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One-pot hydrothermal synthesis of 
Nitrogen-doped graphene as high-
performance anode materials for 
lithium ion batteries
Zheng Xing1, Zhicheng Ju1, Yulong Zhao1, Jialu Wan1, Yabo Zhu1, Yinghuai Qiang1 & 
Yitai Qian2

Nitrogen-doped (N-doped) graphene has been prepared by a simple one-step hydrothermal approach 
using hexamethylenetetramine (HMTA) as single carbon and nitrogen source. In this hydrothermal 
process, HMTA pyrolyzes at high temperature and the N-doped graphene subsequently self-assembles 
on the surface of MgO particles (formed by the Mg powder reacting with H2O) during which graphene 
synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with 
incorporation of nitrogen groups possesses unique structure including thin layer thickness, high surface 
area, mesopores and vacancies. These structural features and their synergistic effects could not only 
improve ions and electrons transportation with nanometer-scale diffusion distances but also promote 
the penetration of electrolyte. The N-doped graphene exhibits high reversible capacity, superior 
rate capability as well as long-term cycling stability, which demonstrate that the N-doped graphene 
with great potential to be an efficient electrode material. The experimental results provide a new 
hydrothermal route to synthesize N-doped graphene with potential application for advanced energy 
storage, as well as useful information to design new graphene materials.

In the past decade, graphene has attracted wide attentions due to its fascinating characters and broad applica-
tions1,2 such as in catalysis, water splitting, energy storage and solar cells. These applications of graphene are 
closely associated with their intrinsic two-dimensional (2-D) crystal structure formed by sp2 hybridized carbon1. 
In the past few years, many researchers have demonstrated that the physical and chemical properties of graphene 
could be tailored and improved by heteroatom doping on graphene sheets at edges, vacancies, pores and strained 
regions3,4. The doping of heteroatoms into the pristine graphene sheets would lead to structural and electronic 
disorders, which could further result in changes of graphene properties, including Fermi level, bandgap, localized 
electronic state, thermal stability, electrical conductivity, and magnetic property5. New or improved properties 
could be obtained by altering the type and content of various dopant atoms6,7.

Nitrogen (1s22s22p3)3 is the next element to carbon (1s22s22p2) in the periodic table with only one less valence 
electron, which possesses higher electronegativity of N (χ​ =​ 3.04) than that of C (χ​ =​ 2.55). The doping of N 
would create polarization in the sp2 carbon network, thereby further influence the chemical and physical prop-
erties of graphene. Previous reports demonstrated that N doping is efficient in tuning the characters of graphene 
materials: the bandgap opening and charge-carrier concentration could be induced by only 0.4 at% doping of 
graphitic N8; pyrrolic N-doping at the edge sites of graphene nanoribbons (GNR) would create strong magnetic 
moments9; the work function of graphene could be reduced by graphitic and pyridinic N-doping10,11. In this case, 
nitrogen doping is a useful route for decorating graphene because N-doping easily manipulates local electronic 
for the potential application including electronic devices8, biosensors12 and catalysts13. Moreover, the nitrogen 
doped local electronic structures allow for enhanced binding with ions in the solution which is beneficial for 
lithium ion batteries14. Nitrogen-doping would improve the pore affinity to aqueous electrolyte and reduce the 
electric resistance which would further promote the electrochemical performance of graphene electrode15,16. For 
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example, nitrogen-doped graphene nanosheets prepared by heat treatment of graphite oxide under an ammonia 
atmosphere at 800 °C exhibited a high reversible capacity 900 mAh/g at current of 42 mA/g17; nitrogen-doped 
holey graphene hollow microspheres synthesized by a template sacrificing method also exhibited high reversible 
capacities and rate performances18.

To date, N-doped graphene materials can be obtained by various methods including plasma method14, 
arc-discharge approach19, chemical vapor deposition (CVD)20 and thermal anealing method21,22. Among these 
methods, nitrogen-containing functional groups could be doped by reacting with nitrogen-containing reagents 
(urea, NH3 and nitric acid)23,24 or through carbonizing/activating of nitrogen-rich carbon precursors, such as 
pentachloropyridine25, polypyrrole26 and pyrimidine27. These methods either require high quality equipment or 
involve several steps during synthesis process, which are obstacles for large scale fabrication. One step hydrother-
mal carbonization is a traditional method which is an important technique for the preperation of various carbo-
naceous materials and hybrids. Recent studies have shown that hydrothermal method is an efficient method for 
large-scale preparation of graphene: graphene oxide(GO) prepared by oxidation of graphite powder according to 
the modified Hummers’ method was further reduced by a nitrogen containing reductant and finally transferred 
into N-doped graphene28,29.

In this paper, we developed a novel one-step hydrothermal method using HMTA as single carbon and nitro-
gen source. Briefly, HMTA pyrolyzes in high temperature and the N-doped graphene subsequently self-assembles 
on the surface of MgO particles (formed by the Mg powder reacting with H2O). During this in-situ approach, 
graphene synthesis and nitrogen doping are simultaneously achieved. The as-synthesized graphene with 
nitrogen-containing functional groups possesses an average thickness of 4–10 nm with interconnected meso-
porous system. The high surface area, mesopores and vacancies of the N-doped graphene are particularly benefi-
cial for the reversibly storage of lithium ions. These structural features and their synergistic effects would promote 
ions and electrons transportation with nanometer-scale diffusion distances as well as be favorable to the penetra-
tion of electrolyte. Extensive research carried out on lithium ion batteries demonstrate that the N-doped graphene 
electrode exhibits high reversible capacity, superior rate capability as well as long-term cycling stability (above 
600 mAh/g after 50 cycles at current of 100 mA/g, above 500 mAh/g after 150 cycles at current of 200 mA/g), 
which suggest its great potential to be an efficient electrode material candidate.

Results
Figure 1 illustrates a proposed conversion process from HMTA precursor into N-doped graphene via a hydro-
thermal synthetic route during which the HMTA is involved in the hydrothermal degradation and recombination 
and the N-doped graphene is obtained. To give a clear picture, the schematic only focused on the possible changes 
of the HMTA with H2O. Nitrogen atoms appearing at four corners of the cage-like structure are covalently linked 
with carbon atoms with sp3 hybridization state in the HMTA molecule precursor which would provide high value 
nitrogen content. When the hydrothermal treatment is proceeded, the HMTA molecule starts to decompose and 
hydrolyze into the formation of NH(CH2OH)2 and release small molecules (CH2O, NH3)30. When the tempera-
ture further elevated up, the high temperature induce the structure rearrangement such as of the carbon atoms31. 
The cyclization and conjugation32 of the carbon atom lead to the generation and development of two-dimension 
hexagonal sp2 carbon clusters33, then the freshly formed free sp2 clusters may assemble into polyaromatic systems 
and finally into graphene. A variety of nitrogen atoms would residue from the precursors after the whole hydro-
lyzation and graphitization process; the attachment of the sp2 carbons to the remaining nitrogen atoms preserves 
the sp2 hybridization state in HMTA. Figure 1 illustrates several possible configurations of the nitrogen atoms in 
graphene: a. pyrrolic N, b. pyridinic N, c. direct substitution (graphitic N) and d. pyridine-N-oxide. Each of these 
configurations affects the electronic and transport properties of the functionalized material rather differently.

Figure 1.  Scheme of a proposed mechanism for the hydrothermal synthesis process from the HMTA 
molecules to N-doped graphene layer. 
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Structural characterization of the as-prepared sample was carried out by the powder X-ray diffraction (XRD). 
Figure 2a shows the XRD patterns of the product before and after HCl treatment. The XRD pattern of the sample 
before HCl treatment displays two groups of peaks: the sharp peaks near 2θ​ =​ 26° and 43° could be assigned to 
the (002) and (100) reflections of the 2H phase of graphite (JCPDS No. 41-1487, indicating of graphene layer with 
d-spacing of 0.34 nm); the peaks around 43° and 62° could be indexed as (111) and (200) crystal face of cubic 
MgO (JCPDS No. 45-0946). So, the graphene layer and MgO were coexistent in the raw sample before HCl treat-
ment. The XRD of the sample after 10 h HCl treatment exhibits two detectable broad diffraction peaks around 
26° and 43°, indicating that the carbonaceous structure retains after the removal of MgO by HCl; a small peak 
around 62° should be assigned to small amount of cubic MgO residue which is wrapped in the graphene sheets 
and difficult to be washed by hydrochloric acid. According to this pattern, the broader (002) peak may be due to 
the corrugation and defects structure of the graphene sheets after HCl treatment. The interlayer spacing (d002) of 
the sample are about 0.34 nm, which is slightly larger than the d002 spacing of graphite (d002 =​ 0.335 nm)34.

The morphology and microstructure of as-prepared samples were imaged by SEM tests. Figure 2b shows the 
typical SEM image of the raw sample washed by distilled water and absolute ethanol and without acid treatment; 
it could be clearly observed that the structure is constructed by the core of MgO particles with diameters of 
300 ~ 500 nm and interconnected ultrathin graphene sheets wrapped outside. Figure 2c shows the SEM image of 
the raw sample with 3 h HCl treatment, the MgO particles were partially removed by HCl and the graphene sheets 
were preserved. Figure 2d displays the sample after 10 h HCl treatment: the MgO template35 were totally removed 
and free-standing nanosheets exhibit a typical wrinkled structure with corrugation and scrolling, which results 
from thermodynamically stable bending.

The formation process of the graphene nanosheets based on a solution-growth pathway could be deduced 
from the SEM images (Fig. 2e). Firstly, Mg powder is reacted with H2O and HMTA to obtain MgO and the MgO 
would agglomerate into clusters. Then, the MgO clusters would act as structural constructor, and the curled and 
overlapped nanosheets are synthesized on the surface of the MgO clusters. When the samples are washed by HCl, 

Figure 2.  (a) XRD patterns of the sample before and after 10 h HCl treatment for graphene; (b) SEM images of 
the raw sample before HCl treatment; (c) SEM image of the raw sample after 3 h HCl treatment; (d) SEM image 
of the sample after 10 h HCl treatment; (e) Illustration of the formation of graphene nanosheet architectures.
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the two-dimensional structure of graphene is well maintained and the nanosheets reveal a curled morphology 
consisting of a thin crumpled paper-like structure.

Figure 3a shows the low magnification TEM images of transparent nanosheets with size of about 100 nm. A 
typical crumpled surface indicates the features of the high specific surface area and the two-dimensional struc-
ture of graphene are well maintained after HCl treatment. The transparency reveals that the sheets consist of 
graphene with only a few layers. Further high resolution TEM (HRTEM) observation in Fig. 3b reveals that the 
nanosheet is about 4 nm in thickness which corresponds to approximately 10 stacked monatomic graphene layers. 
The layer-to-layer distance (d002 spacing) is measured to be about 0.34 nm, which is larger than that of graphite 
(0.335 nm) and agreed with the interlayer spacing calculated by XRD pattern. It is worth noting that the basal 
planes are discontinuous and distorted, and some parts are wavy and turbostratic, indicating that the layer stack-
ing is disordered36, which possibly caused by the uncontrolled hydrothermal reassembling process. The defects in 
the basal plane could facilitate lithium ion diffusion and storage. Defects on graphene basal plane seem to play an 
important role in lithium diffusion.

Raman spectra have sensitive response to the crystallinity, defects and disorder of microstructure of car-
bon materials37,38; so it is carried out as an effective tool to detect the microstructure of the as-prepared sam-
ple. As shown in Fig. 4a, the Raman spectrum obtained from N-doped graphene sample shows two first-order 
Raman peaks centered at 1320 cm−1 and 1586 cm−1, which could be ascribed to the well-documented D and G 
band39, respectively. The G band originated from the doubly degenerate zone center phonon E2g mode corre-
sponds to ordered sp2 bonded carbon and provides the formation of graphitic carbon. The D band arises from 
the breathing modes of six-atom rings of κ​-point phonons of A1g symmetry with defects for activation40; so the 
high intensity of the D-band indicates the presence of structural defects in the graphene layer; the defects include 
boundaries, bonding disorders, vacancies and heteroatoms in graphene lattice generated by nitrogen doping. The 
second-order 2D band (the broad and weak peak around 2650 cm−1) is the D-band overtone40 and is a character-
istic feature of few-layered graphene41,42.

Figure 3.  (a) TEM images reveal the thin crumpled paper-like structure; (b) high-resolution TEM image of a 
typical graphene sheet.

Figure 4.  (a) Raman spectra of N-doped graphene nanosheets; (b) Nitrogen-adsorption isotherms of the 
N-doped graphene, the inset is BJH desorption pore-size distribution.
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The D, G and 2D bands of graphene43 provide valuable information of the structural defects; the large D/G 
ratio and the broadened G and 2D band indicate various bonding structures and defects with small sp2 domains. 
The ratio of D to G band integrated intensities (ID/IG) is usually used to estimate the average crystallite size along 
the a-axis (La) of sp2 regions in the graphene layer. The La could be calculated by the empirical Tuinstra-Koenig 
equation: La =​ (2.4 ×​ 10−10) λ​4(ID/IG)−1 (λ​ =​ 514.5 nm,)37,44. The ID/IG is 1.13, so the crystallite size of ordered 
sp2 regions surrounded by areas of nitrogened carbon atoms or defects is about 14.9 nm. As a consequence, the 
Raman spectrum reveals that the N-doped graphene are composed of few-layered structure with sufficient defects 
which is crucial to improve its lithium diffusion and storage properties.

To further investigate the structure and characterize the porosity of the N-doped graphene, nitrogen adsorp-
tion–desorption isotherms were carried out (Fig. 4b). Brunauer-Emmett-Teller (BET) analysis showed that 
the specific surface area of the N-doped graphene is up to 466 m2g−1, as well as the high volume of mesopores 
(0.150 cm3/g calculated by the Barrett–Joyner–Halenda (BJH) method). The N-doped graphene exhibits a char-
acteristic type IV isotherm with a pronounced hysteresis at P/P0 =​ 0.4–0.8 between the adsorption and desorp-
tion branches, suggesting the existence of a large number of mesopores with uniform pore size distribution35. In 
addition, this type IV isotherm with type H2 hysteresis loop associates with capillary condensation taking place 
in connecting cage-like mesopores45. The hysteresis loop is mainly caused by different mechanisms between cap-
illary condensation and evaporation processes occurring in pores with narrow entrances and large pore interiors 
with porous network. The capillary evaporation (at P/P0 =​ 0.45) is significantly delayed comparing with the capil-
lary condensation. This delay process46 arises from the lack of direct access of the N2 condensed in the pore inte-
riors to the exterior when the N2 is condensed in the narrower connecting pores47. So the volume of the pores48 
are large enough to show capillary condensation at pressure significantly higher than P/P0 =​ 0.4. In this case, the 
ink bottle-like pore networks account for the occurrence of broad hysteresis loops. Moreover, the adsorption and 
desorption branches do not close below P/P0 =​ 0.3, which indicates that chemical adsorption might occur in the 
mesopores; this chemical adsorption is irreversible so the adsorpted N2 could not be desorpted at lower pressure. 
The pore size distribution (shown in Fig. 4b inset) calculated by BJH method based on the desorption branch 
displays a unimodal peak centered at 3.8 nm; those pores might be mainly caused by the removal of the template. 
The existence of the mesopores and interconnections are important for the fast transport of lithium ions and fast 
access of the electrolyte49 because they could provide a more favorable path for penetration and transportation of 
ions and electrolyte into graphene structure.

The chemical states of the elements are evaluated by X-ray photoemission spectroscopy (XPS) (Fig. 5). As 
shown in Fig. 5a, the survey scan shows the existence of graphitic C 1 s peak at 284.6 eV, a weak O 1 s peak at 
530 eV, and a pronounced N 1 s peak at 400 eV. XPS of C 1 s ranging from 280–290 eV (Fig. 5b) exhibits six peaks 

Figure 5.  (a) XPS survey spectra of the N-doped graphene; (b) High resolution C1s XPS spectra; (c) High 
resolution O1s XPS spectra; (d) High resolution N1s XPS spectra.
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by curve fitting of the C 1 s spectrum. The main peak at 284.5 eV could be assigned to the sp2 carbon atoms (C1) 
constituted graphitic regions, which demonstrates that most of the C atoms are arranged in a honeycomb lattice. 
The other five weak peaks centered at 285.6, 285.7, 286.7, 287.9 and 290.3 eV correspond to the sp3 C, C-N, C-O, 
C=​O, and O=​C-O groups, respectively50, which originate from the groups in the intermediate small molecules 
which are retained at the edges and defects of the graphene sheets51 as showed in the schematic mechanism in 
Fig. 1. The O 1 s spectrum could be deconvoluted into three subpeaks at 531.2, 532.3 and 533.5 eV (Fig. 5c), which 
could be attributed to the presence of different oxygen functionalities such as C=​O, C-O, and O=​C-O, respec-
tively52. The N 1 s peak can be split into five individual peaks (as shown in Fig. 5d) located at 399.2 eV, 400.1 eV, 
401.4 eV, 402.9 eV and 405.6 eV associated to pyridinic, pyrrolic, graphitic, oxidized and chemisorbed nitrogen, 
respectively (as showed in the schematic structure of the N-doped graphene in Fig. 1). The amount of nitrogen 
doped into the graphene is 1.68 at% calculated by XPS elemental analysis. The low doping level could be ascribed 
to the high reaction temperature, which could break most of the C-N bonds. As shown in Fig. 1, pyridinic and 
graphitic N present a marginal influence on the graphene structure because the bond lengths of C-N (1.41 Å) and 
C-C (1.42 Å) are similar3; while the pyrrolic N with sp3 bond disrupts the six-atom rings structure of graphene53. 
Moreover, pyridinic N bonding configuration is the most stable structure in the presence of monovacancy, as 
well as pyridinic and graphitic N show in the presence of divacancy defects54. So the occurrence of nitrogen 
atoms into the honeycomb-like lattice are accompanied with the structure defects such as vacancies, bonding 
disorders and noncyclized structures, which creates high disorder of the structures. Moreover, due to the higher 
electronegativity3 and smaller covalent radius of nitrogen, the doping would significantly influence the structure 
and electronic properties of the graphene; and lithium might be favorable for around the defects and sites in the 
vicinity of residual N atoms.

Figure 6 shows the electrochemical properties of the N-doped graphene electrode. Cyclic voltammetry (CV) 
of the first 5 cycles was processed to survey the electrochemical cycling behaviors of the N-doped graphene. 
The electrode presents two cathodic peaks R1 (0.7 V) and R2 (below 0.2 V) and two anodic peaks O1 (1.2 V) and 
O2 (0.2 V) during the first cycle. The R1 peak in the 1st cycle and disappeared in the following cycles could be 
assigned to the decomposition of the electrolyte and formation of solid electrolyte interphase (SEI) film on the 
surfaces of graphene in the first cycle55. The R2 peak and the counterpart anodic O2 peak could be attributed to 
Li ions insertion into the graphene layers56. The O1 peak indicated that the breaking of the bonds of the Li atom 
with the defects or other active sites during the charge processes takes place at high voltage57. This may be caused 
by the relatively strong bonds of lithium interactions with the residual nitrogen-containing functional groups 
within graphene nanosheets. Moreover, the intensity and position of the peaks after the first cycle steadily main-
tains which indicates that the discharge/charge process is stable. After the second cycle, the current peaks became 
stable, which indicates that the insertion/extraction of Li+ produces good reversibility.

Galvanostatic charge/discharge of the sample was measured at a current rate of 100 mA/g in the potential 
range from 0.01 V to 3 V with Li foil as a counter electrode at room temperature (25 °C). Figure 6b shows the 
typical charge/discharge profile for selected cycles. The intercalation of Li+ of the first cycle begins at around 2.0 V 
vs. Li/Li+; the curve exhibits a slope plateau at 0.8 V which arises from the combination of Li ions adsorption 
on the structural defects in basal planes of the graphene layers and the formation of solid electrolyte interphase 
(SEI) film58,59 by the electrolyte decomposition reactions on the surfaces of graphene. No distinct plateau below 
0.3 V (the feature of lithium staging56,60 in carbon layers) could be observed, suggesting the disordered struc-
ture providing electronically and geometrically nonequivalent sites for lithium storage. The initial discharge and 
charge specific capacities are up to about 1420 mAh/g (equivalent to ~0.63 mol Li per mol C) and 950 mAh/g 
(~0.42 mol Li per mol C), respectively. The extra capacity over the theoretical specific capacity originates from 
the large amount of surface defects and high surface area for lithium storage. After the first cycle, the discharge 
curve changes into a steep slope during the discharge/charge process, suggesting that the formation of the SEI film 
only occurs in the first cycle. The discharge capacity of the second cycle decreases to 960 mAh/g. The irreversible 
capacity loss of 460 mAh/g could be caused by both electrolyte decomposition on graphene surface and strong Li 
ions adsorption61 on the special positions like vacancies or vicinity of residual N groups.

Figure 6c presents the discharge/charge cycling performance of the N-doped graphene electrode at 100 mA/g. 
After the fifth cycle, the specific capacity is stable and maintains at above 600 mAh/g (0.27 mol Li per mol C) after 
50 cycles, indicating high capacity retention of the electrode. When the current density raised up to 200 mA/g, 
the stationary capacity still keeps above 500 mAh/g which is significantly higher than the theoretical capacity of 
graphite after 150 cycles. The columbic efficiency of the first cycle is about 67% corresponding to the large irre-
versible capacity in the initial discharge/charge process. Then the columbic efficiency increased up to above 98% 
in the following cycles. Besides the excellent cyclability, the rate capacity of N-doped graphene is also measured at 
different current densities (Fig. 6d). The current intensity increases stepwise from 100 to 200, 500, 1000, 2000 and 
5000 mA/g, and the corresponding stable discharge capacities are 655, 453, 306, 259, 201 and 150 mAh/g, respec-
tively. When the current goes back to 100 mA/g, the capacity could return to ~650 mAh/g, which almost recovers 
the initial capacity, indicating that the special structure of the graphene keeps stable at the high current density.

The above analysis well demonstrated that N-doped graphene is an excellent electrode material of Li-ion bat-
tery. To get further insight into the electrochemical process, electrochemical impedance spectroscopy (EIS) were 
carried out by three electrode system and the obtained Nyquist plots are presented in Fig. 6e. The impedance data 
could be simulated by the appropriate electric equivalent circuit in the inset of Fig. 6e. The circuit includes ohmic 
resistance (Rs), resistance (R1) of the surface film formed on the electrodes and the contact problems62, double 
layer capacitance (Qdl), charge-transfer resistance (Rct)38, and the Warburg impedance (RD) related to the diffu-
sion capacitance of lithium ions into the graphene electrodes63. It could be calculated that the electrode possesses 
low charge transfer resistances (Rs =​ 19.64 Ω, R1 =​ Ω and Rct =​ 2.738 Ω). In this case, the electrical conductive 
capability are improved, resulting in the high capacity and stable cycling performance.
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According to the above results, the significantly improved electrochemical performance of N-doped graphene 
get benefit from the unique structure by nitrogen doping39, because it introduces a large number of topological 
defects on the graphene layers, which leads to the formation of disordered carbon structure that further improves 
the lithium storage capacities. As shown in Fig. 6f, the existence of multiple lithium storage positions such as 
N-groups, grain boundaries, vacancies and mesopores increase the reversible capacity of the N-doped graphene. 
First, doping plays an important role in promoting the electrochemical performance, because N-doping effect 
may offer favorable active sites61,64 around the vicinity of residual N-groups for lithium storage even though such a 
process may occur at high equilibrium voltages and high overvoltages. Second, the numerous mesopores (3.8 nm)  
produced during the fabrication process offers optimized conditions for electrolyte penetration and facile trans-
port channels for lithium ions migration especially at high rate60. In addition, the open pores and vancancies 
could serve as active intercalation sites for lithium ions contributing to the high capacity, though a large irre-
versible capacity loss is concomitant as well. Moreover, the conductive nanosheets with large surface area greatly 
reduce the solid-state transport lengths for lithium ion diffusion and guarantee a continuous electronic pathway. 
The high specific surface area also provides a high electrode/electrolyte contact interface to facilitate fast charge 

Figure 6.  Electrochemical performance of the N-doped graphene electrode: (a) Cyclic voltammograms (CV); 
(b) Galvanostatic charge/discharge profile for selected cycles; (c) Discharge/charge capacity and coulombic 
efficiency; (d) Rate performance; (e) Nyquist plots and equivalent circuit of the first cycle at 0.8 V; (f) Proposed 
scheme describing the Li diffusion mechanism through N-doped graphene, broad down arrows designate Li ion 
diffusion through defect sites of graphene plane.
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transfer reaction and minimize polarization effects which is benefit to the stability of the electrode. The above 
features and their multiple synergistic effects make N-doped graphene a favorable candidate electrode material 
with superior rate capability, high capacity and cycle performance.

Discussion
In summary, we have successfully prepared a new kind of N-doped graphene through a facile one-step hydro-
thermal approach. The as-synthesized graphene with incorporation of nitrogen groups possesses unique structure 
including high surface area, mesopores and vacancies, which is particularly important for the reversibly storage of 
lithium ions. The structural features and their synergistic effects could not only promote ions and electrons trans-
portation with nanometer-scale diffusion distances but also benefit to the penetration of electrolyte. The N-doped 
graphene exhibits outstanding electrochemical properties such as high reversible capacity, superior rate capability 
as well as long-term cycling stability, which endow it great potential to be an efficient electrode material candi-
date, and the EIS test further indicates that the N-doped graphene is a good lithium ion battery. The experimental 
results provide a novel hydrothermal route to fabricate N-doped graphene material with potential application for 
advanced energy storage, as well as useful information to design new graphene materials for future applications.

Methods
Synthesis of Nitrogen-doped Multilayer Graphene.  All reagents (purchased from Shanghai Chemical 
Reagents Company) were analytical purity and used without further purification.

Details of a typical synthesis process are as follows: Hexamethylenetetramine (HMTA, 3.0 g), magnesium 
powder (200 mesh, 4.0 g) and ultrapure water (3 mL) were added into a 20 ml stainless steel autoclave. The auto-
clave was sealed, put in an electric furnace, warmed up at a rate of 10 °C/min and maintained at 500 °C for 20 h, 
and was then cooled to room temperature naturally. The precipitate was filtered off, washed with distilled water, 
absolute ethanol, and hydrochloric acid solution (5 mol/L) for several times, and then dried in vacuum at 50 °C 
for 3 h.

Sample Characterization.  The X-ray powder diffraction (XRD) measurements were carried out on a 
Bruker AXS D8 Advance X-ray diffractometer equipped with Cu Ka radiation (λ​ =​ 1.54182 Å) at a scanning rate 
of 10° min−1. The morphology of the graphene were observed using a JEOL JSM-6700F field emission scanning 
electron microscope (SEM) operated at 15 kV and Hitachi H7650 transmission electron microscope (TEM) oper-
ated at 100 kv. The high resolution images were recorded using a high resolution transmission electron micro-
scope (HRTEM, JEOL-2010) operated at 200 kV. The surface areas of the sample were measured by TriStar II 
3020 (Micromeritics Instrument Corporation, U.S.A.) and calculated by N2 adsorption-desorption isotherms. 
The XPS tests were performed on a Thermo Scientific ESCALAB 250 X-ray photoelectronic spectrometer with a 
non-monochromated Mg Kα​ X-ray radiation as the excitation source. The Raman spectroscopy data were taken 
on a LABRAM-HR laser MicroRaman spectrometer with excitation wavelength of 514.5 nm (2.41 eV).

Electrochemical Measurements.  The electrochemical performances were measured with CR2032 
coin-type cells. The N-doped graphene acted as an anode electrode, and Li foil was used as a counter electrode. 
To prepare the working electrodes, the active materials (70 wt %) were mixed with Super P carbon black (20 wt %) 
and polyvinylidene fluoride (PVDF) (10 wt %). These materials were dissolved in N-methyl pyrrolidone (NMP) 
and ball milled for 5 hours at speed of 400 rpm to obtain uniform slurry. Then the slurry was coated on a Cu 
foil current collector and subsequently dried under vacuum at 80 °C for 12 h. The Celgard 2300 microporous 
membrane was used as polypropylene separator, and the electrolyte was a 1 mol/L solution of LiPF6 in ethyl-
ene carbonate/dimethyl carbonate (EC/DMC) with a volume ratio of 1:1. The galvanostatic charge/discharge 
tests were tested in the voltage range of 0.01–3.0 V using a computer-controlled multichannel battery test unit 
(LAND-CT2001A battery cycler) at room temperature. The typical cyclic voltammetry (CV) measurements were 
performed in the potential window of 0.01–3.0 V at a scanning rate of 0.1 mV/s on LK-2005A electrochemical 
workstation.
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