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Abstract

In ecology, as in other research fields, efficient sampling for population estimation often
drives sample designs toward unequal probability sampling, such as in stratified sampling.
Design based statistical analysis tools are appropriate for seamless integration of sample
design into the statistical analysis. However, it is also common and necessary, after a sam-
pling design has been implemented, to use datasets to address questions that, in many
cases, were not considered during the sampling design phase. Questions may arise requir-
ing the use of model based statistical tools such as multiple regression, quantile regression,
or regression tree analysis. However, such model based tools may require, for ensuring
unbiased estimation, data from simple random samples, which can be problematic when
analyzing data from unequal probability designs. Despite numerous method specific tools
available to properly account for sampling design, too often in the analysis of ecological
data, sample design is ignored and consequences are not properly considered. We demon-
strate here that violation of this assumption can lead to biased parameter estimates in eco-
logical research. In addition, to the set of tools available for researchers to properly account
for sampling design in model based analysis, we introduce inverse probability bootstrapping
(IPB). Inverse probability bootstrapping is an easily implemented method for obtaining
equal probability re-samples from a probability sample, from which unbiased model based
estimates can be made. We demonstrate the potential for bias in model-based analyses
that ignore sample inclusion probabilities, and the effectiveness of IPB sampling in eliminat-
ing this bias, using both simulated and actual ecological data. For illustration, we considered
three model based analysis tools—linear regression, quantile regression, and boosted
regression tree analysis. In all models, using both simulated and actual ecological data, we
found inferences to be biased, sometimes severely, when sample inclusion probabilities
were ignored, while IPB sampling effectively produced unbiased parameter estimates.

PLOS ONE | DOI:10.1371/journal.pone.0131765 June 30, 2015

1/19


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0131765&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/
https://www.champmonitoring.org/
http://www.noaa.gov/
http://www.bpa.gov

@’PLOS ‘ ONE

IPB Sampling for Unbiased Model Based Analysis of Probability Samples

South Fork Research, Inc. provided support in the
form of salaries for authors (MN, CV), but did not
have any additional role in the study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: Two of the authors (MN, CV)
are employed by South Fork Research, Inc. South
Fork research receives funding to support this
research via contracts with the Bonneville Power
Administration. This does not alter the authors'
adherence to PLOS ONE policies on sharing data
and materials.

Introduction

In scientific research, it has been found that a high proportion of reported results are irrepro-
ducible, and that many published findings are in reality measures of statistical bias [1]. In eco-
logical research, the potential for selection bias in statistical analysis may arise when sampling
design is ignored or improperly accounted for in the analysis of data [2]. Selection bias
describes bias resulting from, among other causes, a sample that is not representative of the
population of interest [3]. Sample selection bias and flawed statistical analysis of sample data
have been identified as sources of irreproducible results [4].

Typically, model based statistical methods are built on the assumption that data are
obtained with equal sampling probabilities, though often researchers in ecology, and other
fields, necessarily use available data from unequal probability samples. Unfortunately, there are
numerous examples where such model based analysis is done without accounting for sampling
design [2, 5, 6]. Inference from such analyses is therefore susceptible to bias, unless sample
inclusion probability (the probability that a given population element is included in the sam-
ple) is independent of the parameter(s) being estimated [7, 8]. If sample inclusion probability is
not independent of the parameter(s) being estimated, estimates will be biased toward those
sites with lower sample inclusion probability, because these sample units are over-represented
in the analysis.

While equal probability samples may be preferred in model based analysis, there are, in
many cases, a-priori reasons why unequal probability sampling was the preferred sampling
design. In sampling a spatial resource, unequal probability designs are often preferred after
considering that some population elements are perceived to be more important than others
[3]. Stratified sampling or other forms of non-uniform probabilistic sampling can be used to
design samples that efficiently estimate population means and trends [8, 9]. These study
designs, when properly applied, can increase precision of population estimates and statistical
power to detect population trends, especially when the mean or variance of an attribute varies
significantly across a definable attribute [10, 11]. Data from complex, unequal probability sam-
pling plans may be ideal for design based estimation of population means and distributions.
Examples of probability sampling includes monitoring by the National Park Service, where
design based analyses efficiently track long term status and trend of ecological resources [12];
stratified sampling utilized by the Columbia Habitat Monitoring Program (CHaMP) [13] to
monitor status and trends in habitat metrics important for juvenile salmon survival; stratified
sampling used by the Environmental Monitoring and Assessment Program (EMAP, http://
www.epa.gov/emap/); and stratified sampling conducted for the National Aquatic Resource
Survey (NARS, http://www.epa.gov/watertrain/monitoring/nationalsurveys.html).

Design based statistical tools are often used for inference on complex statistical sampling
designs [2, 10]. In design based inference, population estimates are made using the probabilities
of selection for each sample unit [14]. Design based inference is generally used to estimate pop-
ulation means and trends, rather than model parameters that describe complex relationships
between variables. Design based analysis tools, such as available in the R programming lan-
guage [15] using the spsurvey package [16], account for sample inclusion probabilities, and
thus provide status and trend estimation unbiased by unequal inclusion probabilities.

However, in ecology, as in other fields, use of such data beyond the original intent for which
the sampling process was defined, may be necessary. Researchers wanting to fit data to complex
models understandably want to use available data from unequal probability designs or observa-
tional data whose inclusion probabilities are not known, rather than re-do expensive sampling
with a sample plan specified to meet assumptions of model based statistical analysis, where a
user defined model serves as the basis for inference about population parameters [17]. A wide
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variety of model based analysis tools are available, such as linear regression, quantile regression,
and boosted regression trees. In model based inference, the structure of a model is assumed,
and model based statistical tools are used to estimate the unknown parameters of the assumed
model using an observed sample [13]. The assumed model may describe complex relationships
between variables, if the model adequately describes the population [18]. For example, linear
regression has been used to examine temporal changes, across a range of covariates, in spatial
density of aspen and conifer stands in City of Rocks Natural Reserve [19].

For some model based statistical tools, there are tools available to account for sampling
design in the analysis [20, 21]. To this set of tools and methods, we introduce inverse probabil-
ity bootstrapping (IPB), which has advantages especially appealing to researchers in ecology, in
that it is relatively easy to understand and apply, and that it easily applies to any model based
analysis because it transforms a sample, rather than modifying the analysis method, prior to
analysis of the data, enabling use of commonly used model based tools without advanced
knowledge, or development of, specific methods to account for sampling design within the
analysis itself.

Inverse probability bootstrapping (IPB) is a method by which data from an unequal proba-
bility sample are transformed into equal inclusion probability data via resampling using the
inverse of the original sample inclusion probabilities. A single iteration of the resampling pro-
cess results in an equal probability sample that may be analyzed using model based tools with-
out violation of the assumption of equal sample inclusion probability, though at a loss of
information content. Repeated sampling and analysis of IPB samples ensures negligible loss of
information content, while eliminating of the potential for sample selection bias.

Inverse probability bootstrapping is not intended as a replacement to simple random sam-
pling. Indeed, simple random sampling is generally the most powerful tool against biased infer-
ence; but in cases where unbiased model based inference requires equal probability sampling, it
provides a method to use data from existing unequal probability samples.

Methods

When unequal probability sampling is used and the researcher cannot assume sample inclu-
sion probabilities are uncorrelated to parameters of interest, it is necessary to give sample units
corresponding unequal weights in the analysis [22]. Inverse probability bootstrap (IPB) is an
application of sample importance re-sampling [23] applied to probability samples in order to
enable unbiased model based parameter estimates from un-equal probability samples.
Bootstrapping is a statistical technique primarily utilized to provide a means of estimating
standard errors of statistical estimates [24]. In bootstrapping, re-sampling, with replacement, is
done on a sample, and parameter estimates are made from each bootstrap re-sample. The pro-
cess is repeated thousands of times, and standard errors of parameter estimate(s) are estimated
as the standard deviation(s) of the bootstrapped estimates. Additionally, bootstrapping has
been applied to analyses of complex probability surveys [25, 26], including techniques where
the inverse sample inclusion probabilities are used to generate weighted bootstrap samples.
Typically it is the variation of bootstrapped estimates, rather than mean of the bootstrapped
estimates, that is of interest. However, we can also utilize the mean of the bootstrapped esti-
mates as a parameter estimate. We exploit this property of the bootstrap in the analysis of
unequal probability samples, where model based tools are not appropriate for the initial proba-
bility sample, but are appropriate for a carefully constructed bootstrap sample where the ele-
ments of the bootstrap samples have equal sample inclusion probabilities. Thus the basic
approach of inverse probability bootstrapping (IPB) is to generate equal probability bootstrap
samples by application of unequal weights in the re-sampling state, such that each bootstrap
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sample is transformed into an equal probability sample. Thus sample inclusion probabilities
are handled by modifying the sample itself, rather than through modification of the model
based analysis tool. This allows valid inference from model based statistical methods that do
not explicitly incorporate survey design into the analysis. Because IPB sampling modifies a
sample, rather than an analysis tool, it can incorporate a wide range of model based statistical
tools for analysis of unequal probability samples.

Inverse probability bootstrapping can be summarized as seven discrete steps:

1. From an existing unequal probability sample, obtain or calculate sample inclusion probabil-
ities as would be done for any design based analysis, as described in numerous statistical
sampling texts [10].

2. Calculate inverse sample probabilities. Let P; be the probability that a given element, i, of a
sample of size N, is included in the original, unequal probability sample. The inverse sample
probability assigned to element i, P; ;,p, is calculated as follows:

1
Pz:z'pb - (1)

P
s
Dyt
1 1

The quantity P;;,;, is simply the inverse of the original sampling probability, scaled such that
the sum of all P; ;,;, is equal to one.

3. Generate an IPB sample. From the original unequal probability sample, re-sample, with
replacement, using the inverse sample probabilities P; ,,, calculated using Eq (1). The sam-
ple size of the re-sample is equal to the original sample size, N. This step is identical to a sin-
gle iteration of a conventional bootstrap, except for the use of inverse sampling probabilities
rather than uniform re-sample probabilities. As in conventional bootstrapping, sampling
with replacement is critical. Re-sampling without replacement would result in a re-sample
that is identical to the original sample, rather than an equal probability sample. Note that
elements of the original sample may be missing from the IPB sample, and other elements
from the original sample may be present two or more times in the IPB sample.

4. Conduct the desired model based analysis on the inverse probability bootstrap sample
obtained in step 3. Estimate parameters of interest.

5. Iterate steps 3 and 4, as in conventional bootstrapping, and record the parameter estimate
(s) from each iteration.

6. Estimate model parameters as the average of parameter estimates over each iteration of the
IPB sampling process (steps 3 and 4).

7. Estimate standard errors of parameter estimates as the standard deviation of parameter esti-
mates obtained at each iteration of the bootstrap process, as in conventional bootstrapping.
Alternatively, use cross validation methods to assess model precision.

For some model based analysis tools, such as boosted regression tree analysis, averaging
parameter results over multiple iterations of a bootstrap analysis may not be practical or possi-
ble, since model selection is implicitly bound to the analysis method. While predictions, rather
than parameter estimates may be the objective of such analyses, the analysis should still seek
unbiased parameter estimates to ensure unbiased model predictions. In these cases, a single
inverse probability sample still enables model fitting unbiased by sample inclusion probabili-
ties. However, a single inverse probability bootstrap fails to provide adequate precision, as
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excessive information content from the original sample is lost in a single iteration of the boot-
strap process. Greatly inflating the sample size of the inverse probability bootstrap, rather than
iterating, will yield an equal probability sample that does not suffer from significant loss of
information content. To inflate the sample size, let N}, be the original size of the sample, and
set Nj,p, to be a value many times greater than this value. For inflated sampling, sample, with
replacement, to a sample size of Nj;, rather than Ny,,,. We refer to the quantity Njp,/Npop as
the IPB inflation factor. This inflation factor is analogous to the number of iterations of an
inverse probability bootstrap required to achieve repeatable results when not using inflated
sampling with IPB. Model analysis of the inflated sample will yield unbiased estimates, since
the uniform sample inclusion property of the IPB sample is maintained. However, because the
sample size is inflated relative to the true sample size, the standard errors from the resultant
model fit will be vastly under-estimated, because the sample size used in the model fitting pro-
cess is much greater than the true sample size. Because using an inflation factor with inverse
probability bootstrap sampling drastically underestimates standard errors, model precision
should be estimated using another method, such as cross validation. Further work is needed to
develop theoretical or corrected bootstrap estimates of standard errors for parameters esti-
mated using inflated inverse probability bootstrap samples. When not using an inflation factor,
reported standard errors can be used in conjunction with IPB, as described above.

Results

To demonstrate biases induced from ignoring sample inclusion probabilities, as well as the
effectiveness of inverse probability sampling in eliminating this bias, a series of simulated and
example analyses using model based techniques on simulated and actual ecological data were
performed. Simulated data were utilized to enable comparisons between known parameter val-
ues and parameter estimates obtained from model based statistical techniques. Analyses of
actual ecological data were performed to demonstrate that, in real applications, the relationship
between sample inclusion probabilities and model parameters is such that failing to account
for sample inclusion probabilities does, in practice, result in problematic bias that can be cor-
rected by using inverse probability bootstrapping.

Simulation 1

Inverse Probability Sample: Validation of Inclusion Probabilities. We used stratified
sampling on a simulated population to demonstrate that application of IPB sampling on an
unequal probability sample does result in a uniform probability sample suitable for analysis via
model based analysis tools. We first simulated a population containing 100 elements, labeled 1
to 100, where we defined elements 1-25 as stratum A, 26-50 as stratum B, 51-75 as stratum C,
and 76-100 as stratum D. We defined a stratified sample design calling for a sample of 20 total
units, stratified such that the sample size per stratum, and resulting inclusion probabilities,
were as defined in Table 1. The resulting stratified sample is an example of an unequal proba-
bility sample. From the stratified sample, we used IPB sampling to obtain equal probability
samples. Our IPB sample size was N = 20 (identical to the initial sample size), and our inverse
sample inclusion probabilities were calculated according to Eq 1. For our analysis, the entire
simulation process (stratified sampling followed by IPB sampling) was repeated 100,000 times,
and sample inclusion probabilities by stratum were averaged overall all repetitions.

The number of times each element appeared in the simulated sample, divided by the total
number of samples taken over all repetitions of the simulation, estimates the underlying sample
inclusion probabilities (Fig 1). As expected, estimated inclusion probabilities for the stratified
sample matched the stratified design criteria (Table 1), with approximately 8% for group A
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Table 1. Unequal inclusion probabilities for stratified sample.

Stratum

A
B
C
D
Total

doi:10.1371/journal.pone.0131765.t001

Total Population Size Sample Size (N) Inclusion Probability (Psirar)
25 2 2/25

25 3 3/25

25 6 6/25

25 9 9/25

100 20

(units 1-25), 12% for group B (units 26-50), 24% for group C (units 51-75), and 36% for
group D (units 76-100). Inclusion probabilities for the IPB were equal for all sample units, as
desired, at 20% for all units. This was as expected given the initial sample size of 20 out of 100
units. This example demonstrates that IPB sampling successfully produces equal probability
subsamples from an unequal probability sample, thereby satisfying the equal probability
assumption of model based analysis methods.

Simulation 2

Analysis of Simulated Ecological Data. Next, we generated simulated ecological data,
then sampled from the simulated dataset using equal probability sampling, stratified sampling,
and IPB sampling of the stratified samples. The equal probability sampling (simple random
sampling) serves as the ideal, zero bias baseline to which we compare analysis of the stratified
samples and the IPB sampling. For each type of sampling, we analyzed the sampled data using

3 - )
< | ® Stratified Sample
> g A IPB
= o
T
O o
e o
o o
C N
2 o
®]
L 2]
g o
o o o
g | Lufassane
I I I I I I
0 20 40 60 80 100

Sample Unit

Fig 1. Simulated population sample unit inclusion probabilities for stratified sample and inverse
probability bootstrap (IPB) of stratified sample

doi:10.1371/journal.pone.0131765.g001
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Table 2. Variance-covariance matrix input to R function cluster.Gen to simulate correlated and clustered explanatory (X1.. X6) and response (Y)
ecological variables.

Variance-Covariance Matrix

Variable Mean Y X1 X2 X3 X4 X5 X6
Y 2.0 2.0 0.9 0.5 3.0 0.3 0 0.1
X1 4.0 0.9 4.0 0 0.4 0 0 0.5
X2 3.0 0.5 0 3.0 0 0 0 0

X3 2.0 3.0 0.4 0 7.0 2.0 0 2.0
X4 2.0 0.3 0 0 2.0 4.0 0 0.2
X5 3.0 0 0 0 0 0 2.0 1.0
X6 8.0 0.1 0.5 0 2.0 0.2 1.0 5.0

doi:10.1371/journal.pone.0131765.t002

three model based statistical tools, the results of which were used to compare bias and standard
errors from each of the three sampling techniques.

Data from ecological samples are often comprised of spatially correlated and/or clustered
metrics. To generate simulated ecological data, samples for seven simulated variables were gen-
erated using the function cluster.Gen from the R package clusterSim [27]. This function allows
the user to specify a vector of mean values and a variance-covariance matrix for a series of vari-
ables and returns a matrix of partially clustered variables exhibiting the specified mean and var-
iance-covariance structure. For our simulated ecological data, one response variable was
arbitrarily considered as the response variable, and six were recorded as explanatory variables.
The vector of means and the variance-covariance matrix are shown in Table 2. Note that there
are non-zero covariance values, which resulted in simulated populations where the response
variable, Y, was positively correlated to the vector of explanatory variables X, and where there
was correlation among the explanatory variables.

For each iteration of the simulation, 1400 rows of data were generated. These data repre-
sented the total population of interest (the simulated population), where 1400 suggests a large,
but finite population from which samples are taken, typical of real world ecological sampling.
From the simulated population, 400 rows of data were sampled using three methods. First, a
simple random sample (equal probability sample), without replacement, of 400 rows was
drawn from the data, using the sample function in R. A second sample employed stratified ran-
dom sampling, where sample inclusion frequencies were defined according to stratum. Strata
were defined, arbitrarily, based on the value of the response variable, Y, such that five strata
were defined (A-E) along increasing values of Y. Sample inclusion probabilities for each stra-
tum were defined such that the frequency of samples from each stratum in the final sample var-
ied, by up to a factor of three, from the frequency from each stratum in the original population
(Table 3). A factor of three is well within the range of sample inclusion probabilities observed

Table 3. Simulated population for example 2: distribution by stratum, and target sample size by stratum for stratified sample design.

Stratum Population Total Count in Percent Stratum in Sample Probability Per Target Sample Percent Stratum in
Stratum Population Unit Size Sample

A 435 31% 0.71 311 62%

B 183 13% 0.36 65 13%

C 182 13% 0.18 33 7%

D 143 10% 0.18 26 5%

E 457 33% 0.14 65 13%

Total 1400 100% 500 100%

doi:10.1371/journal.pone.0131765.t003
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in real world ecological sampling (in the real world data example to follow, sample inclusion
probability ranges of more than 10x were used). Stratified sampling was performed from the
simulated population using the R sample function, without replacement. Third, IPB samples
were generated from the stratified sample using the IPB process described above. The entire
process of sampling, using each of the three combinations of sampling and analysis (simple
random sampling, stratified sampling without IPB, and stratified sampling with IPB), was
repeated thousands of times, in conjunction with the analysis described below, to generate dis-
tributions of parameter estimates and corresponding distributions of errors.

For the three sampling and analysis approaches considered in example 2 (simple random
sampling, stratified sampling, and IPB analysis of stratified sample data), three sets of model
based analyses were conducted: linear regression, quantile regression, and boosted regression
tree analysis.

Linear regression models the relationship between a single response variable and one or
more explanatory variables. Quantile regression is a model based statistical tool used to esti-
mate quantiles, rather than the mean, of a population response variable as a function of explan-
atory variables. In ecology, upper quantile estimates of population density are sometimes used
as an estimate for species carrying capacity [28]. In other ecological research, quantile regres-
sion has been used to draw insight into limiting factors [29, 30]. For all quantile regression
analyses in this paper, we modeled the upper 95 percentage quantile. Linear regression and
quantile regression both provide direct estimates of model coefficients for each explanatory
variable. The presumed true values for each coefficient, to which modeled estimates were com-
pared, were those obtained from linear and quantile regression on all 1400 data points of the
simulated population. Boosted regression tree analysis is a technique of predictive data mining
that has become increasingly popular in the analysis of ecological data [31]. Potential advan-
tages of boosted regression trees over more traditional regression approaches include the
implicit ability to account for interactions and non-linear relationships between variables [32].

To assess bias and the distribution of prediction error, cross validation was incorporated
into each analysis. For each of the 1400 initial rows of data in the population, one row at a time
was removed from the data set, and 400 data points were sampled from the remaining 1399
data points. From the sample, each model was fit, and the fitted models were used to predict
the value of the excluded data point. Prediction error was defined as the predicted value minus
the actual value of the response, for each data point in the population. This was repeated for
each data point in the population, yielding a distribution of prediction errors for each model.

We calculated bias as the average prediction error for each model and compared it across all
three simulated datasets for each model. Standard deviations of the predicted validation points
were calculated as an estimate of the model precision. Standard error estimates for each model
parameter estimated were calculated, as in conventional bootstrapping, as the standard devia-
tion of the parameter estimates over each iteration of the bootstrap process. Note that standard
errors of parameter estimates are a property of the estimator, and are a function of the sample
size rather than the number of IPB iterations, thus do not tend toward zero with an increasing
number of IPB iterations. The precision of our estimates of bias, however, does increase with
greater numbers of bootstrap iterations. Sufficient IPB iterations were used to ensure uncer-
tainties in our estimates of bias are negligible.

Both simple random sampling and IPB sampling achieved unbiased predictions, while strat-
ified samples analyzed without consideration of sample inclusion probabilities resulted in
biased predictions (Table 4). Estimated biases were near zero for all modeling methods (linear
regression, quantile regression, and cluster analysis) for models built on data from simple ran-
dom sampling and IPB sampling, with mean errors ranging from -0.02 to 0.00 (Table 4. Note
that, because we’re using simulated data, we have not included units). Biases were non-zero for

PLOS ONE | DOI:10.1371/journal.pone.0131765 June 30, 2015 8/19



@’PLOS ‘ ONE

IPB Sampling for Unbiased Model Based Analysis of Probability Samples

Table 4. Bias and standard deviation of predicted values, by sampling design and modeling method,
for simulated ecological data in example 2.

Linear Quantile Boosted
Regression Regression Regresstion

Tree
Bias Std. Bias Std. Bias Std.

Dev. Dev. Dev.

Simple Random Sampling 0.00 1.07 0.02 0.23 0.00 1.53
Stratified Sample, Ignoring Inclusion 0.30 1.07 0.40 0.39 0.70 1.54

Probability

Inverse Probability Sampling -0.02 1.08 -0.02 0.40 0.00 1.53

Bias is calculated as mean prediction error in leave one out cross validation. For quantile regression, point-
wise comparisons for cross-validation are approximated using a linear regression model built from all
simulated data.

doi:10.1371/journal.pone.0131765.t004

analyses of the stratified sample that ignored sample inclusion probabilities, with estimated
biases of 0.30, 0.40, and 0.70 for linear regression, quantile regression, and boosted regression
tree analysis, respectively. The precision of predictions, estimated by the standard deviation of
prediction errors, was comparable to or only slightly higher for IPB sampling than for simple
random sampling, and roughly equal between IPB sampling and analysis of the stratified sam-
ple that ignored sample inclusion probabilities (Table 4). Note, however, that judging a model
using only standard deviations of predictions from biased estimates may be misleading in that
it suggests a false level of confidence. Bias induced by neglecting to include sample inclusion
probabilities is not reflected in the standard deviation of predicted values, thus comparable
standard deviations cannot, in the presence of bias, be used to suggest two methods are equally
valid.

For linear regression and boosted regression tree analysis, bias was not observed in the
results for simple random sampling and IPB sampling, while mean errors were biased (not cen-
tered about zero) when sample inclusion probabilities were ignored (Fig 2).

Bias in estimated coefficients was near zero for both simple random sampling and IPB sam-
pling, with absolute errors, over both models, ranging from zero to 13%, across the estimates
for the size model coefficients and intercept (Table 5). Bias is expressed as a percent error
between the known true slope and the modeled slope from the sampled data. For analysis of
the stratified sample that ignored sample inclusion probabilities, the bias values for the various
modeled coefficients ranged from 2% to more than 200% and included biases such as 15%,
24%, and 70% in absolute value. Additionally, there was consistency in the relative slopes
between analysis based on simple random sampling and IPB sampling, and the inherent bias
present in the analysis of the stratified sample that ignored sample inclusion probabilities
(Fig 3).

Using quantile regression, we again found bias to be present when sample inclusion proba-
bilities were ignored. Errors in estimated coefficients are higher for 5 of 6 coefficients and for
the intercept when sample inclusion probabilities were ignored than for estimates made using
simple random sampling or IPB sampling (Table 6 and Fig 4).

To further illustrate potential for bias, we repeated the simulation described above at multi-
ple sets of inclusion probabilities. We used the coefficient of variation (COV) as a measure
describing variability within the sample inclusion probabilities, where a COV of zero indicates
uniform sampling probabilities, and higher COV values describe greater ranges of sampling
inclusion probabilities. The same stratification structure was used as in the previous analysis,
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Fig 2. Estimated mean prediction errors, as a percent of the standard deviation of the response variable, with 95% confidence intervals, for linear
regression of response variable on independent variables, and boosted regression tree anlaysis, using: simple random samples (SRS), stratified
samples fit without accounting for design weights (Strat), and inverse probability bootstrap sampling (IPB)

doi:10.1371/journal.pone.0131765.g002

except that the relative differences in stratum specific sampling probabilities were applied over
a wider range. As expected we found that, as the variability in sampling probabilities increased,
the amount of bias observed increased (Fig 5). Expressed as a percentage of the standard devia-
tion of the response variable, bias ranged from zero for uniform probability sampling, to more

Table 5. Linear model regression results for simulated data. Standard errors refer to the precision of the parameter estimates.

Simple Random Sample Stratified Sample: Inclusion Inverse Probability Bootstrap
Probabilities Ignored in Model Fitting
Process

Parameter True Slope Estimate Slope % Error Std Error Estimate Slope % Error Std Error Estimate Slope % Error Std Error

Intercept 0.153 0.152 0% 0.048 -0.189 -224% 0.045 0.148 -3% 0.056
X1 0.098 0.098 0% 0.015 0.113 15% 0.013 0.098 0% 0.019
X2 0.111 0.110 -1% 0.020 0.124 12% 0.017 0.112 1% 0.025
X3 0.436 0.437 0% 0.015 0.429 -2% 0.014 0.437 0% 0.019
X4 -0.120 -0.120 0% 0.018 -0.110 -9% 0.016 -0.120 -1% 0.024
X5 0.008 0.009 13% 0.019 0.013 70% 0.017 0.007 -10% 0.025
X6 -0.080 -0.080 0% 0.009 -0.057 -24% 0.008 -0.080 0% 0.013

doi:10.1371/journal.pone.0131765.t005
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Fig 3. Distribution of estimated slopes for linear regression, using simple random samples (SRS), stratified samples fit ignoring sample inclusion
probabilities (Strat), and regression using Inverse Probability Bootstrap samples (IPB)

doi:10.1371/journal.pone.0131765.9g003

than 60 percent for boosted regression tree analysis, and 40 present for linear regression, at
sample probability COV values near 1.0. The sample inclusion probabilities used for the full
analysis, described above, had a sample inclusion probability COV of 0.7.

Table 6. Quantile regression results for simulated data. Standard errors refer to the precision of the parameter estimates.

Simple Random Sample Stratified Sample: Inclusion

Probabilities Ignored in Model Fitting

Inverse Probability Bootstrap

Process

Parameter True Estimated % Std EstimatedSlope % Std Estimated % Std

Slope Slope Error Error Error Error Slope Error Error
Intercept 2.333 2.293 2% 0.089 1.946 -17% 0.125 2.276 -2% 0.136
X1 0.148 0.133 -10% 0.045 0.129 -13% 0.052 0.124 -16% 0.070
X2 0.123 0.126 2% 0.048 0.140 14% 0.056 0.125 2% 0.073
X3 0.513 0.514 0% 0.039 0.551 7% 0.035 0.504 2% 0.055
X4 -0.200 -0.205 3% 0.051 -0.234 18% 0.049 -0.202 1% 0.074
X5 0.067 0.050 -24% 0.052 0.004 -94% 0.071 0.030 -54% 0.089
X6 -0.190 -0.190 -1% 0.021 -0.163 -15% 0.023 -0.183 -4% 0.032
doi:10.1371/journal.pone.0131765.1006
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Fig 4. Distribution of estimated slopes for quantile regression, using simple random samples (SRS), stratified samples fit ignoring sample
inclusion probabilities (Strat), and regression using Inverse Probability Bootstrap samples (IPB)

doi:10.1371/journal.pone.0131765.g004

Example 3. Model Fitting on Real World Ecological Data using Inverse
Probability Bootstrapping

The Columbia Habitat Monitoring Program (CHaMP) collects habitat data in watersheds
across the interior Columbia River basin (details available on www.champmonitoring.org).
The sampling designs for CHaMP are constructed by dividing qualifying networks of rivers
and streams into approximately 1 km sites from which a total population frame is defined.
From the population frame, a stratified sampling design is used to determine the sampled sites.
Within each sampled site, habitat attributes are measured and more than 100 CHaMP metrics
are measured for each site.

An Integrated Status Effectiveness Monitoring Program (ISEMP, www.isemp.org) samples
juvenile salmonid abundance at a subset of co-located CHaMP sites to estimate the relationship
between juvenile abundance and stream habitat attributes. Unique strata and sampling proba-
bilities for sites within each stratum are defined for each sampled site having both fish and hab-
itat data. All strata were defined during the sampling design process, prior to data collection;
thus the sample inclusion probabilities for all sampled points can be calculated directly.

In addition to estimating status and trend for habitat and salmonid abundance, an objective
of CHaMP / ISEMP research is improved understanding of the complex relationships between
stream habitat and salmonid abundance. Model based analysis tools are appropriate and neces-
sary for this objective. While inference within each stratum of each watershed is often useful,
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doi:10.1371/journal.pone.0131765.g005

there is also interest among researchers and funding agencies to expand understanding of fish
habitat relationships across strata within watersheds, as well as across all watersheds over the
entire interior Columbia basin. Datasets at spatial scales greater than individual strata contain
a range of non-uniform sample inclusion probabilities.

Inverse probability bootstrap sampling was developed in order to support modeling efforts
underway in the CHaMP/ISEMP programs. Thus, in order to demonstrate IPB with actual eco-
logical data, we used data from the CHaMP/ISEMP programs, and conducted the same series
of model based analyses with this data as were performed with the simulated data.

CHaMP/ISEMP data for 350 sites that contained both fish abundance and habitat data were
included from the Entiat, Wenatchee (WA), John Day, Upper Grande Ronde (OR), Lemhi,
and South Fork Salmon (ID). Data were collected over three years (2011-2013) as part of a
sampling design comprising both annual and rotating panel temporal sampling patterns.
Annual sites were sampled each year, and rotating panel sites sampled once in the three years
of sampling completed to date. For sites with fish or habitat data sampled at more than one
year, site level metrics were averaged across all years. Site level inclusion probabilities were
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calculated based on the number of sampled sites within each stratum, divided by the total num-
ber of sites in the population belonging to that stratum (CHaMP sample design details available
on www.monitoringresources.org).
For all analyses, the response parameter is juvenile steelhead density, in fish/m?, as mea-
sured at each sampled stream location. A subset of CHaMP metrics, believed important to fish
abundance, were used as explanatory variables: conductivity, bankfull area, wetted large wood
volume, fast non-turbulent area, mean bankfull width, percent boulders, LWD fish cover, dis-
charge, and fines >2mm (see Table 7 for units and definitions). We found that transforming all
variables, including steelhead density, with the natural log function, generally resulted in
approximately normally distributed model residuals. Note that the analyses presented here are
not intended to demonstrate a complete or adequate description of the relationships between
habitat and abundance, but merely to demonstrate potential bias when failing to account for
sampling design, and the utility of IPB sampling to eliminate such bias.
Just as in the simulation exercise, models from linear regression, quantile regression, and
boosted regression tree analysis, were fit two ways, 1) ignoring sample inclusion probabilities;
and 2) with IPB sampling to account for sample inclusion probabilities. Unlike the analysis of
simulated data, there are not known true parameter values with which to compare parameter
estimates. We instead estimate the level of bias by comparing the difference in estimates
obtained with and without utilization of inverse probability bootstrapping. Based on the prior
discussion and the results of the prior simulations, we assume that the estimates obtained from
IPB sampling are indeed unbiased. Estimates of bias are again made from leave-one-out cross
validation, where each point is weighted by the inverse sample probability. Note that weighting,
during cross validation, is necessary in estimation of bias, since the cross validation points,

obtained from the original unequal probability sample, require proper weighting for an unbi-
ased estimate of bias in errors. Failing to account for sample inclusion probabilities during
cross validation would otherwise lend itself to bias just as failing to account for sample inclu-
sion probabilities would in the original analysis. In this case, a proper estimate requires only a
weighted average of cross validation errors, where the weight for each validation point is equal
to the inverse of the initial sample inclusion probability. For quantile regression, there is no

corresponding tool for cross validation as there is no point by point estimate of quantile with

which to compare predicted quantiles. In this case, analyses of the IPB samples are assumed

Table 7. Definition and measurement units for CHaMP habitat metrics used in example 3 (www.

champmonitoring.org).

Variable Definition Units

Conductivity Measure of the concentration of ionized materials in water, orthe ~ pmhos/
ability of water to conduct electrical current cm

Site Bankfull Area The total bankfull area of a site m?

Wetted Large Wood Total volume of qualifying large wood pieces (> 0.1 m diameter, m®

Volume By Site 1.0 m length) that touch the wetted perimeter

Fast Non-Turbulent Area Total wetted surface area identified as fast non-turbulent channel ~ m?
units

Mean Bankfull Width Mean bankfull width derived from cross-sections m

Percent Boulders Percent of boulders and cobbles within the wetted site area %

Fish Cover Composition Percent of wetted area that has large woody debris as fish cover %

LWD

Site Discharge Volumetric flow rate at site m%s

Fines <2mm Average percentage of pool tail substrates comprised of fine %
sediment <2 mm

doi:10.1371/journal.pone.0131765.t007
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doi:10.1371/journal.pone.0131765.9006

unbiased, and the quantile regression bias defined for the model that ignores sample inclusion
probabilities is taken as the difference in predictions between the estimates from the two sam-
pling methods.

As in the simulated dataset of example 2, parameter estimates from models fit to CHaMP/
ISEMP data differed significantly between analyses that ignored sample inclusion probability
and models built from IPB samples.

Cross validation results from linear regression and boosted regression tree analysis showed
biased predictions, for both models, when sample inclusion probabilities were ignored, while
IPB sampling resulted in unbiased estimates (Fig 6 and Table 8). Biases after IPB sampling
were consistently near zero. Precision of model predictions, estimated as the standard deviation
of the cross validation errors, did not differ greatly between the two methods.

When comparing coefficients for linear and quantile regression models, we assumed that
IPB sampling provided approximately unbiased estimates and that the differences between
non-IPB sampling and IPB sampling therefore approximated biases resulting from ignoring
sample inclusion probabilities. For linear regression, percent errors in the nine coefficient esti-
mates when sample inclusion probabilities were ignored ranged from 14% to 89% (Table 9).
For quantile regression, percent errors in coefficient estimates ranged from 12% to over 500%,
with 3 of 8 parameter estimates having errors or more than 100% (Table 10).
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Table 8. Cross validation results for example 3: bias and standard deviation of predicted-measured In
(Steelhead per m?).

Linear Quantile Boosted
Regression on  Regression on Regression
Selected Selected Tree
CHaMP Metrics CHaMP Metrics
Bias Std. Bias Std. Bias Std.
Dev. Dev. Dev.
Stratified Sample, Ignoring Inclusion -0.23 0.61 0.05 0.56 0.42 0.70
Probability
Inverse Probability Bootstrap Sampling -0.01 0.61 0.00 0.60 -0.01 0.71

doi:10.1371/journal.pone.0131765.t008

Interestingly, estimates of bias induced by ignoring sample inclusion probabilities in quan-
tile regression were, on a percentage basis, higher than those obtained from linear modeling,
suggesting that quantile regression of fish abundance for CHaMP/ISEMP data may be more
sensitive to bias induced by ignoring sample probabilities than is ordinary regression. Similarly,
bias observed in boosted regression tree analysis was also greater than bias induced by linear
regression, when sampling design was ignored in the analysis.

Discussion

Like conventional bootstrapping, inverse probability bootstrapping is a technique that can
broadly be applied and, like conventional bootstrapping, is easily accessible to ecological
researchers. It can be incorporated into model based analyses of data from complex, unequal
probability samples common in ecological research.

Our results confirmed that estimates from model based analyses of data obtained from
unequal probability samples are susceptible to sample selection bias if sample inclusion proba-
bilities are ignored. Because stratified sampling and other forms of unequal probability sam-
pling are useful and common in the collection of ecological data, and because ecological

Table 9. Parameter estimates for example 3, regression of In(steelhead density, fish/m?) on selected habitat parameters, for models that: ignore
sample inclusion probabilities, and utilize IPB sampling to account for sample inclusion probabilities.

Parameter

Intercept

Conductivity

Site Bankfull Area

Wetted Large Wood Volume By Site
Fast Non-Turbulent Area

Mean Bankfull Width Mean
Boulders

Fish Cover Composition LWD

Site Discharge

Fines <2mm

Stratified Sample: Inverse Probability % Error Due to Ignoring Weights

Inclusion Probabilities Bootstrap
Ignored in Model Fitting
Process

Est. Slope Std. Error Est. Slope Std. Error
-1.60 0.027 -1.49 0.031 7%
0.13 0.030 0.23 0.023 46%
-0.35 0.111 -0.68 0.137 49%
-0.01 0.034 -0.13 0.038 89%
-0.05 0.029 -0.09 0.038 39%
0.19 0.106 0.52 0.138 64%
0.09 0.027 0.13 0.028 36%
-0.04 0.036 -0.08 0.028 44%
-0.06 0.031 -0.07 0.043 15%
0.06 0.036 0.07 0.036 14%

Standard errors refer to the parameter estimates.

doi:10.1371/journal.pone.0131765.1009
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Table 10. Parameter estimates for example 3, comparison for 95" percentile quantile regression of In(steelhead density, fish/m?) on selected habi-
tat parameters, for models that: ignore sample inclusion probabilities, and utilize IPB sampling to account for sample inclusion probabilities.

Parameter

Intercept

Conductivity

Site Bankfull Area

Wetted Large Wood Volume By Site
Fast Non-Turbulent Area

Mean Bankfull Width

Boulders

Fish Cover Composition LWD

Site Discharge

Fines <2mm

Weights Ignored in Model Inverse Probability % Error Due to Ignoring Weights

Fitting Process Bootstrap

Est. Slope Std. Error Est. Slope Std. Error

-0.66 0.08 -0.61 0.08 -9%
0.25 0.07 0.31 0.07 19%
-0.68 0.35 -1.25 0.38 45%
0.06 0.09 0.07 0.12 15%
-0.07 0.10 0.02 0.08 538%
0.39 0.32 0.96 0.36 59%
0.04 0.08 -0.03 0.11 220%
-0.07 0.11 -0.21 0.06 64%
-0.10 0.08 -0.12 0.12 12%
0.03 0.08 -0.13 0.07 124%

Standard errors refer to the parameter estimates.

doi:10.1371/journal.pone.0131765.t010

datasets may have complicated variance-covariance structures with known and unknown cor-
relations among variables, analyses of ecological datasets are particularly susceptible to such
bias. Sample selection bias, unlike standard error, does not tend toward zero as sample size
increases [10], nor is bias reported as an output of statistical tools. It is incumbent on the
researcher to recognize potential bias, and avoid misconstruing equality of reported standard
errors and evidence of equally valid analyses.

By re-sampling in a manner that creates an equal probability sample from the original sam-
ple rather than relying on modification or augmentation of model based analysis tools, we
greatly expand the number of model based tools available for the analysis of complex ecological
survey designs. Sufficient iteration of the re-sampling process ensures that essentially all infor-
mation content in the original probability sample is retained. Thus there is no appreciable loss
in precision of estimates, but rather only an elimination of sample induced bias. While the
intended analysis should, whenever possible, be considered at the point of sampling design, it
is hoped that in pursuit of evolving objectives, or in the interest of taking full advantage of
existing datasets, study design need not limit the choice of statistical modeling tools
considered.

We expected standard error estimates based on IPB sampling to be reasonably accurate, and
observed that the standard error estimates in analysis of IPB samples were similar to the stan-
dard errors estimated using unequal probability samples while ignoring sample inclusion prob-
abilities. Further study is needed to assess the accuracy and statistical consistency of standard
error estimates based on IPB sampling, either theoretically or through simulation. Currently,
we recommend reliance on cross validation techniques to assess model precision. While uncer-
tainty in standard error estimates is a potential limitation of IPB bootstrapping, this limitation
is tempered significantly if one accepts that it is also advisable to use cross validation whenever
possible, regardless of whether one is utilizing IPB or not, in the assessment of statistical mod-
els in ecology. There are numerous cross validation approaches are available, even for datasets
with small sample sizes [33, 34].

While stratified samples and other forms of unequal probability samples are common in
ecological research, it is also becoming more common to perform analyses on datasets built
from aggregating two or more samples. In any aggregate dataset, even when simple random
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sampling is used for each original dataset, aggregate datasets are likely to have unequal sample
inclusion probabilities due to differences in sampling frames and sampling densities in the
original samples. Earth Cube, for example, is a National Science Foundation sponsored pro-
gram aimed at providing “unprecedented data across the geosciences” (earthcube.org). Provid-
ing aggregate datasets obtained from multiple sources is an obvious objective of such
programs. CHaMP/ISEMP data are also publically available, and researchers may wish to
merge CHaMP/ISEMP data with other sources of data to form aggregate datasets. While cau-
tion should be used in aggregation of data from multiple sources, the generation of unequal
sample inclusion probabilities need not limit the statistical tools or defining statistical scope of
inference. Sample inclusion probabilities for aggregate datasets can be calculated, provided that
the sample inclusion probabilities of the original datasets are known. Gathering adequate meta-
data to enable estimation of sample inclusion probabilities is an obvious challenge in the use of
aggregate datasets, but in instances where this is available and complex model based tools are
required, IPB is a powerful tool enabling the appropriate incorporation of sample design prob-
abilities to overcome challenges in unequal probability samples.

In some instances, datasets may be available to researchers, but metadata required to esti-
mate sample inclusion probabilities may not be available. Given the susceptibility to bias when
sample inclusion probabilities are not accounted for in an analysis, caution and transparency
should be exercised. In some cases, methods such as raking [35] or post stratification [22] have
been used in order to estimate sample inclusion probabilities from the data itself [36]. Such
estimated sample inclusion probabilities can also be used, with caution, with IPB sampling or
other statistical tools that account for sample inclusion probabilities.
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