(tsi + 2), · · · , x̂(t̂si+1), x̂(t̂si+1
+ 1), x̂(t̂si+1 + 2), · · · , x̂(t̂si+θi−1), x̂(t̂si+θi−1 + 1), x̂(t̂si+θi−1 + 2), · · · , x̂(t̂si+θi ). Note
that when j = 0, we get t̂si+j = tsi and x̂(t̂si |tsi ) = x(tsi ).

In the communication network, there is the phenomenon of network packet loss, in
the following, we will make an assumption on the packet loss.

Assumption 1. The upper bounded of the number of consecutive loss-data occurring is σ. When
the data packet is lost, the triggered state will not be received by the controller, and the controller
continues to use the predicted state.

In (9), the predictive event-triggered instants t̂si+j+1 are determined by ETM2 (see
Figure 1),

t̂si+j+1 =min{t̂si+j + T, Tsi+j},

Tsi+j =min{k|k > t̂si+j,
1
ρ

φ̂ + δx̂T(t|tsi )x̂(t|tsi )

− êT(t)ê(t) ≤ 0}, j = 0, 1, 2, · · · , θi,

(10)

and the variable φ̂(k) is designed as:

φ̂(k + 1) = τφ̂(k) + δx̂T(k)x̂(k)− êT(k)ê(k), (11)

where ρ, δ, τ and T are same as in (3) and (4). Obviously, φ̂(k) ≥ 0 can be obtained when
φ̂(0) = φ̂0 ≥ 0. Defining ê(t) = x̂(t|tsi ) − x̂(t̂si+j|tsi ). The predictive event-triggered

instants are {t̂si+j}
θi
j=1 and it satisfies t̂si+θi ≤ tsi + T ∗ σ < t̂si+θi+1 from the Assumption 1.

The predictive control signals can be represented as:

û(t̂si+j|tsi ) =
o

∑
l=1

ηl(g(x̂))Kl x̂(t̂si+j|tsi ), j ∈ {0, 1, · · · , θi} (12)

and the control sequence in (12) is expressed as:

Utsi
= [u(tsi ), û(t̂si+1|tsi ), · · · , û(t̂si+θi |tsi )] (13)
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Remark 3. If ETM2 (10) is not introduced, then the control sequence will be expressed as:

Ũtsi
= [u(tsi ), û(tsi + 1), · · · ,

û(t̂si+1|tsi ), û(t̂si+1 + 1|tsi ), · · · ,

û(t̂si+2|tsi ), û(t̂si+2 + 1|tsi ), · · · ,

û(t̂si+θi |tsi )].

Compared with Utsi
, the complexity and size of Ũtsi

are larger. Therefore, ETM2 (10) can save
computing and storage resources.

Until now, (2) and (7) can be expressed as the closed loop system:

x(t + 1) =
r

∑
ε=1

hε(x)[Aεx(t) + Bεû(k̂si+j|tsi )], (14)

x̂(t + 1) =
o

∑
w=1

ηw(x̂)[Âw x̂(t) + B̂wû(t̂si+j|tsi )], t ∈ Φi
mj, (15)

where Φi
mj , [tsi , tsi+1) ∩ [tsi+m, tsi+m+1) ∩ [t̂si+j, t̂si+j+1), and [tsi , tsi+1) = ∪

si+1−si−1
m=0 ∪θi

j=0

Φi
mj. By defining êij(t) = x̂(t)− x̂(t̂si+j|tsi ), eim = x(t)− x(tsi+m), β(t) = x(t)− x̂(t) and

α = [xT(t), βT(t)]T , the system (14) and (15) can be uniformly expressed as:

α(t + 1) =
o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)ηl(x̂)[χεwl ], (16)

where:

χεwl = Πεwlα(t) + Ξεwl êij(t), Ξεwl =

[
−BεKl

−(Bε − B̂ε)Kl

]
,

χεwl =

[
Aε + BεKl −BεKl

Aε − Âw + (Bε − B̂w)Kl Âε − (Bε − B̂w)Kl

]
.

Remark 4. In the IT2 fuzzy system model, the premise variables of the system (2) and FETPC (8)
are imperfectly matched, which is expressed as hε 6= ηl in (16). Perfect premise matching can be
regarded as a special case of this paper, which means that the design method of this paper can be
used in any situations regardless of imperfect/perfect matching.

Before presenting the main results, we also need the following Lemma.

Lemma 1. [29] Given matrices Qi(i = 1, · · · , s) and positive semi-definite matrix P, if ∑s
i=1 vi = 1

and 0 ≤ vi ≤ 1 exist , the following inequality holds,( s

∑
i=1

viQi

)T

P
( s

∑
i=1

viQi

)
≤

s

∑
i=1

viQT
i PQi.

3. Main Results

In this section, we analyze the asymptotic stability of the system (16) under the
dynamic ETM1 (3) and ETM2 (10), and the stability criteria are established.

Theorem 1. Given parameters ρ > 0, δ > 0, 0 < τ < 1, matrices Kl and membership function
satisfying ηl(x̂)− γlhl(x) ≥ 0(0 < γl < 1), the closed-loop system (16) can achieve asymptoti-
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cally stable under (3) and (10), if there exist matrices P > 0 and arbitrary matrices Λε, Λl with
appropriate dimensions for ε, w, l = 1, 2, · · · , o satisfying:

Ψεwl −Λl < 0, (17)

γεΨεwε − γεΛε + Λε < 0, (18)

γlΨεwl + γεΨlwε − γlΛε − γεΛl + Λε + Λl < 0, (19)

Ψεwl ,



−P + Ω ∗ ∗ ∗ ∗ ∗
0 −υ1 I ∗ ∗ ∗ ∗
0 0 −υ1 I ∗ ∗ ∗
0 0 0 υ2 I ∗ ∗
0 0 0 0 υ2 I ∗

PΠεwl PΞεwl 0 0 0 −P

,

υ1 = (
1
ρ
+ δ), υ2 =

τ − 1 + c
ρ

, υ3 =
δ

ρ
+ cδ, Ω ,

[
2υ3 I −υ3 I
−υ3 I υ3 I

]
.

Proof. Choose a Lyapunov function as:

V(α(k), φ(k)) = αT(k)Pα(k) +
1
ρ

φ(k) +
1
ρ

φ̂(k), (20)

then,

∆V(α(k), φ(k)) =αT(k + 1)Pα(k + 1)− αT(k)Pα(k)

+
1
ρ

φ(k + 1)− 1
ρ

φ(k) +
1
ρ

φ̂(k + 1)− 1
ρ

φ̂(k).
(21)

Through the dynamic ETM (3), for any t ∈ (tsi+m, tsi+m+1),

1
ρ

φ(k) + δxT(k)x(k)− eT(k)e(k) ≥ 0, (22)

which implies that for any c > 0,

1
ρ

φ(k + 1)− 1
ρ

φ(k)

≤ 1
ρ

φ(k + 1)− 1
ρ

φ(k) + c(
1
ρ

φ(k) + δxT(k)x(k)− eT(k)e(k))

=
τ − 1 + c

ρ
φ(k) + (

δ

ρ
+ cδ)xT(k)x(k)− (

1
ρ
+ δ)eT(k)e(k)).

(23)
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Similarly, from the dynamic ETM (10), for any t ∈ (t̂si+j, t̂si+j+1) and c > 0,

1
ρ

φ̂(k + 1)− 1
ρ

φ̂(k)

≤ 1
ρ

φ̂(k + 1)− 1
ρ

φ̂(k)

+ c(
1
ρ

φ̂(k) + δx̂(k)T x̂(k)− êT
ij(t)êij(k))

=
τ − 1 + c

ρ
φ̂(k) + (

δ

ρ
+ cδ)x̂(k)T x̂(k)

− (
1
ρ
+ δ)êT

ij(k)êij(k)). (24)

On the other hand, by using Lemma 1, one has:

αT(k + 1)Pα(k + 1) =
{ o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)ηl(x̂)[Πεwlα(k) + Ξεwl êij(k)]
}T

P
{ o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)ηl(x̂)[Πεwlα(k) + Ξεwl êij(k)]
}

≤
o

∑
ε=1

hε(x)
{ o

∑
w=1

o

∑
l=1

ηw(x̂)ηl(x̂)[Πεwlα(k) + Ξεwl êij(k)]
}T

P
{ o

∑
w=1

o

∑
l=1

ηw(x̂)ηl(x̂)[Πεwlα(k) + Ξεwl êij(k)]
}

≤
o

∑
ε=1

o

∑
w=1

hε(x)ηw(x̂)
{ o

∑
l=1

ηl(x̂)[Πεwlα(k) + Ξεwl êij(k)]
}T

P
{ o

∑
l=1

ηl(x̂)[Πεwlα(k) + Ξεwl êij(k)]
}

≤
o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)ηl(x̂)
[
Πεwlα(k) + Ξεwl êij(k)

]T

P
[

Πεwlα(k) + Ξεwl êij(k)
]

. (25)

By considering (21)–(25) and Schur complement, we obtain:

∆V(α(k), φ(k)) ≤
o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)ηl(x̂)
{[

Πεwlα(k) + Ξεwl êij(k)
]T

P
[
Πεwlα(k) + Ξεwl êij(k)

]
+

τ − 1 + c
ρ

φ(k)

− (
1
ρ
+ δ)eT(k)e(k)) +

τ − 1 + c
ρ

φ̂(k)

− (
1
ρ
+ δ)êT

ij(k)êij(k)) + αT(k)Ωα(k)− αT(k)Pα(k)
}

≤
o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)ηl(x̂)ξTΨεwlξ < 0, (26)
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where ξT , [αT(t), e, êT
ij , x(t),

√
φ̂(t)

T
,
√

φ(t)
T
], and we get:

o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)[hl(x)− ηl(x̂)]Λε

=
o

∑
ε=1

o

∑
w=1

hε(x)ηw(x̂)
[ o

∑
l=1

hl(x)−
o

∑
l=1

ηl

]
Λε

=
o

∑
ε=1

o

∑
w=1

hε(x)ηw(x̂)(1− 1)Λε = 0, (27)

where Λε is arbitrary matrix. Combining (26) and (27), we get:

o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)ηl(x̂)Ψεwl

≤
o

∑
ε=1

o

∑
w=1

h2
ε(x)ηw(x̂)(γεΨεwε − γεΛε + Λε)

+
o

∑
ε=1

o

∑
w=1

o

∑
l=1

hε(x)ηw(x̂)(ηl(x̂)− γlhl(x))(Ψεwl −Λl) (28)

+
o

∑
ε=1

o

∑
w=1

o

∑
l<ε

hε(x)ηw(x̂)hl(x)(γlΨεwl + γεΨlwε − γlΛε − γεΛl + Λε + Λl),

where ηl(x̂)− γlhl(x) ≥ 0 for all l. Let (17), (18) and (19) hold for all ε, w, l = 1, 2, · · · , o,
then the following can be obtained:

∆V(α(t), φ(t)) < 0. (29)

Obviously, there is a scalar ι > 0 satisfying ∆V(α(t), φ(t)) ≤ −ι‖ξ2‖ for all ξ 6= 0.
Therefore, the system (16) achieves asymptotical stablility.

Although Theorem 1 has guaranteed the stability of the closed-loop system (16), in
order to find the parameters of FETPC and ETM, Theorem 2 is given.

Theorem 2. Given parameters ρ > 0, δ > 0, 0 < τ < 1, matrices Kl and membership function
satisfying ηl(x̂)− γlhl(x) ≥ 0(0 < γl < 1), the closed-loop system (16) can achieve asymptoti-
cally stable under (3) and (10), if there exist matrices Ῡ > 0 and arbitrary matrices Λ̄ε, Λ̄l with
appropriate dimensions for ε, w, l = 1, 2, · · · , o satisfying:

Ψ̄εwl − Λ̄l ≤ 0, (30)

γεΨ̄εwε − γεΛ̄ε + Λ̄ε ≤ 0, (31)

γlΨ̄εwl + γεΨ̄lwε − γlΛ̄ε − γεΛ̄l + Λ̄ε + Λ̄l ≤ 0, (32)

where,

Ψ̄εwl ,



Ψ̄11 Ψ̄12 ∗ ∗ ∗ ∗ ∗
0 0 Ψ̄23 ∗ ∗ ∗ ∗
0 0 0 Ψ̄34 ∗ ∗ ∗
0 0 0 0 Ψ̄45 ∗ ∗
0 0 0 0 0 Ψ̄56 ∗

Ψ̄61 Ψ̄62 Ψ̄63 0 0 0 −P

,
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with,

Ψ̄11 =

[
2ῡ3 I − Ῡ
−ῡ3 I

]
, Ψ̄12 =

[
∗

2ῡ3 I − Ῡ

]
, Ψ̄61 =

[
AεῩ + BεYl

(Aε − Âw)Ῡ + (Bε − B̂w)Yl

]
,

Ψ̄62 =

[
−BεYl

ÂεῩ− (Bε − B̂w)Yl

]
, Ψ̄63 =

[
−BεYl

−(Bε − B̂ε)Yl

]
, Ψ̄67 =

[
−Ῡ ∗
∗ −Ῡ

]
,

Ψ̄23 = −υ1Ῡ−1 IῩ−1, Ψ̄34 = −υ1Ῡ−1 IῩ−1,

Ψ̄45 = υ2Ῡ−1 IῩ−1, Ψ̄56 = υ2Ῡ−1 IῩ−1, Kl = YlῩ
−1.

Proof. Define P = diag{P̄, P̄}, Ῡ = P̄−1, Υ = diag{Ῡ, Ῡ}, D = diag{Υ, Ῡ, Ῡ, Ῡ, Ῡ, Υ}. Just
left and right multiply D on (17)–(19), then (30)–(32) can be obtained.

4. Numerical Examples

In this part, a numerical simulation is used to prove the effectiveness of the designed
control scheme for the networked interval type-2 fuzzy system. A nonlinear mass-spring
system is given as:

$̇1 = $2,

$2 = −0.01$1 − 0.67$3
1 + u,

where $1 ∈ [−1, 1]. If the nonlinear mass-spring system is discretized with sampling period
h=0.1, then the discrete fuzzy system is:

x(t + 1) =
2

∑
ε=1

hε( f (x))[Aix(t) + Bix(t)], (33)

where:

A1 =

[
1.0000 0.1000
−0.0010 1.0000

]
, B1 =

[
0.0050
0.100

]
,

A2 =

[
0.9966 0.0999
−0.0679 0.9966

]
, B2 =

[
0.0050
0.0999

]
,

hε(x(k)) = κihε(x(k)) + κεhε(x(k)), h2 = 1− h1,

h1( f (x)) =
1

1 + exp(−ϕ2x1(t))
, h2( f (x)) = 1− h1( f (x)),

h1( f (x)) =
1

1 + exp(−ϕ1x1(t))
, h2( f (x)) = 1− h1( f (x)),

and the membership functions of the controller is:

ηl(g(x̂)) = κlηl
(x(k)) + κlηl(x(k)), η2 = 1− η1,

η1(g((̂x))) = 0.98exp(−ϕ1x1(t)), η
2
(g((̂x))) = 1− η1(g((̂x))),

η
1
(g((̂x))) = 0.98exp(−ϕ2x1(t)), η2(g((̂x))) = 1− η

1
(g((̂x))),

with ϕ1 = 1, ϕ2 = 2.
Case 1: Assume that the constant matrices of the predictor (15) and the system (14)

are the same, that is Â = A, B̂ = B. Given parameter γ1 = 0.8 and γ2 = 0.95 and ensure
that ηl(x̂)− γlhl(x) ≥ 0. Set the event-triggered scalars as ρ = 4, δ = 0.8, τ = 0.3. By using
LMI, controller gains can be obtained as:

K1 =
[
−0.1581 −0.0851

]
, K2 =

[
−0.1481 −0.0441

]
.
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Suppose that the initial state is x0 = [0.5,−0.5]T , the sampling period is 0.1 s, and the
simulation time is 100 s. Packet loss occurs randomly in the communication network, and
the maximum number of consecutive packet loss is σ = 10. Figures 2–5 show the evolution
of the system state, event-triggered intervals, the evolution of the variable φ(k) and the
data dropout instants in case 1, respectively.
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Figure 2. System state in case 1.
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Figure 3. Event-triggered intervals in case 1.
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Figure 4. Dynamic variable φ(k) in case 1.
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Figure 5. Data dropout instants and intervals in case 1.

Case 2: Assume that the constant matrices of the predictor (15) and the system (14) are
different, that is Â = 1.02 ∗ A, B̂ = 0.9 ∗ B. Given parameter γ1 = 0.8 and γ2 = 0.95 and
ensure that ηl(x̂)− γlhl(x) ≥ 0. Set the event-triggered scalars as ρ = 4, δ = 0.8, τ = 0.3.
By using LMI, controller gains can be obtained as:

K1 =
[
−0.3145 −0.8307

]
, K2 =

[
−0.0152 −0.4473

]
.

Suppose that the initial state is x0 = [0.5,−0.5]T , the sampling period is 0.1s, and the
simulation time is 100s. Packet loss occurs randomly in the communication network, and
the maximum number of consecutive packet loss is σ = 10. Figures 6–9 show the evolution
of the system state, event-triggered intervals, the evolution of the variable φ(k) and the
data dropout instants in case 2, respectively.



Entropy 2021, 23, 1452 13 of 16

0 2 4 6 8 10 12 14 16 18 20

time/s

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

s
y
s
te

m
 s

ta
te

state x1

state x2

Figure 6. System state in case 2.
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Figure 7. Event-triggered intervals in case 2.
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Figure 8. Dynamic variable φ(k) in case 2.
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Figure 9. Data dropout instants and intervals in case 2.

Because the packet loss occurs randomly, the ETM of the two cases can not be com-
pared. Therefore, we set the packet loss moments of the two cases to be the same, and
Table 1 shows the frequency of event-triggered dynamic ETM1 (3) and static ETM in case 1
and case 2. It can be seen that dynamic ETM1 (3) has a lower event-triggered frequency
than static ETM.
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Table 1. The frequency of event-triggered mechanism.

ETM Frequency The Sampling Period

dynamic ETM (φ(k) 6= 0) in case 1 27 200

static ETM (φ(k) = 0) in case 1 52 200

dynamic ETM (φ(k) 6= 0) in case 2 30 200

static ETM (φ(k) = 0) in case 2 56 200

5. Conclusions

An IT2 T-S fuzzy model is used for modeling a class of NCSs, and an FETPC design
method for systems considered with imperfect premise matching is proposed. The dynamic
ETM1 has been used to reduce the network load and maintain certain control performance.
The designed FETPC can predict the state of the system between two successful transmis-
sions. By choosing the Lyapunov function and some inequalities, sufficient conditions have
been obtained to ensure the property of the closed-loop system, and a clear representation
of the event-triggered predictive controller is presented. Finally, numerical simulations are
used to illustrate the effectiveness of the designed method. In this paper, network delay
is not considered, and the stability of NCSs with network-induced delay will be studied
in future work. There are more practical factors that we need to consider, such as the
uncertainty of system parameters, the failure of physical devices, and the quantification of
network signals. All these will inspire our future work.
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