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SARS‐COV‐2 genomic monitoring in the state of São Paulo
unveils two emerging AY.43 sublineages
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Abstract

Delta VOC is highly diverse with more than 120 sublineages already described as of

November 30, 2021. In this study, through active monitoring of circulating severe acute
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respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) variants in the state of São Paulo,

southeast Brazil, we identified two emerging sublineages from the ancestral AY.43 strain

which were classified as AY.43.1 and AY.43.2. These sublineages were defined by the

following characteristic nonsynonymous mutations ORF1ab:A4133V and ORF3a:T14I for

the AY.43.1 and ORF1ab:G1155C for the AY.43.2 and our analysis reveals that they

might have a likely‐Brazilian origin. Much is still unknown regarding their dissemination in

the state of São Paulo and Brazil as well as their potential impact on the ongoing

vaccination process. However, the results obtained in this study reinforce the importance

of genomic surveillance activity for timely identification of emerging SARS‐CoV‐2 variants

which can impact the ongoing SARS‐CoV‐2 vaccination and public health policies.
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1 | INTRODUCTION

Currently in Brazil have been applied more than 381 million doses of anti‐

severe acute respiratory syndrome coronavirus‐2 (anti‐SARS‐CoV‐2)

vaccines and the individuals who have been fully vaccinated are bordering

140 million, which makes Brazil one of the most vaccinated nations in the

world (https://www.gov.br/saude/pt-br/vacinacao). In Brazil, on the

background of this solid process of vaccination, the first cases of Delta

variant of concern (VOC) introductions were reported.1 Despite the full

substitution of the pre‐existing GammaVOC in Brazil with the DeltaVOC,

no exponential growth of the new cases has been observed, most

probably due to the ongoing vaccination. Delta VOC is highly diversified,

and more than 120 sublineages have been classified within the Pango

lineages (https://cov-lineages.org/) with the continuous description of

novel lineages and sublineages.

The molecular surveillance of the SARS‐CoV‐2 variants is of

crucial importance for tracking the genomic profile of this virus and

the accumulation of mutations which on one hand can alter the viral

functions in terms of infectivity and transmissibility and on the other

might be important for the emergence of novel variants, lineages, and

sublineages which can exert significant pressure on the healthcare

system of a given country.2

In this study, we identified two emerging Brazilian sublineages

belonging to the ancestral AY.43 lineage, which were named AY.

43.1 and AY.43.2. Most of these sequences originated from the city

of São Paulo and the genome monitoring was performed by the

Butantan Network for Pandemic Alert of SARS‐CoV‐2 Variants

(Butantan Network) of the São Paulo State.

2 | MATERIALS AND METHODS

From October 8 to October 30, 2021, nasopharyngeal swab samples

were collected by Butantan Network from inhabitants suspected to

be infected with SARS‐CoV‐2 from all 17 Health Divisions of the São

Paulo State. Viral ribonucleic acid (RNA) was isolated from 100 µl of

nasopharyngeal swab suspension using the Extracta Kit RNA viral

(Loccus) in 96‐well plate automated extractor (Extracta, Loccus)

following the manufacturer's instructions. All samples were tested for

SARS‐CoV‐2 by targeting viral RdRp, E, and N genes using the real‐

time polymerase chain reaction (PCR) assay Gene FinderTM

COVID19 Plus RealAmp Kit (Osang Healthcare Co. Ltd.), and positive

samples with Ct below 30 were selected for whole genome

sequencing. The RNA from positive samples was re‐extracted from

the original nasopharyngeal swab suspension for sequencing. The

SARS‐CoV‐2 sequencing libraries were prepared using the COVID-

Seq Kit (Illumina Inc.), which amplifies the whole SARS‐CoV‐2

genome using the ARTIC v3 tilling PCR primer panel.3 Paired‐end

libraries were sequenced on Illumina's MiSeq (V2 kit, 2150 cycles) or

NextSeq. 2000 (P2 kit, 2100 cycles) platform.

To obtain the final SARS‐CoV‐2 genome sequences, the following

bioinformatics approaches were performed. The raw sequencing data

obtained were submitted to quality control analysis using the FastaQC4

software version 0.11.8. To select the sequences with the best quality

score (>30), quality filtering was performed usingTrimmomatic5 version

0.3.9. We mapped the quality‐filtered sequences against the SARS‐

CoV‐2 reference (Genbank RefSeq NC_045512.2) using BWA6 and

used SAMtools7 for indexing the mapping results. The mapped files

were submitted for improvement using Pilon8 to correct possible

deletions and insertions caused by the mapping process. The quality‐

filtered sequences were subjected to a remapping against the genome

improved by Pilon. Finally, we use bcftools9 for variant calling and

seqtk10 for the assembly of the consensus SARS‐CoV‐2 genomes.

Positions covered by fewer than 10 reads (DP < 10) and bases with a

quality score lower than 30 were considered as an assembly gap and

thus converted into Ns. Coverage values for each genome were

calculated using SAMtools v1.12. We assessed the consensus genome

sequence quality using Nextclade v0.8.1.11

Phylogenetic analysis was performed using the Nextstrain v3.0.3

SARS‐CoV‐2 workflow.11 In brief, this workflow aligns the input
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sequences using nextalign and then reconstructs the phylogenetic

trees using the IQTree v.2.12 Subsequently, TreeTime13 is used to

reroot the resulting tree, resolve polytomies, prune sequences, infer

internal node dates and label them. To reconstruct the phylogeny of

the AY.43 hypothetical sublineages we used 1616 SARS‐CoV‐2

sequences generated from the Butantan Network distributed between

the epidemiological Weeks 41−43 (GISAID accession ID in File S1) as

input for the Nextstrain workflow. To use as a background for our

analysis, a representative global data set was retrieved from GISAID

(3711 sequences, downloaded from nextregions global on November

10, 2021—GISAID accession ID in File S2) (https://www.gisaid.org/).

3 | RESULTS

In the performed phylogenetic analysis we observed a large cluster of

the AY.43 lineage containing 492 sequences, the majority of which

(n = 352, 71.5%) were from the Butantan Network, present inside the

Brazilian clade (Figure 1). The AY.43 sublineage can be distinguished

from other AY sublineages of Delta VOC by the presence of

mutations N:Q9L and ORF9b:S6C (https://www.pango.network/

summary-of-designated-ay-lineages/). We observed two subdivisions

of the AY.43 cluster based on the presence of the nonsynonymous

mutations, labeling them as AY.43.1 (ORF1ab: A4133V and

ORF3a:T14I) and AY.43.2 (ORF1ab:G1155C). The subcluster of

AY.43.1 was composed of 100 strains (Figure 1—purple box), the

majority of which were obtained from the city of São Paulo (46.0%).

The AY.43.2 subcluster was composed of 99 strains (Figure 1—blue

box), of which 97 of them were sequenced by Butantan Network

with most sequences from the city of São Paulo (53%).

The rest of the AY.43 sequences from Butantan Network (n = 155)

were mainly obtained from the city of São Paulo (60.0%) and

represented the highest number of sequences composing the AY.43

sublineage cluster. The AY.43 sequences, including the newly identified

sublineages, were distributed in several cities of the São Paulo State

with higher concentrations in the city of São Paulo (Figure 2).

F IGURE 1 Phylogenetic analysis of the
AY.43 lineage clade containing 492 genomes.
The newly identified sublineages are
highlighted with boxes: AY.43.1 (purple box)
and AY.43.2 (blue box), and their
characterizing mutations are represented on
the newly formed branches. The original tree
from which the AY.43 cluster was initially can
be observed in Figure S1
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A whole phylogenetic interactive tree, from which the AY.43

cluster was initially observed, can be accessed at the following link:

https://nextstrain.org/fetch/repositorio.butantan.gov.br/bitstream/

butantan/3990/1/ncov_EpiWeek_forty-one-to-forty-three.json

4 | DISCUSSION

In this study, we provide a report regarding the characterization of

two novels AY.43 sublineages with a likely Brazilian origin,

characterized by a specific mutational profile. Considering the

number of mutations (localization in ORF1a or ORF3a) we proposed

the identification of two emerging sublineages designed as AY.43.1

and AY.43.2. They were additionally recognized as such by the

official Pango designation committee (https://github.com/cov-

lineages/pango-designation/issues/319) and were released on pan-

goLEARN release v1.2.96. The obtained data shows the importance

of the SARS‐CoV‐2 genomic surveillance for the identification of

emerging lineages. This is particularly important because SARS‐CoV‐

2 emerging lineages can exert an enormous impact on the public

health systems due to increased infectivity and transmission.2

In the newly characterized sublineages, we defined the mutations

A4133V and G1155C in the ORF1a and the T14I mutation in the

ORF3a, which were nonsynonymous. To our knowledge, the impact

of these mutations is still unknown, except for theT14I, which shows

deleterious effects on the viral proteins.14 A nonsynonymous

mutation in ORF3a, which is a conserved protein involved in viral

replication and release,15 may affect viral functions in addition to the

mutational constellation defined for the Delta VOC.

We additionally observed other subdivisions within the AY.

43 clade: one in the AY.43.1 clade, presenting a nonsynonymous

mutation at ORF1a:V84I (Figure 1—purple box); and another at the

AY.43.2 clade, presenting a deletion at ORF8:Q18‐. However, at the

moment those subdivisions were characterized by a limited number

of sequences and did not show sufficient support to be suggestive as

novel sublineages of AY.43. Based on the performed analysis the

newly classified AY.43.1 and AY.43.2 sublineages probably might

have a Brazilian origin. Further studies are necessary to investigate

their dissemination within Brazilian regions, but preliminary results

show that the majority of AY.43.1 and AY.43.2 sequences originated

from the city of São Paulo.

In conclusion, we show that SARS‐CoV‐2 genomic monitoring is

crucial for the prompt characterization of SARS‐CoV‐2 novel lineages

and sublineages. By this approach, we can timely detect the presence

of novel SARS‐CoV‐2 variants and implement strategies for

preventing their dissemination which can have further implications

on the ongoing SARS‐CoV‐2 vaccination and public health policies.
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