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single-photon emission computed tomography (SPECT). 
Computed tomography (CT) scanner provides attenuation 
correction data for SPECT as well as anatomic information 
for diagnostic purposes. X-ray beam used in CT scan is 
poly‑energetic, therefore, we have used a copper filter to 
remove the low energy X-rays to obtain more accurate 
attenuation factor as described by Kheruka et al.[1] Images 
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obtained with and without filters were quantitatively evaluated 
by segmentation method to avoid human error.

Segmentation is a process of  dividing an image into regions 
having similar properties such as gray level, color, texture, 
brightness, and contrast. Image segmentation is an important 
tool for evaluation of  medical images.[2-6] In nuclear medicine, 
segmentation of  images could play an important role to 
know the size and exact extent of  the lesion. The techniques 
available for segmentation of  images can be broadly classified 
into two categories.
• Techniques based on Gray levels, this can be further 

sub‑classified as (a) amplitude segmentation methods based 
on histogram features,[7] (b) edge based segmentation and 
(c) region based segmentation[8]

• Techniques based on textural features.[9]

Image segmentation based on textural features
In medical image processing, segmentation based on gray level 
does not give the desired results whereas segmentation based 
on textural feature methods gives more reliable results.[10,11] 
Therefore, textural features are extensively used in the analysis 
of  medical images.[12-14] Various methods available for textural 
feature extraction and classification based on the above 
approaches are: (a) Co-occurrence matrix method based on 
statistical description of  gray level of  an image,[15,16] (b) gray level 
run length method[17] (c) fractal texture description method,[18]  
(d) syntactic method,[19] and (e) Fourier filter method.[20] 
Further, as a comparison between the above-mentioned 
textures based approaches, spectral frequency‑based methods 
are less efficient while statistical methods are particularly 
useful for random patterns/textures. Whereas for complex 
patterns, syntactic or structural methods give better results. 
Therefore, in this study the textural properties have been 
computed using first‑order statistics or second‑order statistics 
that are computed from spatial gray-level co-occurrence 
matrices (GLCMs) for evaluation of  images.

MATERIALS AND METHODS

In this study, we have used AAPM CT phantom and Jaszczak 
SPECT phantom to obtain CT and SPECT images. Axial 
images of  CT phantom were acquired with 3 mm copper filter 
(low intensity) and without copper filter (high intensity). All the 
images were acquired with Hawkeye, GE Healthcare SPECT/CT 
system using low-dose CT at 140 kvp, 2.5 mA and 400 mm 
field of  view as shown in Figure 1a and b. To generate correct 
air correction table in the presence or absence of  filters, the 
daily X-ray calibration procedure has been repeated with and 
without 3.0 mm copper filter. In this process, the system takes 
full rotation without any object between the X-ray source and 
detector (i.e., in air) and another full rotation with daily quality 
control phantom placed in between X-ray source and detector.

For the validation of  attenuation correction map of  filtered CT 
images, Jaszczak SPECT phantom was filled with 500 MBq of  

99mTc and SPECT study was acquired in 64 × 64 matrix size 
for all 60 views over 360° rotation. Low dose CT images were 
acquired for attenuation correction to be used for reconstruction 
of  SPECT images. Another set of  CT images were acquired after 
applying additional 3 mm copper filter. Two sets of  axial SPECT 
images were reconstructed using attenuation map from both the 
CT images obtained without and with filter [Figure 2]. Ordered 
subsets expectation maximization was used for reconstruction 
of  SPECT images.

Jaszczak SPECT phantom consisted of  6 solid spheres having 
diameter 9.5 mm, 12.7 mm, 15.9 mm, 19.1 mm, 25.4 mm, and 
31.8 mm. To see the effect of  filtration on the CT and SPECT 
images, the cross-sections of  only large 3 solid spheres were 
analyzed quantitatively by segmentation method.

Segmentation method as described by Sharma et al.[21] was 
applied on the CT images (without and with filter) and SPECT 
Images of  Jaszczak SPECT phantom obtained using without 
and with filter CT attenuation maps [Figure 3]. The textural 
features of  obtained image were calculated. The textural 
properties have been derived using the first‑order statistics 
and second-order statistics that were computed from spatial 
GLCMs. For segmentation Simulated Annealing Based Fuzzy 
c-means algorithm was applied.

Further, the segmented images were analyzed quantitatively 
by measuring the diameters of  the spheres in all set of  the 
images, and the cross section areas of  the spheres were 
calculated. Quantitative measurement of  quality is done 
based on a universal image quality index (UIQI) as proposed 
by Wang and Bovik.[22]

Validation of filtered computed tomography 
attenuation correction map
Quantitative analysis of image quality
For quantitative analysis of  image quality, we have used 
CT phantom, and images were acquired with 3 mm copper 
filter (low intensity) and without copper filter (high intensity) 
using low-dose CT (140 kvp and 2.5 mA). We have used Q, 
the UIQI as proposed by Wang and Bovik[22] to measure 
the image quality, this index measures image distortion as 

Figure 1: Computed tomography phantom cross‑sectional images of resolution 
pattern. (a) Without copper filter, (b) with copper filter
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a combination of  three factors: (i) Loss of  correlation, 
(ii) luminance distortion, and (iii) contrast distortion. The 
value of  Q is computed as follows:
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The dynamic range of  Q is (−1.0 to 1.0), 1.0 is the best value 
which is achieved if  yi = xi i.e., the image quality of  acquired image 
is same as that of  the original image (phantom image) and −1.0 
means a poor image quality and correlation.

Further, Mean Square Error (MSE) is also widely used as 
mathematical measure for measuring the image quality of  
images[23] and is measured as follows:
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RESULTS

Images obtained with 3 mm copper filters were having better 
resolution than the images obtained without a copper filter as 
shown in Figure 1. UIQI Q was used to measure the quality of  
image acquired for CT phantom under different conditions, i.e. at 
the different hardness of  X-ray beam and the results of  same 
along with the value of  Q and MSE as shown in Table 1. Quality 
index of  the images obtained with the filter was higher, and MSE 
was low as compared to images obtained without a filter.

Analysis of the results
The segmented CT and SPECT images of  Jaszczak SPECT 
phantom showed good consistency in terms of  a number of  
pixels and area of  the circular cross-section of  the spheres in 
filtered images whereas no correlation has been found in the 
segmented images without a filter. When we applied Simulated 
Annealing Based Fuzzy c-means segmentation on both the CT 
images with and without a copper filter, the CT images with 
filter showed remarkable improvement and all the six section 
of  the spheres were clearly visualized. When we applied 
same segmentation method on the reconstructed SPECT 
images obtained without and with filter CT attenuation maps, 
the same observations were noted [Figure 3]. Segmented 

Table 1: Quality index and MSE at different hardness of the 
X‑ray beam using CT phantom
Cross section of original 
phantom image

Image acquired

Without copper filter With copper filter
Q=1.0 Q=0.7722 Q=0.9655
MSE=0.0 MSE=18.5364 MSE=6.0485

CT: Computed tomography, MSE: Mean square error

Figure 2: Axial computed tomography and single‑photon emission computed 
tomography images of Jaszczak single‑photon emission computed tomography 
phantom acquired without and with a copper filter. (a) Axial computed tomography 
image acquired without any additional filter, (b) reconstructed single‑photon 
emission computed tomography image using the attenuation map from (a), 
(c) axial computed tomography image acquired with additional 3 mm copper 
filter, (d) reconstructed single‑photon emission computed tomography image 
using the attenuation map from (c)

dc
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Figure 3: Segmented computed tomography and single‑photon emission 
computed tomography images of Jaszczak single‑photon emission computed 
tomography phantom. (a) Segmented computed tomography image without filter, 
(b) segmented single‑photon emission computed tomography image without 
filter, (c) segmented computed tomography image with filter, (d) segmented 
single‑photon emission computed tomography image with filter

dc

ba
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SPECT phantom image reconstructed using without filter 
CT attenuation map showed only four circular cross-sections 
of  the bigger spheres. Whereas, with filter showed all the six 
cross-sections of  the spheres very clearly. We have measured 
the diameter of  the bigger three spheres for comparison and 
details are given in Table 2. As expected the mean intensity 
observed in the circular cross-sections of  the spheres in the 
SPECT images reconstructed with filtered CT images were 
found quite low as no activity was contained inside the spheres. 
Cold area (low activity) was very well visualized for three 
bigger spheres in SPECT images with filter whereas it could 
be seen only for one sphere in unfiltered image.

The original diameters of  the largest three spheres were 
31.8 mm, 25.4 mm, and 19.1 mm. The computed diameters 
on without filter CT and SPECT images are given in Table 2, 
which shows large variations of  17%, 13%, 2.6%, and 65.7%, 
62.2%, 81.2 for CT and SPECT images respectively. On applying 
additional 3 mm copper filter, the measured diameter of  the 
targets on CT and SPECT images became 29.4 mm, 24.8 mm, 
20.1 mm, and 28.0 mm, 24.7 mm, 14.0 mm, respectively showing 
the variation of  7.5%, 2.4%, -5.2%, and 8.8%, 2.8%, 26.7% from 
the calculated values. This study shows that the estimations 
became more accurate on CT and SPECT images after applying 
additional 3 mm copper filter. Moreover, the measurement of  
diameters of  three big spheres on filter CT and SPECT images 
are in good agreement in contrast to large variations observed 
in that of  without filtered images.

DISCUSSION

Scatter-induced artifacts in the CT image can have a similar 
appearance in the emission images and can severely distort the 
attenuation-corrected images, making these images effectively 
useless as reported by Nuyts et al. on positron emission 
tomography (PET)/CT images.[24] Attenuation correction 
problem in SPECT and PET imaging has been studied by several 
authors, and various methods have been proposed to tackle this 
problem.[25-27] The only option offered by all manufacturers of  
SPECT scanners is to incorporate X-ray CT-based attenuation 
correction algorithms in their systems, and it is bilinear and hybrid 
scaling methods. This method works well for clinical procedures 
when X-ray beam is monoenergetic. However, X-ray beam used 
in SPECT with low-dose CT is poly-energetic. There are other 
remaining challenges that can cause errors in the converted 
attenuation correction factors caused by contrast agents and 
respiratory motion as well as truncation and beam hardening. 

Errors that are present in the CT-based attenuation image have 
the potential of  introducing bias or artifacts in the attenuation 
corrected SPECT emission image as studied by Kinahan et al. for 
PET/CT systems.[28] Uncorrected beam hardening and scatter 
build-up reduces measured attenuation along the lines of  high 
attenuation. Therefore, there is need to remove these low energy 
X-ray component, which we have achieved by using a copper 
filter. Therefore, images obtained with 3.0 mm copper filter for 
attenuation correction are superior as it removes the low energies 
X-ray beam from the primary beam. The results obtained with 
segmentation were in agreement with the results obtained by 
Kheruka et al.[1] Further,  segmentation of  the images was useful 
in the analysis of  the images.

CONCLUSION

On the basis of  this preliminary study and use of  copper filter 
by Kheruka et al.,[1] we could conclude that use of  3 mm copper 
filter to harden the X‑ray beam is optimal for removing the 
artifacts without causing any significant reduction in the photon 
flux of  the resulting X‑ray beam. We found that image quality 
has improved with almost no artifact; a very common problem 
seen in inadequately filtered X‑ray beams. It could be established 
that the images acquired with the filter are of  good quality as 
compared to images acquired without 3.00 mm copper filter 
and are free from bloom artifact. This study also showed that 
segmentation of  images is an important tool in analyzing the 
images which avoid the human error.
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