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Abstract

One in three epilepsy cases is drug resistant, and seizures often begin in infancy, when they are life-threatening and when 
therapeutic options are highly limited. An important tool for prioritizing and validating genes associated with epileptic conditions, 
which is suitable for large-scale screening, is disease modeling in Drosophila. Approximately two-thirds of disease genes are 
conserved in Drosophila, and gene-specific fly models exhibit behavioral changes that are related to symptoms of epilepsy. 
Models are based on behavior readouts, seizure-like attacks and paralysis following stimulation, and neuronal, cell-biological 
readouts that are in the majority based on changes in nerve cell activity or morphology. In this review, we focus on behavioral 
phenotypes. Importantly, Drosophila modeling is independent of, and complementary to, other approaches that are computational 
and based on systems analysis. The large number of known epilepsy-associated gene variants indicates a need for efficient 
research strategies. We will discuss the status quo of epilepsy disease modelling in Drosophila and describe promising steps 
towards the development of new drugs to reduce seizure rates and alleviate other epileptic symptoms.
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Introduction
Diversity of epilepsy genetics
Epilepsy has a strong hereditary component; over the past  
decade, more than 100 causative epilepsy genes have been  
discovered by worldwide epilepsy screening consortia1,2. 
Approximately 50% of cases can be traced to single genetic  
mutations2–4. The identification of these genes by worldwide 
consortia is an important step toward the development of new  
therapeutic approaches because modeling the disease conditions 
requires a powerful genetic approach. Given the rapid progress 
in stem cell technology, patient-derived models are one attractive 
avenue of investigation5. However, the heterogeneity of human 
genomes poses challenges, as differences in genetic background 
can alter the phenotype produced by a given mutation. These  
challenges can be partially overcome in the Drosophila model 
through crossings to achieve isogenized lines, as well as the  
standardization of transgenic insertions to reach a stable genetic 
background6–9. However, genetic drift remains a concern when 
transgenic lines are kept over many generations and can lead 
to differing results from different labs that ostensibly use  
the same stocks.

Anti-seizure drugs (ASDs) aim to control epileptic symptoms  
and improve quality of life in epilepsy patients. Despite very 
good results for two-thirds of those affected, seizures remain  
refractory, or drug-resistant, in one-third of patients10. Even 
increased dosage or combination therapy has not produced 
a significant reduction in the fraction of intractable cases. In  
addition, epilepsy patients can develop further comorbidities 
despite seizure suppression, including intellectual disability  
(ID) and autism spectrum disorder11,12.

Artificial intelligence-based detection of epilepsy-
associated phenotypes
To what extent can behavior testing be automated in data  
analysis? Several readouts have been developed, including the 
tracking of fly movements by video analysis to capture either  
momentary adult fly seizure-like behavior or long-term move-
ment and activity patterns13–15. Readouts of larval motor  
coordination have also been employed in seizure-associated  
studies16. An intriguing alternative to screens searching for 
genetic modifiers is the Janelia Fly Olympiad project. In this 
project, 2,205 specific anatomical regions were acutely silenced  
using shits or overexcited using TrpA1 in order to track behavior 
changes automatically utilizing computer vision algorithms17,18. 
This technical approach registered a broad range of behav-
ior patterns, including locomotion, coordination, and climbing 
that together reflect epilepsy-associated paradigms19. Righting  
behavior and side-steps, for instance, have been previously 
employed to quantify epilepsy-associated phenotypes20,21. The 
combination of increasingly efficient behavior readouts and 
genetic screening libraries enabling the regulation of nearly all 
genes with tissue-specific promotors holds great promise for  
future screens, in which the advantages and limitations of the  
chosen readout (Figure 1) will determine the successful iden-
tification of disease-relevant phenotypes. This promises to 
extend our knowledge beyond the identification of single genes  
toward learning about how they interact to produce disease states.

Disease modeling in Drosophila and screens for 
conserved, disease-associated factors
The fruit fly Drosophila melanogaster has contributed a great  
deal to genetic research, and around 70% of the fly’s genes 

Figure 1. Epilepsy models utilizing Drosophila behavior. Stimulation of Drosophila can induce seizure-like behavior in susceptible 
animals. Quantification typically reflects the recovery after stimulation, the frequency and duration of seizuring effects, or significant 
behavioral changes. Circadian rhythm (sleep/wake) and geotaxis assays measure the behavior of flies in a test chamber to reveal 
susceptibility to either seizure-like or complex behavior changes associated with epileptic pathology. The paradigms can be combined  
with typically oral uptake of pharmacological compounds to induce or suppress these phenotypes. MUT, mutant; WT, wild type.
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have orthologs in humans22. Through experiments ranging from  
ethological to molecular biological assays, key insights 
have been gained from Drosophila into the genetic basis of  
hereditary disorders, including Alzheimer’s disease and epilepsy.  
Forward genetic screens in Drosophila have identified factors 
affecting general functions such as sleep23 as well as many 
that associate with ID and autism spectrum disorder24. With 
respect to epilepsy, geneticists and clinicians have identified  
causative variants in more than 100 genes, the majority of 
which have conserved orthologs in Drosophila, enabling fast 
and inexpensive modeling of human patients’ conditions25,26. 
Even the intricate role of glial cell contribution to heredi-
tary epilepsies has been investigated through interactions that 
have been conserved on the level of both molecular and cellu-
lar interactions27,28. The important contribution of Drosophila to  
epilepsy research is reflected in a Google Scholar search for  
<‘Drosophila’ AND ‘epilepsy’> that yields 28,200 publica-
tions, including around 12,000 from the past 5 years, as well as  
700 related patents.

Here, we outline the current state of epilepsy modeling in  
Drosophila and indicate methodological innovations that enable 
new approaches to disease modeling, such as CRISPR–Cas9  
genetic screens.

Epilepsy modeling in Drosophila
Behavior experiments
Drosophila has been used to model epilepsy for nearly  
50 years, since the discovery of bang-sensitive alleles29. These 
genetic mutations cause the animals to respond to a mechani-
cal or temperature stress with a characteristic, seizure-like  
response. Three criteria for epilepsy model readouts have been 
established, namely quantifiable seizure susceptibility thresholds,  
a baseline genetic control, and resemblance to human seizuring30.

The fly model helped to determine that seizure-like behavior  
can be evoked by global central nervous system activity that, at 
least for the characteristic muscle tremors, requires long-range 
interactions in the nervous system rather than regionally  
compartmentalized foci of activity21. While global brain excita-
tion is sufficient to induce an attack, in classic bang-sensitive  

alleles only the involvement of certain brain regions was neces-
sary in order to elicit bang sensitivity or temperature sensitivity.  
These epilepsy paradigms required the genetic targeting of  
different, yet overlapping, brain regions in order to initiate the  
respective seizure-like effects, providing an insight into the  
complexity of invertebrate analogous behavior to epileptic  
seizuring (Table 1).

Next, we elaborate on these respective assay types and  
summarize behavioral and physiological assays most relevant 
to epilepsy-associated behavior (Figure 1) in the context of  
representative studies.

Mechanical stimulus. The discovery of mutations in genes  
coding for sodium and potassium channels led to mechanistic 
insights into neuronal excitability, e.g. Drosophila mutants with 
corresponding human orthologs paralytic/SCN1A, slowpoke/ 
KCNMA1, and seizure/KCNH2/KCNH731. In parallel, the orthol-
ogous human epilepsy variants were found to occur with high 
prevalence in patients32. It is important to stress that bang  
sensitivity describes a specific, seizure-like animal behavior 
pattern as opposed to general loss of activity. This behavior  
pattern begins once a threshold has been reached and occurs in 
an all-or-nothing manner through a periodic sequence of shak-
ing and loss of coordination. The inactive phase has been found 
to be disrupted by a tap to the experimental chamber, indi-
cating that the internal state of the central nervous system in  
seizure-like attacks is directly affected by external stimuli.

Mechanical induction of seizure-like states has identified alle-
les in more than 50 genes, again including orthologs of causative  
disease genes21,29,33. In some cases, epilepsy-related pheno-
types were revealed through refined genetic strategies since full  
knockout alleles can result in adult-lethal animals34–36.

A functionally related group of gap junction genes has been  
identified owing to the characteristic induced shaking, beginning 
with shaking B (shakB) and its interaction with ogre/Innexin1,  
but also stress-sensitive B (sesB)37–39. Despite substantial diver-
gence in these genes between human and Drosophila, their role 
in human seizure progression and in blocking seizures means 

Table 1. Well-characterized seizure-associated genes in Drosophila.

Gene name Homolog Bang Heat Unc. Function Reference

Paralytic (para) SCN1A + + + Na+ channel α subunit Parker et al., 201131

slowpoke (slo) KCNMA1 - + - K+ channel subunit Moss et al., 199640

seizure (sei) KCNH2/7 + + + K+ channel subunit Titus et al., 199741; 
Wang et al., 199742

easily shocked (eas) ETNK1 + - - Ethanolamine kinase Pavlidis et al., 199443

Shaker (Sh) KCNA1 - - + K+ channel α subunit Salkoff & Wyman, 198144 

mustard (mtd) OXR1 + - - Oxidative stress sensor Wang et al., 201945

shaker B (shakB) - - + + Gap junction subunit Crompton et al., 199537

The closest human ortholog and experimental results for bang sensitivity, heat sensitivity, and uncoordinated behavior are listed. 
The bang sensitivity negative mutant flies displayed neurophysiological or motor defects prior to stimulation.
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that the insights from the Drosophila model nevertheless hold  
translational value46.

A further 155 genes are tagged as uncoordinated and 42 more  
are linked to further epilepsy-relevant readouts in the FlyBase 
Human Disease Model Report (flybase.org/lists/FBhh, Table 1). 
These represent an understudied set of potential epilepsy  
models.

Temperature elevation. Mutations in 1,200 Drosophila genes  
have been registered as associated with heat sensitivity. Increas-
ing the temperature of ectothermal animals increases the  
temperature of the central nervous system and induces the stere-
otypic seizure response in sensitized genetic models21,33–35,47.  
Surprisingly few (~30%) of the genes that can mutate to produce 
mechanically induced phenotypes co-occur with those that are 
temperature dependent. This is consistent with findings in the  
paralytic (para) mutant parabss1, which demonstrated that, in 
spite of effects on global brain activity underlying responses 
to mechanical or thermal stress, the effects are linked to distinct  
brain regions21. While a strong focus in behavioral experiments 
has been placed on activity bursts resembling seizures, other 
approaches attempt to capture paroxysmal epileptic dystonia or  
paralysis33,48.

Electroconvulsive stimulus. Detection of such non-seizuring 
events extends the range of epilepsy modeling in Drosophila  
and has benefited most from electrophysiological readouts30.  
Hyperexcitation in the central nervous system was induced 
through short electroconvulsive electric pulses lasting 0.1 to  
0.5 milliseconds up to 3 second pulses49–51. Electric stimulation 
at larval stages allows investigation of adult-lethal seizure alleles in  
Drosophila such as slamdance (sda), as it induces characteris-
tic tremors in mutants that are visible in the high-contrast mouth 
hooks that can be seen in the otherwise translucent body49–51.  
The paradigms detailed in this and the previous two sections 
elicit heightened brain activity from where the giant fiber system  
plays an important role conveying stereotypic, seizure-like 
motor responses to the motor system, with the interesting excep-
tion of flight muscle49. This commonality suggests a degree of  
convergence in generating epilepsy-associated behavior patterns.

Genetic stimulus. Mutants in the para locus, such as the  
parabss hypermorph allele as well as knockdown alleles (as  
discussed in ‘Tissue-specific genetic screening’ below), have been 
thoroughly investigated for seizure-like behavior52. The alpha  
subunit of voltage-gated sodium channels Para mediates  
neuronal action potentials. The human orthologs SCN8A, SCN2A,  
and SCN1A are strongly associated with pathogenic epilepsy 
phenotypes and carry several of the most frequent alleles asso-
ciated with epilepsy53–55. Drosophila carrying the parabss muta-
tion are sensitized to induced seizure-like attacks, notably  
even through optogenetic stimuli31,56. parabss mutants have also 
received attention for the identification of genetic interactors 
that suppress seizuring, among them gilgamesh (gish), which 
encodes a casein kinase 1 that is highly conserved in humans57.  
Genetic seizure modifier genes and downstream interacting 
genes are efficiently identified in Drosophila. An alternative 

case of predisposition for seizure-like behavior is the meta-
bolic epilepsy model for PNPO deficiency (OMIM #610090). 
Induction through a sugar-only diet in mutants of the fly gene  
sugarlethal (sgll), the orthologue of PNPO, elicited seizures  
without additional acute stimuli58.

Some bang-sensitive alleles are temperature sensitive, with  
shibirets (shits) the most prominent example. shi encodes a 
dynamin and one of its human orthologs, DNM1, is linked to an 
early infantile epileptic encephalopathy (OMIM #616346). These  
alleles produce proteins that lose function at conditions warmer 
than room temperature. Dynamin’s functional relevance for 
epilepsy modeling was demonstrated by suppressing the  
seizure-like phenotypes of the well-known bang-sensitive genes 
para, easily shocked (eas), and sda through heat activation of 
the shits allele59. A further genetic rescue is the suppression 
of seizures in the TBC1D24 epilepsy and DOORS Syndrome  
(OMIM #220500) ortholog skywalker (sky), which was mediated 
by the shi effector Synaptojanin (Synj)34.

Circadian rhythm. An environmental stimulus is required to  
induce seizure-like behavior in Drosophila carrying genetic 
mutations, with rare exceptions such as the prickle mutant 
pkspl or the zydeco mutant zyd1 when coupled with one out of  
several repo>dStim knockdown lines60,61. One potential way to  
observe behavioral changes without triggering an acute response 
is to monitor sleep or activity patterns, and mutants that have  
seizure-like phenotypes often also have abnormal sleep. For  
example, shorter or more fragmented sleep periods were 
observed in the uncoordinated mutant Shaker (Sh)62, which is 
homologous to the epilepsy gene KCNA2 (OMIM #616366),  
and for sky34. Several other well-studied bang sensitivity  
alleles are also sleep defective, including those affecting the  
epilepsy gene orthologs I

h
 channel (Ih), para, and shi, as well 

as two direct interactors of Sh potassium channels, quiver (qvr), 
and Shaker cognate b (Shab)63,64. This link between sleep abnor-
malities and seizures requires further investigation in humans 
and in animal models to better understand its applicability in  
clinical epilepsy research.

Model-based steps towards effective epilepsy 
treatment
The identification of over 100 rare genetic epilepsies suggests a 
broad range of disease mechanisms, such as synaptic transmis-
sion defects, channelopathies, and transcriptional, metabolic, 
and transport defects3,65–67. Despite this progress, most under-
lying mechanisms leading to epileptic diseases remain to be  
elucidated4. Systematic classification of causative genes is  
currently based on phenotypic patient descriptions. Genetic 
trends in the age of onset were determined through phenotypic  
distinction of 12 different groups, while at the same time a 
major overlap of the genotype–phenotype spectrum became  
apparent48. Mutations in genes coding for ion channel subunits 
underlie a high number of patient cases among hereditary  
epilepsies68. An example are causative variants in SCN1A which 
are the most frequent cause of Dravet syndrome: more than 
80% of patients carry variants of this ion channel subunit and  
are in general highly resistant to treatment69.
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To identify potential new treatments for Dravet syndrome and  
further drug-resistant conditions effectively, a high-throughput 
in vivo model can reveal brain-specific genetic interactors  
involved in epilepsy. Screens for suppressors of seizure-inducing 
alleles can reveal novel drug targets and point to related func-
tional pathways. Previous large screens have identified genetic  
suppressors of seizure-like phenotypes. Alleles disrupting  
neuronal communication were also identified in non-ion chan-
nel genes, e.g. eas mutant seizure-like behavior or sky/TBC1D24 
and synj/SYNJ1. In fact, the link in Drosophila between synj 
and epilepsy was found before human patient variants in  
SYNJ1-causing untreatable epilepsy had been identified70–72.  
Beyond screening for phenotypical resemblance to seizures, sup-
pressor screens, for instance in the genetic background of parabss 
mutant animals, determined genetic interactors of epilepsy-
associated genes31,57. Suppressors have been identified in both  
unbiased and selective genetic screens, e.g. for sky/TBC1D2434,71,73.

A large inhibitory RNA (RNAi)-based screen for behavioral  
phenotypes resulting from gene inactivation in glial cells has  
identified a number of bang-sensitive mutants, which are orthologs 
of human epilepsy-associated genes with roles in glial and,  
interestingly, glia–neuron interactions16,74,75.

In addition to mutant and knockdown models, the Drosophila  
community has developed 192 genetically inbred, or isogenized, 
lines known as the Drosophila melanogaster Genetic Reference 
Panel (DGRP), which enable the connection of epilepsy- 
associated phenotypes with multiple endogenous genetic loci,  
potentially leading to the discovery of new genetic modifiers76.

Tissue-specific genetic screening
Comprehensive libraries of transgenic lines are facilitating  
epilepsy and further genetic screens, among them very promi-
nent collections of RNAi lines covering 91% of Drosophila  
protein-coding genes77. These genetic libraries by the Vienna 
Drosophila Resource Center and the Transgenic RNAi Project 
at Harvard Medical School have the advantage of tissue-specific 
knockdown, whereas knockout lines, such as the MiMIC inser-
tions which introduce insertion cassettes, often constitutively 
abrogate gene expression78,79. The RNAi-based screens are as  
versatile as the promotor lines combined with transcript  
knockdown, yet their effect strength has been found to vary and 
should be assessed independently from the phenotype80. Another 
10,000 fly lines enabling knockdown in different neuronal and 
glial subsets have been generated in the Fly Light project81.  
Similar resources that take advantage of the CRISPR–Cas9 gene  
targeting system are under development (see Box 1).

Box 1. CRISPR–Cas9-based knockouts in screening

Inhibitory RNA (RNAi) knockdowns, while highly useful, are 
variable in the degree to which they inactivate the target gene. 
Libraries of fly stocks that express Cas9 and UAS-driven 
short-guide RNA elements will enable tissue-specific complete 
knockouts of any targeted gene82. These libraries will be a 
valuable alternative to the RNAi-based resources that are 
presently in broad use.

Drug screens utilizing Drosophila
The development of epilepsy treatments in animal models  
focuses on seizure-like readouts that can be suppressed 
through genetic interaction or application of pharmacological  
compounds83,84. Akin to genetic interactor screens, the inter-
play of seizure phenotypes with pharmacological inhibitors has  
been investigated, based on both known ASD as well as on  
novel substances. Picrotoxin-induced seizuring or genetic mod-
els such as eas flies served as screening models33,49,52,85. Testing  
known ASDs discovered responsiveness to pharmacological 
inhibitors such as phenytoin and nifedipine, but also to gabap-
entin, compounds that are effective against severe seizure  
pathologies84,85. Just as in human epilepsies, screens found no  
single drug compound which could effectively suppress the  
many different underlying genetic changes in Drosophila11.

One potential limitation of focusing on seizure-like behavior  
readouts in the fly model is the omission of the wider pheno-
typic spectrum in epileptic encephalopathies, regarding both the 
method of treatment and its timing86,87. ID and autism spectrum  
disorders are examples of strongly co-occurring pathologies 
which are beginning to be integrated into current epilepsy and 
neurodevelopmental disease models in small animal models or in  
drug trials12,88–90.

Future perspectives in drug screening
Patients with drug-resistant epilepsy have a restricted quality 
of life and higher mortality, and the drug resistance may have  
cognitive and psychosocial consequences11. ASD alterna-
tives are surgical intervention, neurostimulation, ketogenic 
diet, and lifestyle adjustment. Recent clinical studies suggested 
cannabidiol-based treatment as a therapeutic intervention in  
drug-resistant therapies and successful seizure suppressors 
in a Drosophila model91,92. Despite the enormous amount of 
research and the increasing number of available ASDs, there  
still remain epileptic patients who cannot be treated11.

Unraveling epilepsies from two ends: patient variants or 
functional pathways
The number of epilepsy-associated genes was expanded  
drastically when a whole-exome study of more than 17,000 indi-
viduals detected vast numbers of ultra-rare variants4. The large 
number of underlying genes combined with the small patient  
groups affected by individual variants require inexpensive 
and rapid methodologies to test anti-seizure measures. As  
discussed above, while stem cell-based methods potentially 
reveal precision medicine solutions, at the current moment  
Drosophila genetic screening offers rapid and economical  
insight into the genetic function and interactome of conserved 
genetic variants.

In a complementary direction, unbiased study of molecular  
pathways and genetic interactions connects known genes with 
each other as well as with new genes or unexpected causative 
variants in epilepsy. For example, mtd/OXR1 and sky/TBC1D24  
variants cause epilepsies that were found to be linked to reac-
tive oxygen species levels and modified by anti-oxidants at the 
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level of neurons as well as the entire brain, based on humanized  
Drosophila transgenic models in which the cDNA of patient 
variant OXR1 or TBC1D24 was expressed in the brain45,48.  
Humanization of the most frequent genetic cause underlying 
Dravet syndrome, point mutations in SCN1A, have enabled 
detailed studies of the effect conveyed by many of the mutations  
on protein function93. By understanding the mechanistic and 
functional connections between epilepsy-associated genes, a step 
from many unconnected single disorders to functional networks 
becomes more tangible. A third way to assess in which wider  
gene networks these single factors are functionally 
required is based on systems biology, specifically on brain  
transcriptomics94,95. Computational approaches have the poten-
tial to connect mouse and human in vitro data with Drosophila 
epilepsy in vivo models to obtain integrated conserved func-
tional networks. This approach will hold validity across a  
range of disorders affecting the central nervous system7,8.

Future perspective
Epilepsy patient genetics provide unprecedented insights into  
common and more rare epilepsy conditions, many resistant to 
current treatment forms. Beyond their clinical phenotype, a  

shared genetic basis has been revealed that allows the investi-
gation of converging genetic disease mechanisms96. Based on 
epilepsy genes identified by the International League Against  
Epilepsy (ILAE), previous computational approaches have 
been validated in cellular and mouse models, leading to a  
proposed mechanism of valproic acid function in SCN1A patient  
cases and to pre-clinical confirmation of Csf1r inhibitors as 
novel ASD candidates94,95. With the advent of whole-brain  
single-cell transcriptome datasets, recent developments have  
enabled the inference of connections between the orthologs of 
causative monogenic epilepsy factors at unprecedented reso-
lution and will in the future support models of epilepsy gene  
networks97,98.

Grouping disease genes based on inferred genetic interactions 
and confirming candidate networks in efficient animal screens  
could become a valuable additional tool for expanding drug 
classifications of pre-clinical epilepsy models, associating  
epilepsies on their responsiveness to treatment as a new crite-
rion. Functional connections and ‘epilepsy gene networks’ could 
guide genetic and pharmacological screens and ultimately future  
treatment strategies.
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