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Abstract

The contribution of mosaic alterations to tumors of the nervous system and to non-malignant neurological diseases
has been unmasked thanks to the development of Next Generation Sequencing (NGS) technologies. We report
here the case of a young patient without any remarkable familial medical history who was first referred at 7 years of
age, for an autism spectrum disorder (ASD) of Asperger type, not associated with macrocephaly. The patient
subsequently presented at 10 years of age with multiple nodular lesions located within the trigeminal, facial and
acoustic nerve ganglia and at the L3 level. Histological examination of this latter lesion revealed a glioneuronal
hamartoma, exhibiting heterogeneous PTEN immunoreactivity, astrocyte and endothelial cell nuclei expressing
PTEN, but not ganglion cells. NGS performed on the hamartoma allowed the detection of a PTEN pathogenic
variant in 30% of the reads. The presence of this variant in the DNA extracted from blood and buccal swabs in 3.5
and 11% of the NGS reads, respectively, confirmed the mosaic state of the PTEN variant. The anatomical distribution
of the lesions suggests that the mutational event affecting PTEN occurred in neural crest progenitors, thus
explaining the absence of macrocephaly. This report shows that mosaic alteration of PTEN may result in multiple
central and peripheral nervous system hamartomas and that the presence of such alteration should be considered
in patients with multiple nervous system masses, even in the absence of cardinal features of PTEN hamartoma
tumor syndrome, especially macrocephaly.
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Introduction
Since 2009, the development of Next Generation Sequen-
cing (NGS) technologies allowing whole exome and
genome sequencing has unmasked the mutability of the
human genome with an estimate of 1,58 coding variation
occurring de novo per exome, at the pre-zygotic level [1].
The rate of de novo variations occurring at the post-
zygotic level, resulting in mosaicism, and their contribu-
tion to human diseases are probably underestimated [2].
Mosaic causal alterations in central nervous system (CNS)
tumors have been described in several genes such as NF2

in meningiomas and ependymomas [3], and TP53 in
choroid plexus tumors [4, 5] and in a case of neuroblast-
oma [6]. Several recent studies have also pointed to the
role of somatic mutations in non-malignant neurological
diseases of childhood, such as malformations of cortical
development, epilepsy or autism spectrum disorders [7].
Mosaic alterations of PTEN, corresponding either to nu-
cleotide variations, genomic rearrangements or 10q23
microdeletions encompassing the PTEN locus, have already
been reported in several patients exhibiting syndromic
features pathognomonic of PTEN hamartoma tumor
syndrome (PHTS), such as macrocephaly, Lhermitte-
Duclos Disease, mucosal papillomatous lesions, hamarto-
matous polyposis and thyroid goiter [8–11]. In one patient,
the father of an index case with PHTS, clinical expression
was restricted to macrocephaly [8]. Germline mosaic
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alterations of the PTEN locus, associated in trans with
inherited PTEN variants, have also been reported in a
distinct clinical presentation corresponding to segmental
overgrowth, lipomatosis, arteriovenous malformation and
epidermal nevus (SOLAMEN) syndrome due to PTEN nulli-
zygosity [12, 13] and for review see ref. [14]. We report
herein the case of a young patient who presented with
several brain and spinal cord lesions, resulting from a mosaic
PTEN alteration restricted to discrete neural subpopulations.

Case presentation
The patient was an 11-year-old male, without any re-
markable familial medical history. He was born at term
with normal growth parameters (3100 g (15.8th centile),
53 cm (91st centile), OFC (33 cm 6th centile). He was
able to walk unaided at 16 months of age. Physiotherapy
was performed for slight hypotonia and moderate global
coordination disorder. He developed normal language
skills but presented with a mild social communication
disorder and a learning disability without any cognitive
impairment. He was first referred to the department of
genetics at 7 years of age, for an autism spectrum dis-
order (ASD) of Asperger type, according to the Diagnos-
tic and Statistical Manual of Mental Disorders, fourth
edition (DSM-IV). Physical examination at this age was
normal; growth parameters were in the normal range
and, more notably, there was no macrocephaly (+1SD).
Skin examination revealed a small congenital retro-
auricular hamartoma. Blood karyotype was normal and
screening for fragile X syndrome and metabolic disor-
ders was negative. At ten years of age, the patient
complained of headaches and presented painful limping
and lower limb asymmetry.
Magnetic resonance imaging (MRI) revealed intracranial

extra-cerebral and spinal intra-dural masses, T1-
hypointense, T2-hyperintense with contrast enhancement
after gadolinium injection. These nodular lesions were lo-
cated within the ganglion of the trigeminal, facial and
acoustic nerves (Fig. 1a and b). An extramedullary intra-
dural nodule with similar imaging characteristics was
detected at the L3 level (Fig. 1c). A diagnosis of neuro-
fibromatosis type II and schwannoma predisposition
syndrome was initially considered but screening of NF2,
INI1, SMARCB1, and LZTR1 on the patient’s blood using
NGS did not reveal any detectable germline alteration.
The L3 lesion was surgically removed. Six months post-
operatively, control MRI showed stable volumes of the
cranial lesions. It also revealed a cerebellar cortical lesion
consisting in “focal micropolygyria” of the right hemi-
sphere (Fig. 1d), differing from Lhermitte-Duclos disease
in which the cerebellar cortex appears broadened on MRI.
Histological examination of the well circumscribed L3

lesion measuring 1 cm in width revealed the presence of
a heterogeneous lesion resembling a disorganized

ganglion. It was composed of enlarged dysmorphic
ganglion cells, either dispersed or arranged in small clus-
ters, intermixed with protoplasmic astrocytes, spindle
cells as well as small round cells lying in a fibrillar net-
work (Fig. 1e). Neither necrosis nor mitoses were identi-
fied. Immunohistochemical study indicated that astrocytes
expressed GFAP (Fig. 1f), and only scarce Olig2-positive
cells were observed, indicative of defective astrocytic
maturation. SOX10 and PS100 were positive in the vast
majority of cells, corresponding to neural crest cells.
Ganglion cells were strongly immunoreactive for MAP2
(Fig. 1g), chromogranin and NeuN. The fibrillar back-
ground was synaptophysin- and neurofilament-positive
corresponding to disordered assembly of axons. CD34
immunolabelled endothelial cells only. The proliferative
marker Ki67 was negative. Based on these findings, the
final neuropathological diagnosis of glioneuronal hamar-
toma was established.
PTEN immunoreactivity appeared heterogeneous, with

astrocyte and endothelial cell nuclei expressing PTEN,
but not ganglion cells (Fig. 1h). To interpret the latter
result, PTEN immunolabeling was performed on several
adult samples including one frontal cortex sample, two
sympathetic ganglia and one dorsal root ganglion, used
as controls. Despite repeated immunolabelling with
PTEN antibody, no immunoreactivity was detected in
ganglion cells. NGS performed on DNA extracted from
the L3 lesion (see Additional file 1) revealed in 30% of
the reads a PTEN pathogenic variant within exon 8
(c.970dup; p.(Asp324Glyfs*3); NM_000314.6). No other
PTEN alteration, corresponding either to a second
pathogenic nucleotide variant or a deletion of the PTEN
locus, was detected in the L3 lesion. This allelic imbal-
ance was not suggestive of a germline heterozygous
PTEN alteration, which usually yields a percentage of
mutant reads close to or above 50%, when associated
with loss of heterozygosity, and led us to suspect a mo-
saic alteration of PTEN. NGS performed at high depth
(>500X) on DNA extracted from blood and buccal swabs
found this variation in 3.5 and 11% of the reads, respect-
ively, confirming the mosaic state of the PTEN variant.
In order to quantify the variant allelic fraction present in
the different tissues, using an independent method, we
performed a targeted analysis based on QMPSF (Quanti-
tative Multiplex PCR of Short fluorescent Fragments)
and dye-labeled primers specific to PTEN exon 8. This
analysis confirmed the presence of the PTEN variant in
28, 6 and 12% of the DNA extracted from the
hamartoma, blood and buccal swabs, respectively (see
Additional file 1). Although we could not formally
exclude the fact that the detection of the PTEN variant
in a small fraction of blood DNA corresponded to circu-
lating DNA originating from the hamartoma, its detec-
tion in buccal swabs makes this hypothesis unlikely.
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Therefore the final diagnosis was a glioneuronal hamar-
toma resulting from a mosaic PTEN alteration and we
extrapolated that the brain lesions also corresponded to
glioneuronal hamartoma, as they were located within the
Gasser, as well as within Corti and Scarpa ganglia.

Discussion and conclusions
The PTEN protein is a phosphatase functioning as a key
negative regulator of the PI3/AKT/mTOR cascade.
Germline alterations of PTEN, cause PHTS, encompass-
ing Cowden syndrome (CS; OMIM 158350), Bannayan-

Fig. 1 Imaging characteristics of the brain and spinal lesions; pathological hallmarks of the spinal lesion. a-d, MRI of the case. Axial T2-weighted
images show the well circumscribed lesion located within the cavernous sinus (a), at the level of the ganglion of the trigeminal nerve measuring
20 × 9mm close to the not invaded internal carotid (red arrow) and associated with bilateral asymmetric lesions (b), measuring 14 × 12 mm in
the interpedoncular fossa and 11 × 10 mm in the cerebellopontine angle within the ganglia of cranial nerves VII and VIII respectively (red arrows)
and a nodule at the L3 level (c). T2 weighted axial plane of the cerebellum displaying exaggerated foliation of the right hemispheric cerebellar
cortex (white arrow) located close to the vermis (d). e-h, histopathology of the resected L3 lesion. Histological view shows all but disorganized
components of a spinal ganglion (e), including often dysmorphic ganglion cells (red arrow) and astrocytes (green arrow) lying in a fibrillar
background [OM × 200]. Immunohistochemistry displays multiple GFAP positive astrocytes [OM × 200] (f), and numerous MAP2 positive ganglion
cells [OM × 200] (g). PTEN immunolabeling reveals immunoreactive astrocytes (green arrow), endothelial (red arrow) and satellite cell nuclei,
whereas positivity of ganglion cell (black arrow) nuclei is lost [OM × 100] (h). (OM: original magnification)
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Riley-Ruvalcaba syndrome (BRRS; OMIM 153480) and
Proteus and Proteus-like syndrome [for review see ref.
[15, 16]. Marked macrocephaly (usually > + 3SD to
+6SD) in young children, is very specific to PHTS, when
compared to other syndromes with ASD, and is a re-
quired major criterion for the diagnosis of PTHS [15–
17]. In Cowden mouse models, it has been shown that
macrocephaly results from the increased proliferation
and the decreased apoptosis of neural stem cells in the
ventricular zones [18]. The absence of significant macro-
cephaly in our patient did not lead us to consider a diag-
nosis of PTHS and strongly suggested that radial glial
cells and intermediate progenitors did not harbor the
deleterious PTEN variant at embryonic stages. Despite
the absence of macrocephaly, we nevertheless postulate
that the Asperger syndrome or mild ASD present in this
patient was probably also related to the mosaic PTEN
variant.
As regards the development of glioneuronal hamarto-

mas in the cranial and spinal ganglia, the mutational
event in our patient very likely occurred at the end of
the third post-conception week (day 18- day 21). At this
time, the neural crest which arises from neuroepithelial
cells adjacent to the edges of the neural groove forms
two longitudinal strips on both sides of the embryonic
midline and, shortly after, becomes segmented to form
cranial nerve and spinal cord ganglia from the sixth
post-conception week. This hypothesis is consistent with
previous reports in which it has been stated that deleteri-
ous somatic mutations must occur early during develop-
ment to have phenotypic effects, even though the
pathogenic consequences may not be observed before
childhood or adulthood [2]. It should be noticed that the
NGS analysis of PTEN in the hamartoma did not show
loss of heterozygosity. This in agreement with a previous
study reporting that, in PTEN variation carriers, hamarto-
mas may develop without loss of the wild-type allele [19].
There is no obvious hypothesis that could explain the

detection in blood of a PTEN variant which occurred in
neural crest progenitors. Nevertheless, recent data have
revealed that neural crest cell progenitors are in fact
multipotent, harbor mesenchymal potential [20] and that
some hematopoietic mesenchymal stem cells derive from
the neural crest [21]. The higher variant allelic fraction
observed in buccal swabs, as compared to the blood,
might be explained by the contribution of the neural
crest to many ectomesenchymal derivatives in the
cranial region.
In conclusion, this report underlines that mosaic

alteration of PTEN is sufficient to cause multiple central
and peripheral nervous system hamartomas and that the
presence of such alteration should be considered in patients
with multiple nervous system masses, even in the absence
of cardinal features of PHTS, especially macrocephaly.

Additional file

Additional file 1. Molecular assays.
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