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Current neuroscientific models describe the functional neural architecture of visual

working memory (VWM) as an interaction of the frontal-parietal control network and

more posterior areas in the ventral visual stream (Jonides et al., 2008; D’Esposito

and Postle, 2015; Eriksson et al., 2015). These models are primarily based on adult

neuroimaging studies. However, VWM undergoes significant development in infancy and

early childhood, and the goal of this mini-review is to examine how recent findings from

neuroscientific studies of early VWM development can be reconciled with this model.

We surveyed 29 recent empirical reports that present neuroimaging findings in infants,

toddlers, and preschoolers (using EEG, fNIRS, rs-fMRI) and neonatal lesion studies in

non-human primates. We conclude that (1) both the frontal-parietal control network

and the posterior cortical storage areas are active from early infancy; (2) this system

undergoes focalization and some reorganization during early development; (3) and the

MTL plays a significant role in this process as well. Motivated by both theoretical and

methodological considerations, we offer some recommendations for future directions for

the field.

Keywords: visual working memory, frontoparietal network, ventral stream, early development, neonatal lesions in

primates, infants, preschoolers

INTRODUCTION

Working memory is a limited-capacity system for the maintenance and manipulation of
information in service of ongoing tasks. The classic model of working memory (WM, Baddeley
and Hitch, 1974) distinguishes the central executive system and two different sensory buffers for
the temporary storage of visual and auditory information (an additional system, the episodic buffer,
was later added: Baddeley, 1986). This multicomponent model has framed essentially all research
on WM for more than 20 years. More recent “state-based” WM models (Cowan, 1988; Oberauer,
2002;McElree, 2006), however, question basic assumptions of themulticomponentmodel, claiming

Abbreviations: DR, delayed response; DNMS, delayed non-match to sample; DTI, diffusion tensor imaging; EEG,

electroencephalography; fNIRS, functional near infrared spectroscopy; fMRI, functional magnetic resonance imaging; HR,

heart rate; dlPFC, dorsolateral prefrontal cortex; LTM, long-term memory; MTL, medial temporal lobe; Neo-HC, neonatally

lesioned in the hippocampus; Neo-PRh, neonatally lesioned in the perirhinal cortex; Obj-SO, object self-ordered pointing

task; PRh, perirhinal cortex; rs-fMRI, resting state fMRI; SOMT, Serial Order Memory Task; VoE, Violation of Expectation;

vlPFC, ventrolateral prefrontal cortex; VWM, visual working memory; WM, working memory.
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that there are no separate WM-specific storage systems in the
brain; instead, representations held in WM are temporarily
activated long-term memory (LTM) representations. According
to this view, storage of sensory information involves posterior
cortices; visual WM (VWM) representations, for example,
have been localized in various stages of the ventral stream,
starting in the occipital cortex (Harrison and Tong, 2009;
Serences et al., 2009) and continuing to inferior temporal
cortex (Miller et al., 1991). Maintenance and manipulation of
WM representations (the functions of the central executive)
depend upon a frontal-parietal network (Awh and Jonides,
2001; Curtis and D’Esposito, 2003), in particular, anterior insula,
lateral prefrontal cortex (PFC), dorsal anterior cingulate cortex,
and areas within and surrounding the intraparietal sulcus
(Seeley et al., 2007).

This conceptualization of WM is grounded in an extensive
body of neuroscientific research, the majority of which has
been conducted with human adults (for reviews, see Jonides
et al., 2008; D’Esposito and Postle, 2015; Eriksson et al., 2015).
WM undergoes significant postnatal development, with far-
reaching consequences on cognitive development in general
(Bull et al., 2008). Behavioral studies have shown that the
ability to hold information in VWM emerges in infancy (Káldy
and Leslie, 2003, 2005; Ross-Sheehy et al., 2003; Zosh and
Feigenson, 2012), and gradually improves throughout childhood
(Riggs et al., 2006; Cowan et al., 2010; Simmering, 2012) and
adolescence (Isbell et al., 2015). It is outside of the scope
of this mini-review to provide a comprehensive overview of
the entire behavioral literature (see Kibbe, 2015; Cowan, 2016;
Reynolds and Romano, 2016, in this Research Topic); instead,
we will examine whether recent findings from neuroscientific
studies of early VWM development can be fit into the adult
model above.

We limit our focus to studies that examine VWM in the
first 5 years of life. While there is an abundant fMRI literature
on children older than 6–7 years of age (e.g., Geier et al., 2009;
von Allmen et al., 2014), this method currently cannot be
used with very young children, and here we focus on what is
known about these mechanisms before this age. The studies
reviewed here employ a variety of neurophysiological methods
(primarily electroencephalography, EEG, and functional
Near-Infrared Spectroscopy, fNIRS) in human infants and
young children (Table 1) and lesions in young primates
(Table 2).

Structural and functional brain development progresses in
parallel. Both classic brain anatomical studies in synaptic density
(Huttenlocher and Dabholkar, 1997) and more recent structural
connectivity studies using DTI (Qiu et al., 2015) found a
posterior-to-anterior progression during the first few years of
life, with white matter developing in the occipital and temporal
cortices before frontal areas. While our focus in this mini-
review is on the functional development of the system underlying
VWM, we will also discuss a few groundbreaking studies where
researchers were able to link behavioral performance in a VWM
task with myelination of a specific network (Short et al., 2013;
Meng et al., 2014).

NEURODEVELOPMENT OF THE HUMAN
VWM SYSTEM: INFANCY (0–2 YEARS)

Many of the neuroimaging studies examining infant VWM
development employed the classic A-not-B task in conjunction
with optical imaging (fNIRS) or EEG. In this task, an object
is hidden at one of two locations and the infant is allowed to
manually search for it. Once the infant repeatedly succeeds at
one location, the object is then hidden at the other location. In
the looking-based version of this task, looking times to the two
locations are contrasted.

In one of the first studies to measure regional blood-flow
changes in infants using fNIRS, Baird et al. (2002) found
that prefrontal cortex (PFC) activity increased with success on
an object maintenance task. More recently, EEG power and
coherence measures from the entire scalp have been used to
examine VWM task-related and age-related changes in the
frontal-parietal network of infants (Bell and Wolfe, 2007; Cuevas
and Bell, 2011; Bell, 2012; Cuevas et al., 2012a,b,c). Cuevas et al.
(2012a), for example, found that frontal EEG power and heart
rate predicted VWM performance in infants at 10 months, but
not at 5 months. In another study, successful performance on
the A-not-B task was found to be related to increased frontal-
parietal coherence at 8 months (Bell, 2012; Cuevas et al., 2012b).
These findings suggest that the frontal-parietal network supports
successful VWM performance between 8 and 10 months.

During the infancy period, functional connectivity of the
VWM network appears to become less diffuse with age. Cuevas
et al. (2012a) found an increase in EEG coherence relative to
baseline across the entire scalp in 5-month-olds but only between
the medial frontal and occipital electrode sites in 10-month-
olds. This finding is additionally supported by the observation
of increased focalization of frontal-parietal network activity
between 8 months and 4.5 years of age, which may reflect more
efficient communication (Bell and Wolfe, 2007).

Resting-state fMRI (rs-fMRI) has been used to identify
functional connections between brain regions in the absence
of any task. This latter aspect makes this method particularly
attractive for studies of early development, as infants can be
scanned during sleep. In a pioneering study, Alcauter et al. (2014)
tracked the development of resting-state networks in infants
from birth to 2 years of age and their VWM performance.
In addition to significant gains in synchrony among prefrontal
and parietal regions at age one, it was found that connectivity
between the thalamus and the salience network (which includes
the insula, the cingulate, and frontal cortices, and is considered a
sub-network of the frontal-parietal network in adults, see Elton
and Gao, 2014) at age one predicted VWM performance at age
two. In a DTI tractography study, the same group found that
myelination of the tracts connecting frontal and parietal cortices
predicted VWM performance in 1-year-old infants (Short et al.,
2013). These studies thus corroborate the EEG findings that
frontal-parietal connectivity is present before the end of the first
year, and is related to VWM development. However, because
salience network activity is functionally dissociated from WM
performance in adults (Seeley et al., 2007; Elton and Gao, 2014),
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it is likely this network undergoes functional reorganization
between toddlerhood and adulthood.

The involvement of posterior cortical areas in infant
VWM has primarily been examined using more modern
behavioral paradigms, such as Violation-of-Expectation (VoE),
in conjunction with fNIRS, or EEG. Using fNIRS, Wilcox and
colleagues found that the anterior temporal cortex showed
consistent activation when infants noticed a change in the
features of an object that they held in mind when it reappeared
from behind an occluder (thus, this feature change “violated”
their expectations; Wilcox et al., 2005, 2008, 2009, 2010, 2014).
Task-related activation in the posterior temporal cortex gradually
decreased from 5 to 12 months, and the occipital cortex was
active during all object maintenance tasks. This decrease in
activation in posterior temporal cortex may reflect functional
reorganization of object processing areas over the course of
development (Wilcox et al., 2012, 2014; Wilcox and Biondi,
2016). Converging evidence for maintenance related activity in
posterior storage areas has been reported by Kaufman et al. (2003,
2005) using EEG. They found that increased gamma-band (20–
60 Hz) activity in the right temporal cortex of 6-month-olds
was associated with the maintenance of object representations
behind an occluder (Kaufman et al., 2003, 2005). More recently,
Kaufman and colleagues showed that the same response was
higher in the right occipital cortex when infants kept two vs.
one object in VWM (Leung et al., 2016). This result raises
the possibility of finding a load-dependent neural signature of
information storage in infant VWM.

In sum, the literature concerning the neural substrates of
VWM systems in infants points toward an early emerging
frontal-parietal network; one that is present and active even
before age one (Bell, Cuevas; connectivity studies). Studies by
Wilcox, Kaufman and their colleagues found storage-related
VWM activity in the temporal and occipital cortices as well,
which may mirror similar findings in adults in the ventral visual
stream (for a recent review, see Lee and Baker, 2016).

NEURODEVELOPMENT OF THE HUMAN
VWM SYSTEM: EARLY CHILDHOOD (3–5
YEARS)

To date, only a handful of neuroimaging studies have examined
VWMduring the early childhood period, and all used fNIRS. The
lack of neuroimaging (both structural and functional) conducted
with this notoriously challenging age range is primarily due
to practical limitations: Preschool-age children require special
experimental designs as they are rarely willing to participate for
an extended time, and they often do not follow verbal instructions
reliably. One notable limitation of three of the four fNIRS studies
reviewed below is that hemodynamic responses were measured
only in the frontal areas (or in Buss et al., 2014, in the frontal
and the parietal cortices). Thus, conclusions were necessarily
constrained to these regions.

Tsujimoto et al. (2004) found that lateral PFC activity in 5.5-
year-old children was very similar to adults’ during a change
detection task: One of the most widely used paradigms in adult
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VWM research, participants are briefly presented with a set
of to-be-remembered items, and following a short delay are
tested on whether or not the items have changed (Pashler,
1988; Luck and Vogel, 1997). Using the same task with a small
longitudinal sample, Tsujii et al. (2009) found that between 5 and
7 years of age, increased VWMperformance correlated with right
lateralization of frontal activity.

More recently, Buss et al. (2014) found that the frontal-
parietal network was active in 3- and 4-year-olds during a change
detection task, where load was systematically manipulated.
Overall, they demonstrated greater involvement of parietal
cortical areas relative to frontal areas, as well as increased parietal
activity in 4-year-olds relative to 3-year-olds. Prior studies found
that, in adults, activity in the parietal cortex was load-dependent
for small set sizes, and leveled off at the behaviorally-defined
capacity limit (Todd and Marois, 2004; Palva et al., 2011). In 3-
and 4-year-olds this activity was load-dependent, but continued
to increase beyond the observed capacity limit—a finding that
warrants further investigation. In a similar investigation of delay-
dependent activity, Perlman et al. (2016) manipulated the length
of delays (2 vs. 6 s) and found age-dependent activation in lateral
PFC in children between 3 and 7 years of age, and that children
recruited this areamore during longer delays. As the ventrolateral
PFC is involved in maintenance, this finding suggests increased
active rehearsal of information with age.

In sum, it appears that the frontal-parietal network becomes
increasingly adult-like throughout early childhood. Increased
recruitment of prefrontal and parietal areas point to increased
focalization of the frontal-parietal system, while increased
lateralization to the right hemisphere suggests adult-like
specialization of this network for visuospatial tasks (Thomason
et al., 2009). Because recordings were not made from the
temporal and occipital areas, at the current time we cannot draw
any conclusions about the involvement of the posterior cortices.
The paucity of research in this age range creates a gap in our
understanding of the development of VWM.

NEURODEVELOPMENT OF THE
NON-HUMAN PRIMATE VWM SYSTEM:
EFFECTS OF NEONATAL LESIONS

Both the frontal-parietal network and the posterior storage areas
(e.g., IT) have multiple connections to the medial temporal lobe
(MTL; Lavenex et al., 2002). While most current neuroscientific
methods used in young children (fNIRS, EEG) do not allow
access to these deep structures, primate lesion studies have
provided a wealth of findings about the role of these structures
in early development. Unlike adult lesion studies, which can only
provide information about the relative contribution of a brain
structure in a fully-formed system, neonatal lesion studies have
the advantage of examining the downstream effects of a lesion on
the developing system1. In the following section, we will focus on

1The earliest neuroscientific studies of the development of the frontal cortex used

these techniques as well (Goldman, 1971; Miller et al., 1973), and demonstrated

the role of both the dorsolateral and the ventrolateral PFC (dlPFC and vlPFC)

in VWM. By connecting findings in PFC-lesioned macaques and human infants,

Diamond and Goldman-Rakic (1989) laid the one of the first building blocks of

developmental cognitive neuroscience.

the role of the MTL in the development of the frontal-parietal
network.

Heuer and Bachevalier (2011) examined the contribution
of the hippocampus to the development of VWM abilities.
Here they utilized a delayed response task (also widely used
in classic behavioral studies with infants; e.g., Diamond and
Doar, 1989), where participants are presented with one object
(the sample), followed by a delay, and then a choice between a
matching object and a non-matching object. In the delayed-non-
match-to-sample (DNMS) version of this task, participants are
rewarded for selecting the non-matching object. Results showed
that adult macaques that received neonatal hippocampal lesions
(henceforth: Neo-HC) performed as well as sham-operates on a
DNMS task (requires maintenance and putatively relies on the
vlPFC, see Petrides, 1995). However, these macaques failed to
even meet training criterion on an object self-ordered pointing
task (Obj-SO) in which participants selected baited food wells
in a different order on successive trials (requires manipulation,
specifically, monitoring serial order, and putatively relies on the
dlPFC; Petrides, 1995).

Follow-up studies using other dlPFC-associated VWM tasks
have provided supporting evidence: Neo-HC macaques made
significantly more errors than controls on a serial-order memory
(SOMT) task (Heuer and Bachevalier, 2013), and in a foraging
task were more likely than controls to return to boxes they had
already visited, especially if that box previously contained the
animal’s preferred food (Glavis-Bloom et al., 2013). Thus early
hippocampal lesions lead to deficits in VWM manipulation, but
not in maintenance. The finding that early hippocampal damage
leads to deficits on a task that taps dlPFC has been replicated in
human patients who suffered hypoxic-ischaemic events early in
life (Geva et al., 2016).

In addition to hippocampal lesions, Weiss et al. (2016) found
that neonatal lesions to another area of MTL, the perirhinal
cortex, impacted VWM performance on tasks believed to rely
on the vlPFC. In their study, macaques with neonatal lesions of
perirhinal cortex (Neo-PRh) were impaired on a DNMS task at
shortdelays, aswell as anObj-SOtask; both repeated stimuli across
trials, and thus required trial-to-trial updating of information in
VWM. In contrast, Neo-PRh animals performed well on a task
that used novel stimuli across trials (SOMT), thus did not require
updating, suggesting that the perirhinal cortex is not involved
in manipulation of WM contents per se, but rather interference
resolution or associated executive functions (e.g., inhibition).

These findings suggest that the MTL gives rise to the
development of PFC-associated VWM skills, such as
manipulation and interference resolution, likely through
reciprocal neuroanatomical connections (Goldman-Rakic et al.,
1984; Aggleton et al., 2015). Two recent connectivity studies
provide converging evidence for this. Early hippocampal damage
led to both reduced white matter (Meng et al., 2014) and
decreased resting-state connectivity (Meng et al., 2016) between
the dlPFC and the medial PFC and several posterior areas,
such as IT and V4, in adult macaques. These anatomical and
functional impairments correlated with poorer performance
on the SOMT (Meng et al., 2014, 2016). This correlation
underscores the importance of the hippocampus, as well as
the frontal-parietal network in the development of VWM
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abilities: By adulthood, Neo-HC macaques had not developed
compensatory mechanisms for VWM. This stands in stark
contrast to a similar neonatal lesion study demonstrating
compensatory mechanisms for rule learning and recognition
memory following lesions to the vlPFC (Malkova et al., 2016).

SUMMARY AND FUTURE DIRECTIONS

The goal of this mini-review was to examine the
neurophysiological evidence regarding the early emergence
of the VWM network that involves both the frontal-parietal
control network and the posterior storage areas that have been
identified in adults. Our first conclusion is that both of these
systems seem to be active from as early as the second half of the
first year in humans.

A handful of longitudinal and cross-sectional studies reviewed
here point to a gradual focalization of the frontal-parietal
system throughout development (see the works of Bell and
her colleagues). We also see some evidence for the functional
reorganization of the network during the early life period: for
example, a shift away from the salience network from infancy
to adulthood (Alcauter et al., 2014), and increasing reliance
on the parietal cortex during the preschool years (Buss et al.,
2014). These changes may reflect a specialization within the
network. Furthermore, findings from non-human primates have
demonstrated the significance of the medial temporal lobe in the
development of the lateral PFC (see the works of Bachevalier and
her colleagues).

Related to the emergence of posterior information storage
areas, a number of studies found object-maintenance related
activity in both occipital and temporal lobes in infancy (see
the works of Kaufman and his colleagues). Studies on VWM
mechanisms in early childhood have not recorded from these
posterior areas, so our understanding of how these areas support
VWM in this age range is, at the moment, limited.

A defining characteristic of VWM is its limited capacity.
This functional characteristic can serve as a signature to identify
VWM storage-related mechanisms: In these structures, activity
is expected to gradually increase with the number of to-be-
remembered items, and then remain constant when capacity
limit has been reached (e.g., Palva et al., 2011). In studies that
aim to find this signature, the adult cognitive neuroscience
literature has adopted a useful psychophysical measure to
quantify VWM capacity (Cowan’s k2). Research on school-age
children has recently begun to examine how memory load affects
the recruitment of different parts of the VWM system using
this measure (e.g., Shimi et al., 2014; Kharitonova et al., 2015).
Importantly, this approach has already been applied successfully
in preschoolers (Buss et al., 2014, reviewed above).

2The formula is k=N ∗ (H+ CR− 1), where N is the number of items presented,

H is hit rate, CR is correct rejection rate (Cowan et al., 2005).

Based on both theoretical and methodological considerations,
the ideal design to study neurodevelopmental change in the
VWM system has the following attributes:

(a) Uses the same behavioral task across ages from infants to
adults (or at least between infants and young children or
young children and older ones).

(b) Quantifies capacity behaviorally (e.g., with Cowan’s
k), and measures neural activity as a function
of capacity, in order to identify storage-related
mechanisms.

(c) Uses a longitudinal sample, to minimize the effects of inter-
individual variability.

Some of the studies to date have two of these features,
but none have all three. Because of its versatility and low
task demands, the change detection paradigm is the best
positioned to meet criterion (a) in the near future. Thus,
a crucial open question for future studies is how neural
activity in the VWM network changes in children under 3
years of age using this task. As well, future studies with
preschool-age children that record from posterior cortices
(using whole-brain nets, see e.g., Sato et al., 2012) should
elucidate the role of these structures in VWM beyond
infancy.

Despite all the methodological challenges that are involved in
studying brain functions in infants, young children, and young
primates, research on early VWM neurodevelopment has gotten
off to an exciting start. Several different physiological methods
have already yielded converging results, and recent advances in
neuroimaging methods (e.g., Cutini and Brigadoi, 2014; Graham
et al., 2015), will likely lead to an expansion of research in
the near future. We look forward to an exciting period in
the study of the early developmental unfolding of the VWM
system.
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