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Anxiety disorder is a prevalent psychiatric disease and imposes a significant influence on
cardiovascular disease (CVD). Numerous evidence support that anxiety contributes to the
onset and progression of various CVDs through different physiological and behavioral
mechanisms. However, the exact role of nuclei and the association between the neural
circuit and anxiety disorder in CVD remains unknown. Several anxiety-related nuclei,
including that of the amygdala, hippocampus, bed nucleus of stria terminalis, and medial
prefrontal cortex, along with the relevant neural circuit are crucial in CVD. A strong
connection between these nuclei and the autonomic nervous system has been proven.
Therefore, anxiety may influence CVD through these autonomic neural circuits consisting
of anxiety-related nuclei and the autonomic nervous system. Neuromodulation, which can
offer targeted intervention on these nuclei, may promote the development of treatment for
comorbidities of CVD and anxiety disorders. The present review focuses on the
association between anxiety-relevant nuclei and CVD, as well as discusses several
non-invasive neuromodulations which may treat anxiety and CVD.
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INTRODUCTION

Cardiovascular disease (CVD) is a major contributor to disability and the leading cause of death
worldwide (Roth et al., 2020). While effective drugs are widely used for CVD in clinical practice,
significant gaps still exist in the treatment of CVDs (Flora and Nayak, 2019). Some psychological
factors, such as anxiety, can influence the onset and progression of CVDs. An increasing number of
studies have discussed the impact of clinically relevant anxiety not only on CVD-related mortality
but also on all-cause mortality (Meier et al., 2016). However, it is inconclusive whether treatment for
anxiety and depression can prevent CVDs and improve the outcome of CVDs (Piepoli et al.,
20162016). Although the association between CVDs and anxiety disorder may be attributed to
numerous biological and behavioral mechanisms, the role of anxiety-related nuclei in CVDs remains
unknown (Celano et al., 2016). Several nuclei have been identified as the key loci controlling anxiety,
including that of the amygdala, hippocampus (HC), bed nucleus of stria terminalis (BNST), and
medial prefrontal cortex (mPFC). Decoding the microcircuits relevant to these nuclei, as well as those
of regional microcircuits, also helps to improve our understanding of anxiety (Calhoon and Tye,
2015). These nuclei possess intimate connections with brain regions, such as the hypothalamus and
brainstem, which are involved in the autonomic nervous system (ANS) (Linsambarth et al., 2017).
Nevertheless, the role of these nuclei and neural circuits in linking anxiety to CVD remains to be
elucidated. Recently, a series of studies have demonstrated the influence of these nuclei and circuits
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on cardiovascular response and disease (Granjeiro et al., 2012;
Scopinho et al., 2013; Tawakol et al., 2017; Moazzami et al., 2020).
The current review will briefly discuss the relationship between
anxiety and CVDs and introduce several treatment strategies
which potentially alleviate CVD comorbidity with anxiety
through targeting subregions of the central nervous
system (CNS).

ANXIETY IN PATIENTS WITH CVDS

Anxiety is characterized by uncertainty, apprehension, and
transient fear for the future, with the frequency and intensity
varying between different individuals. Distinctions between
normative anxiety and anxiety disorders require a clinical
judgment of the duration, severity, persistence, and degree of
distress and impairment (Penninx et al., 2021). Anxiety disorders
are common in patients with CVDs with greater prevalence than
in the general population (Piña et al., 2018). Some meta-analyses
have suggested that anxiety disorders might contribute to the
onset and development of CVDs (Strik et al., 2003; Batelaan et al.,
2016). In addition, a series of studies not only considered the
impact of anxiety on CVD-relevant mortality but also on all-
cause mortality (Chesney et al., 2014; Meier et al., 2016; Pratt
et al., 2016; Sokoreli et al., 2016). In this regard, the following
sections will focus on the relationship between anxiety disorder
and different CVDs.

Anxiety and Heart Failure
Anxiety disorder is prevalent in patients with heart failure (HF).
The result from a meta-analysis of 26,266 patients with HF
indicated that almost 30% of patients with HF reached a
clinically significant degree of anxiety (Easton et al., 2016).
Furthermore, anxiety may affect the mortality of patients with
HF. Existing evidence has highlighted the significance of
determining anxiety disorders in patients with HF to improve
clinical outcomes. First, anxiety is related to higher rates of
mortality and poor cardiovascular health in patients with
coronary artery disease, which often co-exist with HF (Roest
et al., 2010a; Roest et al., 2012; Celano et al., 2015). Moreover, in
patients with or without CVD, different types of anxiety disorders
such as panic disorders, generalized anxiety disorders, and post-
traumatic stress disorder (PTSD) are related to poor
cardiovascular outcomes (Smoller et al., 2007; Boscarino, 2008;
Walters et al., 2008; Ahmadi et al., 2011; Roest et al., 2012;
Edmondson and Cohen, 2013). In addition, in patients with HF
and co-occurring depressive symptoms, the existence of
comorbid anxiety enhances the risk of poor outcomes,
including mortality and rehospitalizations (Suzuki et al., 2014;
Alhurani et al., 2015).

Despite the evidence suggesting that anxiety is common in
patients with HF, research that compared depression as
comorbidity found less prevalence, trait, and influence of
anxiety among these patients (MacMahon and Lip, 2002;
Merikangas et al., 2003; Konstam et al., 2005). Therefore,
patients with HF may benefit from recognition and treatment
of anxiety. However, accurate diagnosis of anxiety with a physical

disease can be challenging owing to both emotional and physical
shared symptoms such as chest pain, fatigue, palpitations, and
breathlessness (Singleton et al., 2003; Easton, 2013). To enhance
the diagnosis of anxiety and depressive disorders in patients with
HF, the American Heart Association has suggested screening for
common psychiatric diseases (Kroenke et al., 2001; Kroenke et al.,
2003).

Despite the benefits of screening for anxiety disorders in
patients with HF, the practical details of screening are less
clear. For example, anxiety symptoms may be apparent
following an acute CVD, but these symptoms may dissipate
after recovery from events. Accordingly, if the first diagnosis
of anxiety is made during admission, it is advisable to defer the
final diagnosis of anxiety to a stage of clinical stability.

Anxiety and Atrial Fibrillation
Atrial fibrillation (AF), a kind of atrial tachyarrhythmia, is the
most common type of durative tachyarrhythmia in clinical
practice (Michaud et al., 2021). According to statistics from
the Framingham Heart Study, the incidence of AF developed
in 37% of patients over 55 years old (January et al., 20142014;
Staerk et al., 2018). Several clinical studies have demonstrated a
strong association between the initiation or recurrence of AF and
anxiety symptoms. For instance, a 10-year observational trial
found that the incidence of AF can be influenced by anxiety
(Eaker et al., 2005). Furthermore, it was found that after cardiac
surgery, anxiety symptoms can increase the occurrence of AF,
whereas the correlation between AF and anxiety could be reduced
through beta-blockers (Tully et al., 2011; Tarsitani et al., 2012). In
addition, Pitsavos et al. found that anxiety is associated with
abnormal coagulation and systemic inflammation—probable
contributors to increased cardiovascular events (Pitsavos et al.,
2006). Not only did anxiety influence the onset and progression of
AF but may also lead to AF recurrence after standard treatment
for AF. Yu et al. found that after taking circumferential
pulmonary vein ablation, patients with anxiety and AF were at
higher risk of AF recurrence (Yu et al., 2012). In a clinical study,
researchers found that paroxetine, an anti-depressant drug, can
further decrease frequency of arrhythmia events in patients with
multidrug-resistant paroxysmal AF, probably through inhibiting
the vasovagal reflex and regulating vagal tone (Shirayama et al.,
2006). However, no evidence has demonstrated anti-anxiety
drugs lower the incidence of AF.

According to the clinical studies mentioned above, several
limitations for the research into the relationship between anxiety
and AF should be noted, such as using different questionnaires
with diverse validity and reliability, small sample size, and short
follow-up period. Therefore, future research should address these
disadvantages. Furthermore, large prospective studies are
essential to evaluate the benefits of routine assessments of
anxiety, and the usefulness of anti-anxiety drugs in the
prevention and treatment of patients with AF and anxiety.

Anxiety and Coronary Heart Disease
A meta-analysis of 20 studies (N = 249,846) determined the
association between anxiety and incident coronary artery disease
(CHD) and found that initially, healthy participants with anxiety
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were at elevated risk for incident CHD and cardiac death,
independent of health behaviors, biological risk factors, and
demographic variables (Roest et al., 2010b). Another meta-
analysis of 46 studies indicated that anxiety was related to a
35% greater risk of HF, 71% greater risk of stroke, and 41%
greater risk of cardiovascular mortality and CHD (Emdin et al.,
2016). Furthermore, anxiety has been considered as a potential
risk factor for myocardial infarction (MI) in men (Shen et al.,
2008). In this regard, the manifestation of either anxiety or
depression or mixed manifestation contributes to a 20%–30%
elevation in the risk of MI (Ouakinin, 2016). Moreover, patients
with over two types of psychological disorders had a 50% higher
risk of MI following the next 10 years (Ouakinin, 2016). High
levels of anxiety symptoms before MI can also exacerbate long-
term outcomes in the elderly (Smeijers et al., 2017). In addition,
Roest et al. suggested that anxiety after MI may be a prognostic
factor that increases the risk of the worse outcome by 36%. On the
other hand, the elevation of anxiety after MI might be temporary
but can persist for the first two years after MI (Bjerkeset et al.,
2005). Post-MI anxiety disorders are related to a higher risk of
recurrent MI (Feng et al., 2016). However, the degree of anxiety
and clinical events (including all-cause death and MI) can be
significantly alleviated in patients after stress management
training (Blumenthal et al., 2016). Anxiety does not only
influence initiation, development, and prognosis of CHD but
can impact the treatment of CHD. Co-existing symptoms of
depression and anxiety can be significant predictors of worse
outcome after percutaneous coronary intervention (PCI)
(Pedersen et al., 2006; van den Berge et al., 2015; van Dijk
et al., 2016). Furthermore, patients experiencing anxiety before
coronary artery bypass graft surgery (CABG) had higher risk of
mortality (Tully et al., 2008; Tully et al., 2015). Post-CABG
anxiety is also associated with the higher risk of acute MI,
recurrent hospitalizations, and mortality (Rosenbloom et al.,
2009; Poole et al., 2017).

Anxiety and Hypertension
Numerous evidence from clinical trials has demonstrated the
relationship between anxiety and hypertension. On the one hand,
compared with patients without an anxiety disorder, baseline
anxiety was related to a higher rate of developing incident
hypertension (odds ratio [OR] 4.24; 95% CI 1.29–14.01)
(Bacon et al., 2014). Although adjusting for age, country,
gender, and other psychosocial disorders, divergent types of
anxiety disorders are associated with the development of
incident hypertension (Stein et al., 2014). Another larger
prospective cohort study (2005–2015) included 524,952
patients who suggested that the baseline diagnosis of anxiety
can increase the risk of incident hypertension (hazard ratio HR
1.09; 95% CI 1.05–1.14, p < 0.001) (Pérez-Piñar et al., 2016). On
the other hand, a positive, bidirectional link may exist between
prevalent hypertension and prevalent anxiety, i.e., patients with
anxiety were more likely to have hypertension and vice versa
(Player and Peterson, 2011). The World Mental Health Survey,
initiating 18 cross-sectional studies in 17 countries among the
general public, has found that the adjusted OR for comorbid
hypertension and anxiety was 1.7 (95% CI 1.5–1.9, p < 0.05)

(Scott et al., 2007). A recent cross-sectional medical record
analysis assessed the prevalent comorbid hypertension and
mental disease, including anxiety (n = 2,058,408). Overall,
ambulatory and residence patients with hypertension were
more likely to possess medical record diagnoses of anxiety
(Sandström et al., 2016). Furthermore, some studies have
suggested that symptoms of anxiety may be associated with
hypertension and the change of BP (Hildrum et al., 2008; Wu
et al., 2014). Blood pressure variability (BPV) represents the size
and patterns of BP variations from seconds to years and is
considered a marker of ANS regulation and an independent
risk indicator of cardiovascular complications (Wei et al.,
2018). And BPV is considered as a predictor of initiation,
progression, and severity of organ damage caused by
hypertension (collectively a marker of ANS dysregulation), as
well associated with anxiety disorder (Irigoyen et al.,
2016).Several cross-sectional studies found that higher anxiety
scores are related to lower heart rate variability (HRV) and higher
BPV indicating ANS imbalance towards sympathetic
hyperactivity (Piccirillo et al., 1997; Tully and Tzourio, 2017).
However, the recognition and treatment for anxiety disorders and
hypertension remain insufficient (Johnson et al., 2014; Bandelow
and Michaelis, 2015). Therefore, it is of great significance to
improve our comprehension of comorbid anxiety and
hypertension.

ANXIETY-RELATED NUCLEI IN CVD AND
CARDIOVASCULAR RESPONSE TO
STRESS
Several studies have demonstrated a correlation between elevated
HR and BP reactions, as well as enhanced activation in central
neural limbic and brainstem regions in response to mental stress
among healthy individuals (Gianaros and Sheu, 2009; Gianaros
et al., 2012). Patients with CVD present structural and functional
changes in neural networks including the frontoparietal, limbic,
and brainstem regions (Gianaros et al., 2009a; Gianaros and Sheu,
2009; Jennings and Zanstra, 2009). These studies have suggested
that abnormalities in brain nuclei of groups at high risk for
developing CVD are related to exaggerated cardiovascular
response to stress, which may contribute to the initiation and
progression of CVD. Accordingly, such frequent excessive
cardiovascular responses caused by anxiety may also prompt
structural changes in the cardiovascular system and ultimately
lead to the development of acute and chronic CVD. An important
foundational study has identified several key components
controlling anxiety, including the amygdala, BNST, mPFC,
and HC (Calhoon and Tye, 2015). The following section
focuses on the role of these nuclei in cardiovascular response
and disease in healthy individuals and patients.

Role of the Amygdala in CVD
Existing evidence from human studies indicates the importance
of the amygdala to anxiety (Etkin and Wager, 2007; Grupe and
Nitschke, 2013). Early animal studies related to fear conditioning
emphasized the vital roles of the central nucleus of the amygdala
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(CeA) and the basolateral amygdala (BLA) in anxiety. The BLA
receives sensory information from stress and excites the CeA
through its projections. Subsequently, the amygdala contributes
to defensive responses through efferent projections to different
regions, including the stria terminalis, hippocampus, ventral
striatum, orbitofrontal cortex, periaqueductal gray (PAG), and
hypothalamus (LeDoux, 2000). Recently, several clinical studies
explored the relationship between the amygdala and
cardiovascular response and disease (Gianaros et al., 2008;
Gianaros et al., 2009a; Gianaros et al., 2009b; Tawakol et al.,
2017; Tawakol et al., 2019; Goyal et al., 2020; Osborne et al.,
2020).

Despite lacking updated human cerebrum imaging techniques
to confirm the precise construction and function of diverse
amygdalas, Gianaros et al. indicated the activity of the
amygdala can be used to reflect the alterations of BP to stress
and predict the risk of preclinical atherosclerosis (Gianaros et al.,
2008; Gianaros et al., 2009a; Gianaros et al., 2009b). The first
study, linking focal brain activity to CVD events has
demonstrated that amygdala activity can be used as an
independent and robust predictor of CVD events. The degree
of amygdala activation can be used as a marker to foresee the
occurrence of heart attacks and strokes as it was positively
associated with hazards for stroke and heart attack. The study
indicated that the activity of anxiety-related nuclei may be the
potential neural substrate for cardiovascular risk (Tawakol et al.,
2017). Several other clinical observational studies have also
demonstrated different types of stress, including noise,
psoriasis, and socioeconomic status can pose a significant
impact on amygdala activity and may subsequently induce
arterial inflammation contributing to CVD (Tawakol et al.,
2019; Goyal et al., 2020; Osborne et al., 2020).

Identifying that the degree of amygdala activation in humans
can be used as a predictor of cardiovascular responses, such as
alterations of BP and HR, and CVD outcome is a great
breakthrough. However, elucidating the intricate intra-
amygdala interactions, which may act as a mechanism related
to CVD, require further investigations.

Role of the BNST in Cardiovascular
Response to Stress
The BNST, which is considered as part of the extended amygdala,
has similar cytoarchitecture and strong contact with the amygdala
(McDonald, 2003; Price, 2003). Sustained anxiety responses
require the recruitment of the BNST (Davis et al., 2010),
which emerges partly as a result of direct innervation by BLA
afferents. A recent study using optogenetic targeting of different
BNST subregions and output pathways found opposing roles for
the oval BNST (ovBNST) and anterodorsal BNST (adBNST) in
anxiety (Kim et al., 2013) Existing evidence has suggested the role
of BNST in cardiovascular response and its potential mechanism.

Human functional magnetic resonance imaging (fMRI)
studies have reported BNST activation in response to threat
anticipation (Straube et al., 2007; Mobbs et al., 2010;
Somerville et al., 2010; Alvarez et al., 2011; Grupe et al., 2013;
McMenamin et al., 2014; Klumpers et al., 2017). Among these

studies, recent research (n = 178) found that the BNST was
implicated in defensive response during uncertain threat
anticipation (Klumpers et al., 2017). The study demonstrated
that stress anticipation and stress confrontation, respectively,
evoke bradycardic and tachycardic responses with neural
activity shifted from a region anatomically consistent with the
BNST toward the amygdala. This reinforced the previous view
that BNST is implicated in defensive responding during uncertain
threat anticipation, whereas the amygdala may drive response
upon more acute danger (Klumpers et al., 2017). Furthermore,
another research explored the association between the activity of
the BNST and peripheral ANS (Somerville et al., 2010). In this
study, the participants with greater anxiety about the threat
proximity showed more prominent activity of the BNST and
sympathetic nervous system which displayed a significant
increase in HR and skin conductance (an activity indicator of
the sympathetic nervous system).

According to these results, it may be assumed that the BNST,
as an anxiety-related nuclei location, may play an important role
in the initiation and progression of CVD as part of its regulation
of cardiovascular responses to different stress. However, the exact
relationship between the BNST and CVD is unknown. Therefore,
clinical and basic research is needed to disentangle the potential
link between these nuclei and CVD in the future.

Role of the mPFC in CVD and
Cardiovascular Response to Stress
The mutual relationship between the medial prefrontal cortex
(mPFC) and the amygdala has been comprehensively investigated
in anxiety disorders in both humans and rodents (Ochsner et al.,
2002; Kim et al., 2011). The mPFC, a neocortical region in the
central neocortical structure with substantial excitatory
pyramidal neurons and different kinds of inhibitory
interneurons, consists of six layers in humans (I–VI) and only
five organized stratums in rodents (Markram et al., 2004). The
mPFC in rodents can be divided into two parts, including the
prelimbic (PL) and infralimbic (IL) cortex. These subregions in
mPFC accept projections from the thalamic nuclei, BLA, and HC,
which then project to the BLA and striatum (Groenewegen et al.,
1997). Several studies have demonstrated the relationship
between the activity of the mPFC and CVDs, as well as in
response to stress in humans.

The important role of the interaction between the mPFC and
limbic regions in HR regulation has been corroborated usingMRI
and resting-state functional connectivity (RSFC) (Sakaki et al.,
2016; Kumral et al., 2019). In a clinical observation trial,
researchers found that an increased RSFC between the ventro-
mPFC (vmPFC) and the anterior insula was associated with
slower HR (de la Cruz et al., 2019). In a recent publication,
researchers also demonstrated the role of the vmPFC in
regulating the cardiac autonomic function. They found that
temporal changes in HRV were correlated with dynamic
changes in prefrontal connectivity (Schumann et al.,
20202008). HRV indicates the degree of continuous change in
heart rate through the analysis of a series of heartbeat intervals
considered as a clinical marker for the state of the ANS. This
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index can be generated through several calculations, including a
time-domain method, geometric method, and frequency domain
methods (Author Anonyms, 1996). In addition, the results from
other clinical studies indicated that lesions of the cerebral cortex,
especially in the mPFC, were related to the exaggeration of HR
response during mental stress (Buchanan et al., 2010).
Furthermore, the activity of mPFC to stress may be linked to
CVD. Researchers have found greater stress activation of the
rostro-mPFC (rmPFC) in patients with CHD exposed to early
traumatic events, as well as those who exhibit high-stress
reactivity with peripheral vasoconstriction (Shah et al., 2019;
Wittbrodt et al., 2019). A recent publication (including 148
subjects) has found that higher rmPFC stress reactivity was
independently associated with higher IL-6 and a lower high-
frequency power spectrum index of HRV with stress. During a
median follow-up of 3 years, 34 subjects (21.3%) experienced
major adverse cardiovascular events (MACE). Each 1SD
(standard deviation of relative cerebral blood flow measured
by high resolution-positron emission tomography) increase in
rmPFC activation with mental stress was associated with a 21%
increased risk of MACE (HR 1.21, 95% CI 1.08–1.37) (Moazzami
et al., 2020).

The results mentioned above have indicated that the mPFC
may be important to CVD, which is a potential target for anxiety
comorbidities in CVD. Therefore, it is of significance to explore
the mechanism of mPFC resulting in CVD.

Role of the HC in CVD
Correlational and epidemiological studies have implicated the
HC in human psychological disorders, including anxiety
(McNaughton, 1997). Behavioral, anatomical, and gene
expression studies have suggested that the HC in rats
comprises two distinct subregions compared to the posterior
HC in primates, and the ventromedial hippocampus (VH) is
similar to the anterior HC in primates (Risold and Swanson, 1996;
Fanselow and Dong, 2010). Despite the comprehensive
acknowledgment of the intimate correlation between the
activity of HC with emotional and mnemonic function, few
studies have focused on the relationship between the role of
the HC and cardiovascular responses to stress (Ai et al., 2015).

Nevertheless, a recent series of studies have demonstrated the
relationship between the HC and CVD, as well as the involvement
of the HC in cardiovascular system regulation. For instance,
patients with temporal lobe epilepsy and hippocampal sclerosis
demonstrated cardiovascular autonomic dysfunction (Ansakorpi
et al., 2004; Koseoglu et al., 2009). In a most recent study of 80
patients, Mueller et al. (2020) investigated a potential correlation
between HF biomarkers and the brain gray matter density
(GMD) obtained by MRI. They observed a diminished GMD
was associated with decreased ejection fraction and increased
NT-proBNP in various brain regions including the whole
frontomedian cortex as well as the HC and precuneus. In
addition, a smaller observation trial found that patients with
HF exhibited smaller hippocampal volumes than controls (right:
3,060 ± 146 vs. 3,478 ± 94 mm³; p = 0.02; left: 3,021 ± 145 vs.
3,352 ± 98 mm³; p = 0.06) (Woo et al., 2015). Moreover, a
largescale study intending to investigate the relationship

between hypertension and memory indicated a correlation
existed between the history of hypertension and both lessor
functional connectivity of the HC and lessor prospective
memory score (Feng et al., 2020). Furthermore, hippocampal
atrophy is a significant and independent predictor of poor
prognosis in patients with chronic HF and can aid the risk
stratification of these patients (Niizeki et al., 2019). Therefore,
the altered structure of the HC may influence the regulation of
cardiovascular function and CVDs.

Although evidence supporting the effect of HC on CVD is
scarce, the existing results indicate that anxiety-related nuclei
may play an important role in CVD.

LINK BETWEEN ANXIETY-RELATED
NUCLEI AND CARDIAC ANS

The central neural autonomic network (also denoted the ANS),
composed of several brain structure interconnections, was
confirmed by observation of the human CNS via human brain
imaging, and by investigation of rodent CNS via tract-tracing and
electrical stimulation (Verberne and Owens, 1998; Saper, 2002).
In the CNS, the dorsal motor nucleus of the vagus (DMV) and
nucleus ambiguus (NA) are the primary sites of preganglionic
parasympathetic neurons that regulate the heart (Ulrich-Lai and
Herman, 2009). Adversely, the intermediolateral cell column
(IML), which is in the thoracolumbar range of the medulla
spinalis, projects preganglionic sympathetic neurons to
regulate the heart (Kandel et al., 2000; Bear et al., 2007).

Several brain nuclei, including the hypothalamus, brainstem,
etc., directly project to the DMV—particularly the subarea of the
hypothalamus, including the lateral hypothalamic area (LHA)
(Hahn and Swanson, 2010), medial preoptic area (mPOA) (Chiba
and Murata, 1985), and paraventricular hypothalamus (PVH)
(Swanson and Kuypers, 1980). The projection from the brainstem
to the DMV mainly originates from A1 cell groups of the
ventrolateral medulla (VLM) (Sawchenko and Swanson, 1981),
nucleus of the solitary tract (NTS) (Davis et al., 2004), and locus
coeruleus (LC) (Ter Horst et al., 1991). In addition, the reticular
nuclei and vagal complex, which are both important nuclei
locations in the brainstem, display abundant interaction with
each other. The projection from the NTS (Sawchenko and
Swanson, 1982) and the parabrachial nuclei (PB) (Herbert
et al., 1990) can reach NA and DMV due to the lap of inputs
to the NA and DMV. The IML mainly receives projection from
the brainstem and hypothalamus (Loewy, 1981; Schwanzel-
Fukuda et al., 1984). The VLM, LC, and ventral raphe nuclei,
which are located in the brainstem, give out straightforward
projections to the IML (Amendt et al., 1979; Jones and Yang,
1985). Furthermore, the dorsomedial hypothalamus (DMH) and
PAG are the convergence area where the projections from the
sympathetic regulating brain areas are received (Guyenet, 2006;
Fontes et al., 2011). Interestingly, the projections from the PVH,
LHA, and posterior hypothalamus (PH), which are located in the
hypothalamus, can directly reach the thoracic IML, and these
projections are conserved in many species (Saper et al., 1976).
Therefore, these nuclei mentioned above are the vital infracortical
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area, which are relative to the peripheral ANS and anxiety, and
integrate affective and cognitive processes with CVD. The
following section will focus on the anatomy and functional
connection between the anxiety-related nuclei and cardiac ANS.

Association Between Amygdala and
Cardiac ANS
Circuit mapping in rodents indicates that projections from the
medial amygdala (MeA) mainly liberate GABA to innervate the
mPOA, PH, and BNST (Myers et al., 2014; Myers et al., 2016).
Meanwhile, different subregions of the amygdala, including the
lateral, basolateral, basomedial, and cortical parts, innervate the
BNST through glutamatergic projection. (Myers et al., 2014).
Notably, a mass of interconnections between the CeA and other
regions of the amygdala can be observed (Davis, 1997; Davis et al.,
2010). The CeA can reach up to the BNST, mPOA, and DMH
through the GABAergic projections and affect many subregions
of the brainstem, including the PB, LC, NTS, raphe, and rostral
VLM (Hermann et al., 1997; Prewitt and Herman, 1998; Saha,
2005; Myers et al., 2014). Therefore, the amygdala is considered
crucial nuclei to regulate the response to stress through GABA-
GABA synaptic connections (Prewitt and Herman, 1998; Myers
et al., 2012; Myers et al., 2014; Russell and Shipston, 2015).

Ample animal research has investigated the function and
mechanism of the amygdala in the regulation of cardiac ANS.
From electrolytic lesion or electrochemical stimulation studies,
CeA likely participates in the modulation of BP reaction to stress
(Saha, 2005). For instance, electrolytic lesions of the CeA in
borderline hypertensive rats could attenuate pressor responses to
stress (Sanders et al., 1994). In addition, other studies also
suggested that the CeA is essential for conditioned
cardiovascular responses to different types of stress (LeDoux
et al., 1988; Phelps and LeDoux, 2005; Wilensky et al., 2006).
In contrast, local injection of cobalt chloride into the MeA led to
alterations in HR during acute restraint stress though the mean
arterial pressure (MAP) displayed no change (Fortaleza et al.,
2009). The results from other studies indicated that during stress
alterations of HR and MAP were respectively regulated by the
noradrenergic system and histaminergic system in the MeA
(Fortaleza et al., 2012a; Fortaleza et al., 2012b; de Almeida
et al., 2015). Without stress, BLA also contributes to an
increase in HR and MAP after local injection of GABA
receptor antagonists through the cell signal pathway related to
the NMDA and AMPA (Sajdyk and Shekhar, 1997; Soltis et al.,
1997). Furthermore, angiotensin-II metabolite binding to theMas
receptor in the BLA can lead to the reduction of MAP and HR
responses to air-jet stress (Oscar et al., 2015).

Association Between BNST and
Cardiac ANS
The BNST is characterized by its connections with hypothalamic
and brainstem nuclei, which are intimately correlated with
cardiac ANS (Dong et al., 2001a; Dong and Swanson, 2004a;
Dong and Swanson, 2004b; Spencer et al., 2005). The BNST is
considered crucial in regulating physiological functions including

an autonomic, neuroendocrine, and behavioral response (Ulrich-
Lai and Herman, 2009; Davis et al., 2010). The results from
previous investigations indicated a mutual interconnection
between the BNST and centro-MeA and the projection from
the HC and mPFC to the BNST (Shammah-Lagnado et al., 2000;
Dong et al., 2001b; Herman et al., 2003; Vertes, 2004; Spencer
et al., 2005; Radley et al., 2009). The BNST provides direct input
to the DMV, which displayed the projection from the
anterolateral and rhomboid divisions of the BNST to the
DMV (Dong and Swanson, 2003; Dong and Swanson, 2004a).
In addition, the NA also receives afferent input from the
rhomboid BNST (Dong and Swanson, 2003).

Rodent studies also proved a modulatory role for the BNST in
the regulation of cardiac ANS to stress (Crestani et al., 2013). The
BNST was considered a vital part of regulating alterations to the
cardiovascular system during emotional stress. Another study
also found that the behavioral alterations induced by local
stimulation of the BNST were akin to those arising from
restraint stress, which indicated the involvement of the BNST
in response to stress (Casada and Dafny, 1993). Furthermore,
inhibition of local neurotransmission in the BNST can lead to the
elevation of HR during acute restraint stress though the increase
of BP was not significant (Crestani et al., 2009). In contrast,
research using a conditioned stress model indicated a different
result (Resstel et al., 2008).

During contextual fear conditioning, the freezing behavior and
elevation of BP and HR were mitigated after ablation of the BNST
(Resstel et al., 2008). Accordingly, different types of emotional
stress can affect the degree of regulation by the BNST on the
cardiac ANS.

Association Between mPFC and
Cardiac ANS
The multi-synaptic projections from the CNS to sympathetic
neurons arise not only from the amygdala but also from the IL-
mPFC, which has been revealed by injecting pseudorabies virus (a
kind of trans-neuronal retrograde tracer) into the stellate
ganglion (sympathetic neurons regulating the heart) or the
adrenal gland (Westerhaus and Loewy, 2001).

The IL-mPFC plays an important role in regulating the stress
responses of the cardiac ANS. On the one hand, this area can
innervate the NTS through glutamatergic projection, whereas on
the other hand, stress can activate the GABAergic cells of the PH,
which originated from the IL-mPFC (Vertes, 2004; Myers et al.,
2014; Herman et al., 2016; Myers et al., 2016). In addition, the
GABAergic neurons in the anterior BNST and the rostral part of
the raphe both received projection from the PL-mPFC (Vertes,
2004; Radley et al., 2009).

Previous studies indicated that the IL-mPFC and PL-mPFC
subregions in rats may differentially regulate the cardiovascular
stress response. The mPFC is important in the buildup to a stress
response that relies on experienced outcomes. For instance, the
responses of HR and MAP can be attenuated by injection of
cobalt chloride inclusively into PL-mPFC and IL-mPFC even
under the contextual fear conditioning (Resstel et al., 2006). The
studies, investigating the association between stress responses and
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auditory-cued fear conditioning, found that the lesion location in
the mPFC determined the difference in HR response to the
conditioned stimulation (Frysztak and Neafsey, 1994).
Especially, lesions of the entire mPFC by suction needle could
lessen HR responses to stress. However, tachycardia responses
elevated more significantly after specific aspiration in the dorsal
mPFC (including the PL), which indicated this area can inhibit
the sympathetic nervous system (Frysztak and Neafsey, 1994).
Sympathetic mediated tachycardia can be lessened after local
injection of excitotoxic chemical agents into the ventral-
mPFC (including the IL) to destruct the normal function
of this area, which indicated cardiovascular responses to
learned fear depend on mediation from different
subregions of the mPFC (Frysztak and Neafsey, 1994). The
local injection of cobalt chloride into the PL could induce
increased tachycardia responses to acute restraint stress
without alteration of the MAP. On the contrary, the
neurotransmission in IL displayed the opposite function,
as the promotion of stress-induced tachycardia could be
inhibited by local injection of cobalt chloride into the IL
(Tavares et al., 2009). Furthermore, another study found that
the responses of the HR or MAP to other stressors, including
cage change, restraint, and air-jet, received no impact after
inhibition of IL with muscimol (a kind of GABA agonist)
(Müller-Ribeiro et al., 2012). Nevertheless, the results from
this same research indicated that the NMDA-mediated signal
activation in IL could recede the HR and MAP response
during air-jet stress. Collectively, these results indicated that
the cardiovascular responses to stress can be inhibited by the
PL-mPFC, whereas IL-mPFC possessed an opposite function
to induce sympathetic activation.

Association Between HC and Cardiac ANS
The neurons of the sympathetic nervous system received multi-
synaptic projections from the ventral part of the HC (Westerhaus
and Loewy, 2001). The neurons in the ventral subiculum part of
the HC comprises the primary stress regulation area of the HC,
some of which provide efferents to neurons in the anterior part of
the BNST which also receive projection from the PL (Radley and
Sawchenko, 2011).

In addition, the ventral subregion of the HC innervates the
LHA, mPOA, and medulla through projection (Köhler, 1990;
Myers et al., 2014).

Furthermore, HCmay regulate cardiac ANS. In rodents, local
stimulation of the HC with electricity or chemical agents
induces the reduction of the HR and MAP (Ruit and
Neafsey, 1988). Importantly, after local stimulation of the
ventral but not dorsal part of the HC, alterations of the
cardiovascular system can be prevented by mPFC lesions
(Ruit and Neafsey, 1988). To summarize, these results
indicate that the neural circuit of the ventral hippocampal-
mPFC modulates the suppression of HR and MAP, but
stimulating the dorsal subregion of hippocampal inhibits HR
and MAP through a disparate pathway. The results from
another study indicated that cardiovascular responses to
restraint stress can be enhanced through activation of the
NMDA receptor in the dorsal HC, which differed from the

consequence of stimulating the dorsal hippocampal without
stress (Ruit and Neafsey, 1988; Moraes-Neto et al., 2014).

Autonomic Neural Circuit May Contribute
to CVD
The nuclei mentioned above may constitute a neural circuit,
which can detect and interpret potential threats and finally induce
anxiety and physiological response. In this regard, sensory
information may be transmitted both forward (amygdala-
BNST-HC-mPFC-downstream effector nuclei) and backward
(mPFC/HC-amygdala-BNST) in this macrocircuit (Calhoon
and Tye, 2015). The central neural interconnection, which
consists of the mPFC, amygdala, and HC, adjusts emotions
and awareness (Drevets, 1999; Drevets, 2000; Padilla-Coreano
et al., 2016), and projections from these areas converge on
important intracortical locations, primarily including the
BNST, different subregions of the hypothalamus (e.g., LHA,
mPOA, and PH) and distinct regions of the brainstem (e.g.,
VLM, raphe nuclei, and NTS) (Herman et al., 2003). This
organization permits the transmission of limbic information
downstream, which directly project into sympathetic and
parasympathetic preganglionic neurons. This autonomic neural
circuit of intracortical subregions constitutes the multi-synaptic
central neural network that links emotional processes to
physiological activity (Dampney, 2015). The complex
interconnections mentioned above were mainly confirmed in
various rodent studies; however, research on non-human
primates also showed highly similar descending pathways in
their ANS (Dum et al., 2016).

Accordingly, ANS may act as the pathway linking anxiety and
CVD. Dysregulation of ANS especially sympathetic nervous
system overactivity can contribute to cardiovascular pathology,
including ischemic heart disease, hypertension, arrhythmias, and
HF, and even contribute to fatal outcomes (Bairey Merz et al.,
2015). In addition, a recent meta-analysis (including 2,834
patients) has found that patients with anxiety disorder
exhibited significant reductions in HRV compared to controls,
indicating an imbalance between the sympathetic and
parasympathetic nervous systems, while ANS shifted toward
sympathetic nervous system hyperactivity (Alvares et al.,
2016). Therefore, modulating the autonomic neural circuit
through targeting the anxiety-related nuclei may act as a
treatment for anxiety comorbidities in CVD.

POTENTIAL NEUROMODULATION FOR
TREATING COMORBIDITY ANXIETY
WITH CVD
Effective treatment for alleviating anxiety comorbidity with CVD
is scarce. Existing common strategies for patients with CVD and
anxiety include cognitive-behavioral therapy (CBT), medication,
and a combination of both. However, the effect of these strategies
is mixed and seldom improves both CVD and anxiety (Celano
et al., 2018). Therefore, it is of great significance to search for
other potential concomitant treatments for anxiety and CVD,
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such as transcranial magnetic stimulation (TMS) or transcranial
focal ultrasound stimulation (tFUS). These approaches directly
affect certain nuclei or brain regions to rebalance the autonomic
neural circuit for the regulation of anxiety and the cardiovascular
system (Calhoon and Tye, 2015). This part mainly focuses on
several brain neuromodulations, including vagal nerve
stimulation (VNS), TMS, and tFUS, which are probable
potential treatments for psychological and psychiatric diseases
by affecting ANS (Temel et al., 2012; Kubanek, 2018).

Vagal Nerve Stimulation
VNS possesses bidirectional effects on the central and peripheral
nervous systems to modulate the brain activity and
cardiovascular function (Rossi et al., 20162067). However,
traditional VNS is invasive and incurs several intra-operative
risks, including infection, demolishment of the vagus nerve,
trachyphonia, polypnea, and re-intervention to replace the
exhausted battery (Fahy, 2010; Kamath et al., 2010; Spuck
et al., 2010).

A newly non-invasive method, called transcutaneous VNS
(tVNS), has been investigated, and this new neural modulation
overcomes the disadvantages mentioned above as well as
permits patient-administered stimulation on demand (Ben-
Menachem et al., 2015). Researchers have demonstrated that
this technique can alleviate chronic pain disorders and
modulate the default mode network in major depressive
disorder patients (Napadow et al., 2012; Fang et al., 2016).
Damon et al. found that tVNS can improve the ANS response
to emotional startle in patients with PTSD through elevating
vagal tone and reducing sympathetic activation (Lamb et al.,
2017). In addition, compared with the sham group, tVNS
decreased the sympathetic tone and regulated the
parasympathetic/sympathetic function in healthy volunteers
after traumatic stress, which displayed the elevation of the pre-
ejection period (PEP) of the heart (an indicator for cardiac
sympathetic activity) and the photoplethysmogram (PPG)
amplitude (a marker for peripheral sympathetic function)
(Gurel et al., 2020). Furthermore, VNS could be a practical
solution to rebalance the ANS, which is applied for the
treatment of HF, AF, and CHD (Shinlapawittayatorn et al.,
2013; Premchand et al., 2014; Chen et al., 2015). A recent
proof-of-concept study has confirmed that low-level tragus
stimulation can reduce myocardial ischemia-reperfusion
injury in patients with acute MI and proposed the
possibility that this non-invasive strategy may be used to
treat patients with ST-segment elevation MI undergoing
primary PCI (Yu et al., 2017). Accordingly, the VNS
treatment strategy may be a promising approach to remit
patients with anxiety and CVD.

Transcranial Magnetic Stimulation
TMS, a newly non-intrusive neural modulatory strategy, can
affect the activity of the cerebral cortex through currents
produced by a coil that is located on the scalp (Rossini and
Rossi, 2007). High-frequency (≥5 Hz) TMS increases cortical
excitability, whereas low-frequency (≤1 Hz) TMS reduces
cortical excitability (Rossi et al., 2009). The suggestions from a

recent guideline indicate that TMS can be considered an effective
treatment to alleviate chronic pain syndromes, medication-
resistant depression, and negative symptoms of schizophrenia
(Lefaucheur et al., 2020). The mild elevation of parasympathetic
tone in healthy subjects, which displayed significant bradycardia,
can be induced by local stimulation on the right hemisphere by
low-frequency TMS, but no alteration of the sympathetic drive
was observed (Gulli et al., 2013). In patients in a vegetative state,
high-frequency TMS-stimulating M1 (principal brain areas
involved in motor function) transiently induced the increase
of HR, which indicated that local stimulation of M1 can
regulate the function of ANS under the circumstance of no
motor response (Manganotti et al., 2013). Furthermore, a
study (including 52 patients with depression) found that
compared with treatment with the serotonergic agent, high-
frequency TMS stimulation of the left dorsolateral prefrontal
cortex (DLPFC) daily for 2 weeks can rebalance the ANS, which
displayed a decrease in the sympathetic/parasympathetic ratio
through the analysis of HRV (Udupa et al., 2007).

Another study found that TMS can improve the scores of the
clinician-administered PTSD scale in patients with PTSD after
brief exposure to traumatic events. TMS also attenuated HR
response to brief imaginal traumatic exposure, which indicated
that the appliance of TMS may alleviate PTSD symptoms and
regulate the ANS (Isserles et al., 2013). Although no direct
evidence confirms the effect of TMS on CVD, the regulation
of ANS through TMS may also indicate a potential ability to
improve anxiety and CVD.

Transcranial Direct Current Stimulation
Cortex excitability can be altered by transcranial direct current
stimulation (tDCS) by the transmission of a transcranial
constant electrical field to affect the course of cell
membrane polarization (Priori et al., 1998; Paulus, 2003).
The anode part of tDCS can elevate cortex excitability via
transmitting the current to attract negative ions using
electrodes located on the tissue surface, subsequently
lowering the resting potential of the cell membrane
threshold. On the contrary, cathodal tDCS can also impose
the effect on the surroundings by attracting a positive charge,
leading to the threshold elevation and reduction of cortical
excitability. This technique raised the possibility of targeting
the cortex and brainstem related to ANS, which contributes to
our understanding of the interaction between the CNS and
cardiovascular system as well as advances the treatment
strategy for these pathological conditions (Parazzini et al.,
2014). Despite the promising of this technique as a feasible
treatment strategy for humans, only a few investigations have
explored the effect of tDCS in regulating the cardiovascular
function in humans (Vandermeeren et al., 2010; Brunoni et al.,
2013; Schestatsky et al., 2013). M1 and DLPFC were the most
common target for tDCS in most studies, and the temporal
cortex was also chosen as a target to investigate the effect of
local stimulation by tDCS on the autonomic nervous function
(Montenegro et al., 2011). The results from previous research
indicated that positive alterations of ANS induced by tCDS
were mainly relevant to anodal stimulation, while another two
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studies found that the local stimulation on DLPFC or M1 by
cathodal tDCS can also involve alterations of vasomotor
reactivity (Beeli et al., 2008; Vernieri et al., 2010).
Moreover, two studies intended to explore the impact of
tDCS on the brainstem. The results displayed that
stimulation applied on M1 or frontal midline using tDCS
scarcely affected the cardiovascular function, and objectives
in the tDCS group or sham group both squinted towards a
progressive increase of sympathetic tone along with time
(Vandermeeren et al., 2010; Santarnecchi et al., 2014). In
fact, Santarnecchi et al. showed that the spontaneous
activity of the motor cortex alongside the time course was
likely associated with changes in HRV and BP in the absence of
tDCS, and this association could be enhanced through the
application of anodal tDCS on the motor cortex. This result
indicated that tDCS could be used as a potential technique to
determine the causal connection between the activity of
specific subregions of the cerebral cortex and the function
of the peripheral ANS (Santarnecchi et al., 2014). However,
Carnevali et al. (2020) found that tDCS can reduce the degree
of anxiety and attenuate HR acceleration and activation of the
sympathetic nervous system/withdrawal of the vagal nervous
system in healthy volunteers after completing the
psychological stress test. In addition, local stimulation on
the left DLPFC can decrease the number of faults for
inconsistent stimuli and lower HR under a Stroop test in
healthy participants (Angius et al., 2019). Although the
current research related to the tDCS cannot determine the
exact effect of tDCS on regulating the function of ANS due to
the contradictory results from investigations and the diverse
parameters of tDCS, this technique may potentially assist in
alleviating anxiety comorbidity with CVD.

Transcranial Focused Ultrasound
Transcranial focused ultrasound (FUS) is an emerging device for
non-invasive neuromodulation that propagates low-intensity
ultrasound through the skull and tissue to modulate regional
brain activity (Tyler, 2011). FUS can act on target brain nuclei via
two main mechanisms—thermal effect and mechanical effect
(Kubanek, 2018). Compared with TMS, FUS performs better in
an area with sufficiently tight focus and specific circuits deep in
the brain (Fini and Tyler, 2017). A randomized, placebo-
controlled, double-blind study has demonstrated the impact
of FUS on right inferior frontal gyrus (rIFG) in healthy
participants to modulate mood and emotional state
(Sanguinetti et al., 2020). However, the average HR, HRV,
and respiratory sinus arrhythmia (RSA) of these participants
did not change after stimulation by FUS (Sanguinetti et al., 2020).
On the contrary, the result from research into spontaneously
hypertensive rats indicated that the HR and SBP can be
significantly reduced after continuous FUS for 1 week (Li
et al., 2020). These results indicate the potential role of FUS
in emotion regulation. However, the contradictory
cardiovascular response may be due to specific stimulation
parameters of FUS required for exciting or inhibiting cellular
activity (Plaksin et al., 2016). Moreover, a recently published
study displayed that FUS can significantly improve the primary

outcome in patients with treatment-refractory generalized
anxiety disorder, as measured by the Hamilton Anxiety
Inventory, and indicated FUS as a concomitant treatment
with anxiety (Mahdavi et al., 2021). However, only limited
evidence to date has implied the ability of FUS to improve
the symptoms of anxiety and regulate cardiac ANS in patients
with anxiety disorder accompanied by CVD or the risk thereof.
Nevertheless, FUS can offer a potential direction to investigate
concomitant treatment for anxiety comorbidity with CVD.

FIGURE 1 | Potential anxiety-related neural circuit influence
cardiovascular system through autonomic nervous system. Amyg, amygdala;
BNST, bed nucleus of the stria terminalis; HC, hippocampus; mPFC, medial
prefrontal cortex.
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CONCLUSION

A large number of research studies have demonstrated the
relationship between anxiety and CVD, yet the exact role of
nuclei and the neural circuit responsible for anxiety remains
unclear in CVD. This severely impedes progress in prevention
and treatment for comorbidity anxiety with CVD. Therefore,
further investigating the causal connection between alteration of
anxiety neural nuclei and CVD is important for an in-depth
understanding of the mechanism of coexisting psychiatric disease
and CVD. Specifically, the autonomic neural circuit consisting of
nuclei related to anxiety and ANS is of significant research
interest for treating and preventing anxiety and CVD

(Figure 1). Furthermore, the emerging neural modulation
techniques may provide effective strategies to alleviate both
anxiety and CVD through assisting traditional treatments
(CBT and medication). However, exact parameters for these
devices need to be established in further clinical trials to
ensure safety and effectiveness for patients.
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GLOSSARY

adBNST anterodorsal BNST

AF atrial fibrillation

ANS autonomic nervous system

BLA basolateral amygdala

BNST bed nucleus of stria terminalis

BPV blood pressure variability

CABG coronary artery bypass graft surgery

CBT cognitive-behavioral therapy

CeA central nucleus of the amygdala

CHD coronary artery disease

CNS central nervous system

CVDs cardiovascular diseases

DLPFC dorsolateral prefrontal cortex

DMH dorsomedial hypothalamus

DMV dorsal motor nucleus of the vagus

fMRI functional magnetic resonance imaging

FUS transcranial focused ultrasound

GMD gray matter density

HC hippocampus

HF heart failure

HRV heart rate variability

IL infralimbicinfralimbic mPFC

LC locus coeruleus

LHA lateral hypothalamic area

MACE major adverse cardiovascular events

MAP mean arterial pressure

MeA medial amygdala

MI myocardial infarction

mPFC medial prefrontal cortex

mPOA medial preoptic area

NA nucleus ambiguus

NTS nucleus of the solitary tract

OR odds ratio

ovBNST oval BNST

PAG periaqueductal gray

PB parabrachial nuclei

PCI percutaneous coronary intervention

PEP pre-ejection period

PH posterior hypothalamus

PL prelimbic mPFC

PPG photoplethysmogram

PTSD post-traumatic stress disorder

PVH paraventricular hypothalamus

rIFG right inferior frontal gyrus

rmPFC rostro-mPFC

RSA respiratory sinus arrhythmia

RSFC resting-state functional connectivity

tDCS transcranial direct current stimulation

tFUS transcranial focal ultrasound stimulation

TMS transcranial magnetic stimulation

tVNS transcutaneous VNS

VLM ventrolateral medulla

vmPFC ventro-mPFC

VNS vagal nerve stimulation
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