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Abstract: Podoplanin is a small transmembrane mucin-like glycoprotein that plays a crucial role in
the development of the lung, heart and lymphatic vascular system. Its expression is upregulated
in several types of human carcinomas and podoplanin levels in squamous cell carcinomas (SCCs)
of the oral cavity and the lung correlate with cancer invasiveness, lymph node metastasis and
shorter survival time of patients, indicating that podoplanin promotes tumor progression. However,
its role during the early stages of carcinogenesis remain unclear. We generated mice with a specific
deletion of podoplanin in epidermal keratinocytes (K5-Cre;Pdpnflox/flox mice) and subjected them
to a multistep chemical skin carcinogenesis regimen. The rate of tumor initiation; the number,
size and differentiation of tumors; and the malignant transformation rate were comparable in
K5-Cre;Pdpnflox/flox mice and Pdpnflox/flox control mice. However, tumor cell invasion was reduced
in K5-Cre;Pdpnflox/flox mice, in particular single cell invasion. Quantitative immunofluorescence
analyses revealed that peritumoral lymphangiogenesis was reduced in K5-Cre;Pdpnflox/flox mice,
whereas there were no major changes of tumor-associated immune cell subpopulations. Thus,
keratinocyte-expressed podoplanin is dispensable for the early steps of skin carcinogenesis but
contributes to the progression of established tumors.
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1. Introduction

Podoplanin (Pdpn) is a small type I transmembrane mucin-like glycoprotein known under several
different names, including PA2.26, gp38, T1α, D2-40, and aggrus [1]. It is expressed in a number
of adult tissues, including glomerular podocytes (hence its name), type I alveolar cells, mesothelial
cells, choroid plexus cells, glia cells, sebaceous glands, different types of fibroblasts, and lymphatic
endothelial cells (LECs) [2,3]. In normal skin, podoplanin is expressed by the basal cell layer of
sebaceous glands and the outer root sheath keratinocytes of hair follicles, but not by the interfollicular
epidermis [4,5]. Podoplanin is crucial for the normal embryonic development and function of the lungs,
the heart and the lymphatic vascular system, as demonstrated by studies in podoplanin knockout
mice [6–8].

The upregulation of podoplanin expression has been reported in both human cancers and in
experimentally generated animal tumors. Podoplanin expression is upregulated in a number of
different human cancers, including germ cell tumors, tumors of the central nervous system and
squamous cell carcinomas (SCCs) of the oral cavity, skin and the lung [9–13]. Cancer cell expression of
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podoplanin in SCCs of the oral cavity and the lung correlates with increased cancer invasiveness, lymph
node metastasis and the shorter survival time of patients [9,11,14]. Interestingly, podoplanin expression
is often limited to the outer edge of tumors, suggesting that the stromal cells might be able to induce
podoplanin expression in the transformed epithelial cells through secretion of cytokines and growth
factors [3,12,15,16]. In a breast carcinoma xenograft animal model, podoplanin overexpression promoted
tumor-associated lymphangiogenesis, invasiveness and lymph node metastasis [9]. Additionally,
in the mouse model of multistep chemically induced skin carcinogenesis, podoplanin expression was
upregulated by both the transformed keratinocytes and the stromal cells [17]. In the human SCC A431
cell line, podoplanin-expressing cells form colonies with high efficiency and have high tumorigenicity
in nude mice [18]. Podoplanin was also reported to be involved in the regulation of cytoskeletal
organization and cell motility [19,20]. Together with the localization of podoplanin at the invasive front
of SCC tumors [21], podoplanin appears to play an important role in the detachment and invasion of
tumor cells into the adjacent tumor stroma, which are crucial steps towards metastasis.

While there is evidence that increased podoplanin expression might play an important role in
tumor progression and metastasis, it is unclear whether podoplanin is necessary for tumor progression
and the relevance of cancer cell expressed podoplanin for the early stages of carcinogenesis remains
unclear. The two-stage chemically induced carcinogenesis model is one of the best characterized in vivo
models for the study of the sequential development of tumors [22]. In this model, carcinogenesis
occurs as a consequence of a single dose of the carcinogen, 7,12-dimethylbenz (α) anthracene (DMBA),
and sequential treatments with the promoting agent, 12-O-tetradecanoyl-phorbol-13-acetate (TPA).
The cancers develop through a distinctive three-step process, namely initiation, promotion and
progression, mimicking the human cancer formation from the initiating stage onwards [23]. In the
present study, we investigated the role of epidermal cell expressed podoplanin in tumor initiation and
growth in the two-step mouse chemical skin carcinogenesis model, using epidermis-specific podoplanin
knockout (K5-Cre;Pdpnflox/flox) mice. We found that keratinocyte-expressed podoplanin is dispensable
for tumor initiation and multiplicity in a mouse chemical skin carcinogenesis model. However, tumor
invasion and peritumoral lymphangiogenesis were reduced in K5-Cre;Pdpnflox/flox mice.

2. Materials and Methods

2.1. Ethics Statement

All animals were housed and fed according to federal guidelines, and animal experimental
procedures were conducted according to animal protocol (ZH198/15) approved by the local veterinary
authorities (Kantonales Veterinäramt Zürich, Zurich, Switzerland).

2.2. Mouse Model

The generation of K5-Cre;Pdpnflox/flox mice was previously described [5]. Briefly, we crossed
mice constitutively expressing keratin 5 promoter-driven Cre recombinase (K5-Cre), obtained from the
MMRRC Repository (University of Missouri, MO, USA), with Pdpn exon 2 floxed (Pdpnflox/flox) mice
to generate epidermis-specific podoplanin K5-Cre;Pdpnflox/flox knockout mice and Pdpnflox/flox control
mice on the C57BL/6 background. The mice were bred as male K5-Cre;Pdpnflox/flox mice with female
Pdpnflox/flox mice, producing Pdpnflox/flox control mice and K5-Cre;Pdpnflox/flox epidermis-specific
podoplanin knockout mice. As reported previously, these mice show enhanced hair follicle growth
after depilation-induced hair follicle regeneration, but otherwise have no major changes of epidermal
differentiation and architecture [5].

2.3. Chemical Carcinogenesis

An established two-step chemical skin carcinogenesis protocol was used to induce tumors [22].
Female Pdpnflox/flox control and K5-Cre;Pdpnflox/flox knockout mice were shaved on their back skin
under isoflurane anesthesia at 8 weeks of age. Two days later, mutations in the DNA were induced by
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topical application of 25 µg of the carcinogen 7,12-dimethylbenz (α) anthracene (DMBA), dissolved in
200 µL of acetone, on the back skin of mice anesthetized with ketamine-medetomidine. After 7 days,
20 weekly topical applications of 7.5 µg of 12-O-tetradecanoyl-phorbol-13-acetate (TPA), dissolved in
200 µL of acetone were performed on the back skin under isoflurane anesthesia. The back skin was
shaven periodically to ensure topical application of TPA onto the skin. Tumor growth was monitored
once per week in a blinded manner. Raised lesions of a minimum diameter of 1 mm present for at least
1 week were recorded as tumors. Morphologically heterogeneous and infiltrative tumors over 5 mm in
diameter were scored as SCCs and mice were sacrificed at the latest 6 weeks after the SCC diagnosis.
After sacrifice, the SCC diagnosis was confirmed by histological analysis in each case. Mice that did
not develop SCCs were sacrificed after a maximum of 52 weeks after DMBA treatment. Mice were
sacrificed with an overdose of anesthesia (160 mg/kg ketamine; 0.4 mg/kg medetomidine), and the
tissue samples were fixed in 4% paraformaldehyde overnight and embedded in paraffin.

2.4. Hematoxylin-Eosin Staining

Paraffin sections of the control and K5-Cre;Pdpnflox/flox tumors were de-paraffinized, rehydrated
and incubated with hematoxylin solution Gill III (Merck, Darmstadt, Germany), washed with water
and 0.1% hydrochloric acid and stained with 0.5% aqueous eosin Y (Merck). After ethanol and xylene
dehydration, the sections were mounted using Eukitt mounting medium (Sigma-Aldrich, St. Louis,
MO, USA).

2.5. Immunofluorescence Staining

Paraffin sections of control and K5-Cre;Pdpnflox/flox tumors were de-paraffinized, rehydrated and
subjected to antigen-retrieval using sodium citrate buffer. The sections were blocked with a buffer
consisting of 5% donkey serum, 0.2% bovine serum albumin and 0.3% Triton X-100 in PBS for 1 h
at RT. Next, sections were incubated with primary antibodies overnight at 4 ◦C and, after several
washes in 0.5% PBST, incubated with secondary antibodies for 30 min at RT (room temperature).
Primary antibodies were as follows: rabbit anti-mouse LYVE1 (Angiobio, San Diego, CA, USA),
goat anti-mouse podoplanin (R&D Systems, Minneapolis, MN, USA), rabbit anti-mouse cytokeratin 5
(Abcam, Cambridge, United Kingdom), rat anti-mouse MECA-32 (BD Biosciences, Franklin Lakes,
NJ, USA), polyclonal goat anti-mouse CD45 (R&D Systems), and rat anti-mouse CD68 (eBioscience,
San Diego, CA, USA). Alexa Fluor 488- and Alexa Fluor 594-conjugated secondary antibodies and
Hoechst 33342 for nuclear staining were purchased from Invitrogen (Carlsbad, CA, USA). Slides were
mounted with Mowiol mounting medium.

Morphometric analyses. Tissue sections were imaged on an Axioskop2 mot plus microscope
(Carl Zeiss, Oberkochen, Germany) with an AxioCam MRc camera (Carl Zeiss) and a
Plan-APOCHROMAT ×10 or ×20 objective (Carl Zeiss) using AxioVision software 4.8 (Carl Zeiss),
or with a Panoramic 250 Flash III (3D Histech, Budapest, Hungary) slide scanner using CaseViewer 2.3
software (3D Histech). High-magnification images were obtained using a Zeiss LSM 710 FCS confocal
microscope. Hematoxylin-eosin (H&E)-stained tumor sections were evaluated by a pathologist in a
semi-quantitative way and scored categorically for invasion, differentiation, the number of dysplastic
cells, necrosis and inflammatory infiltration in a blinded fashion. For the immunofluorescent stainings
of peri-tumoral lymphatic vessels, the area of interest was defined as the area stretching from the
tumor border to 500 µm away from it and the LYVE1 positive area (in % of total area of interest) and
LYVE1-positive lymphatic vessels were counted using ImageJ (NIH, Bethesda, USA) software version
1.49 v in a blinded fashion.

2.6. Isolation of Primary Keratinocytes

The method for the isolation of primary mouse keratinocytes has been previously described [24].
Briefly, whole skin from control and K5-Cre;Pdpnflox/flox mice was collected at postnatal day 2–4
and digested in 0.8% trypsin solution (Sigma-Aldrich) with the dermis facing down with rotary
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shaking at 75 rpm for 1 h at 37 ◦C. The epidermis was peeled away, minced using scissors and
incubated in Dulbecco’s Modified Eagle Medium supplemented with 30 µg/mL DNase solution
(AppliChem, Darmstadt, Germany) and antibiotic/antimycotic solution for 30 min at 37 ◦C under
constant rotation. Afterwards, cells were passed through 100 µm strainers and washed in PBS
supplemented with 1% FBS and 2 mM ethylenediaminetetraacetic acid (EDTA). Subsequently, the
cells were spun down (7 min, 400 g) and seeded on 25 µg/mL type IV collagen (collagen from human
placenta, Sigma-Aldrich)-coated 6-well plates. Cells were cultured in complete keratinocyte culture
media consisting of supplemented defined keratinocyte-SFM (Invitrogen) and supplemented Minimum
Essential Medium Eagle (MEM; Sigma-Aldrich) at a ratio of 2:1 with 10 ng/mL epidermal growth
factor (Sigma-Aldrich). The defined keratinocyte-SFM (Invitrogen) was supplemented with 0.2%
growth supplement (Invitrogen), 1% penicillin/streptomycin (Invitrogen), and 10 − 10 M cholera toxin
(Sigma-Aldrich). KGF (keratinocyte growth factor)-medium (MEM, Sigma-Aldrich) was supplemented
with 5 µg/mL insulin, 10 µg/mL transferrin, 1.4 µg/mL phosphoethanolamine, 10 mM ethanolamine
(all from Sigma-Aldrich), 0.36µg/mL hydrocortisone (Calbiochem, Darmstadt, Germany), 1% glutamine
(Invitrogen), 1% penicillin/streptomycin (Invitrogen), 8% chelated FCS (Bio-Rad, Hercules, CA, USA),
and 6.6 µg/mL CaCl2 (Merck). After 3 days in culture, the cultures consisted of more than 90% primary
keratinocytes, defined as CD45-, CD90- and integrin α6+ cells, confirmed by flow cytometry FACS
(CytoFLEX, Beckman Coulter, Brea, CA, USA).

2.7. Proliferation Assays

Proliferation assays were performed as described previously [25]. Briefly, 2500 primary
keratinocytes from Pdpnflox/flox control and K5-Cre;Pdpnflox/flox mice were seeded into 96-well
plates in complete keratinocyte culture medium (Lonza, Basel, Switzerland) coated with 25 µg/mL
type IV collagen (collagen from human placenta, Sigma-Aldrich) and were incubated overnight in
serum-reduced medium containing 1% FBS and then returned to full medium. After incubation
for 72 h, 100 µg/mL 4-methylumbelliferyl heptanoate (MUH, Sigma-Aldrich) was added and the
fluorescence intensity, corresponding to the number of viable cells (Stadler et al., 1989), was measured
on a SpectraMax reader (Molecular Devices, San Jose, CA, USA) at 355 nm excitation and 460 nm
emission. For each condition, at least quintuplicates were analyzed and the assay was performed
3 times.

2.8. Scratch Wound Healing Assay

Migration assays were performed as described previously [26]. Shortly, primary keratinocytes
from Pdpnflox/flox control and K5-Cre;Pdpnflox/flox mice were cultured to confluence on 25 µg/mL type IV
collagen-coated 24-well plates. Cells were incubated overnight in serum-reduced medium containing
1% FBS. Cell layers were scratched with a 200 µL sterile pipette tip and were then incubated in complete
media. To monitor scratch closure, images were taken using a Zeiss AxioVert 200M microscope equipped
with a 5×magnification lens and analyzed using the TScratch software version 1.0 [26].

2.9. Statistical Analysis

All statistical analyses were performed using the GraphPad Prism 8 software (GraphPad Software
Inc., San Diego, CA, USA). For the comparison of continuous variables between two groups, a two-tailed
unpaired Student’s t-test was applied. For repeated measurements, a two-way ANOVA with Bonferroni
post-test was applied, and for comparison of categorical data the Fisher’s exact test was used. A p value
of p < 0.05 was considered significant (p < 0.05 *, p ≤ 0.01 **, p ≤ 0.001 ***).



Cells 2020, 9, 1542 5 of 13

3. Results

3.1. Keratinocyte-Expressed Podoplanin Is Dispensable in the Early Stages of Skin Carcinogenesis

In normal skin, podoplanin is expressed by the lymphatic vessels, the basal cell layer of sebaceous
glands and the outer root sheath of anagen hair follicles, but not by the interfollicular epidermis [5,17].
Mouse basal keratinocytes and dermal fibroblasts upregulate podoplanin expression under proliferative
conditions, such as wound healing, psoriasis and phorbol ester 12-O-tetradecanoylphorbol 13-acetate
(TPA)-induced inflammation [4,27,28]. To investigate the biological role of podoplanin in the early stage
of carcinogenesis, we generated epidermis-specific podoplanin knockout mice, K5-Cre;Pdpnflox/flox,
as described previously [5] (Figure 1A). Control Pdpnflox/flox and K5-Cre;Pdpnflox/flox epidermis-specific
podoplanin knockout mice were subjected to the two-step chemical carcinogenesis protocol.
The protocol consisted of a single topical application of the carcinogen 7,12-dimethylbenz (α) anthracene
(DMBA) to the back skin, followed by 20 weekly topical applications of the tumor promoter TPA
(Figure 1B).

Immunofluorescence stainings revealed strong podoplanin expression in both the tumors and
SCCs of the control mice, while there was no detectable podoplanin staining in any of the tumors
of K5-Cre;Pdpnflox/flox mice (Figure 1C). However, the lymphatic vessel staining for podoplanin was
maintained in the K5-Cre;Pdpnflox/flox mice (Figure 1C). These findings confirmed the efficiency and
specificity of the podoplanin deletion in epidermal keratinocytes. Tumor growth was monitored weekly
and raised lesions over 1 mm in diameter persisting for more than 1 week were counted. Surprisingly,
tumor incidence, that is the proportion of mice bearing at least one tumor, did not significantly differ
between the control and K5-Cre;Pdpnflox/flox mice. Initially, the K5-Cre;Pdpnflox/flox mice showed a
3-week delay in the formation of the first tumors compared to the control mice, with the first tumors
appearing 12 weeks after the DMBA treatment in K5-Cre;Pdpnflox/flox mice compared to 9 weeks in the
control mice. After the last application of the tumor promoter TPA, 95% of K5-Cre;Pdpnflox/flox mice
had tumors, as compared to 89% of control mice (Figure 1E). Overall, there was no significant difference
in the kinetics of tumor incidence between the control and K5-Cre;Pdpnflox/flox mice. Similarly, tumor
multiplicity, defined as the average number of tumors per mouse, did not show any significant
difference between the control and K5-Cre;Pdpnflox/flox mice. The K5-Cre;Pdpnflox/flox mice had a
slightly higher average number of tumors per mouse compared to the control mice from week 15
to week 19 of TPA application. However, after the last TPA application, there was no difference in
tumor multiplicity (Figure 1F). Tumors were scored according to their size as either small (between
1 and 3 mm diameter), medium (between 3 and 5 mm diameter) or large tumors (over 5 mm in
diameter) (Figure 1D). There was no difference in the size distribution of tumors between the control
and K5-Cre;Pdpnflox/flox mice after the last tumor promoter application at 20 weeks (Figure 1G). In line
with these results, there was no significant difference in the incidence of large tumors (>5 mm) between
the control and K5-Cre;Pdpnflox/flox mice (Figure 1H). We scored morphologically heterogeneous
and infiltrative tumors over 5 mm in diameter as SCCs and sacrificed the mice 6 weeks after their
first detection. The control mice developed the first SCC 17 weeks after DMBA initiation compared
to 19 weeks in K5-Cre;Pdpnflox/flox mice (Figure 1I). However, the overall incidence of SCCs did
not significantly differ between the control and K5-Cre;Pdpnflox/flox mice (Figure 1I). Taken together,
these data suggest that keratinocyte-expressed podoplanin is dispensable for skin tumor initiation,
growth and malignant transformation in the two-stage chemical carcinogenesis model.
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Figure 1. Tumor-expressed podoplanin is dispensable for tumor initiation, growth and malignant
transformation in the two-stage chemical carcinogenesis model. (A) Epidermis-specific podoplanin
knockout out mice were made by crossing control Pdpnflox/flox and epidermis-specific podoplanin
knockout K5-Cre;Pdpnflox/flox mice. (B) Carcinogenesis was initiated with a single topical application
of the tumor initiator DMBA (25 µg), followed by 20 weekly topical applications of the tumor promoter
TPA (7.5 µg). Mice were monitored once per week and sacrificed 6 weeks after squamous cell carcinomas
(SCC) diagnosis or at the latest 52 weeks after initiation. (C) Immunofluorescence images of tumors
from control and K5-Cre;Pdpnflox/flox mice stained for podoplanin (green) and keratin 5 (red). Nuclei
are stained by Hoechst (blue). Dashed white line separates the tumor cells (above) and the tumor
stroma (below). White arrows indicate lymphatic vessels. Scale bar: 200 µm. (D) Micrographs of
H&E stainings of representative small tumor, large tumor and squamous cell carcinoma morphology.
Scale bar: 1 mm. (E) Quantification of tumor incidence in control and K5-Cre;Pdpnflox/flox mice as
percent of mice bearing at least one tumor with a minimum diameter of 1 mm present for more than one
week (n = 22–35 animals per group, Kaplan-Meier). (F) Quantification of tumor multiplicity in control
and K5-Cre;Pdpnflox/flox mice as the average number of tumors per mouse (n = 22–35 animals per
group, two-way ANOVA). (G) Size distribution of small (ST, between 1 and 3 mm diameter), medium
(MT, between 3 and 5 mm diameter) and large tumors (LT, over 5 mm in diameter) in control and
K5-Cre;Pdpnflox/flox mice 20 weeks after DMBA treatment. (H) Quantification of large tumors (>5 mm
in diameter) incidence in control and K5-Cre;Pdpnflox/flox mice (n = 22–35 animals per group, two-way
ANOVA). (I) Quantification of SCC incidence in control and K5-Cre;Pdpnflox/flox mice expressed as
the product of SSC and large tumors (over 5 mm in diameter) numbers (n = 22–35 animals per group,
two-way ANOVA).
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3.2. Tumor Cell Expressed Podoplanin Promotes Tumor Cell Invasion

We and others have previously reported that cancer cell overexpression of podoplanin promotes
cancer cell invasiveness [9,19]. Cancer cell expressed podoplanin has been reported to promote
both single cell invasion and epithelial-mesenchymal transition (EMT), as well as collective cell
invasion [19,20,29–31]. We investigated tumor invasiveness by scoring histopathological sections of
tumors as either having collective cell invasion, single cell invasion or no invasion with respect to the
basement membrane (Figure 2A). We found that K5-Cre;Pdpnflox/flox mice had significantly less invasion
compared to control mice (Figure 2B). Interestingly, only control mice displayed single cell invasion.
Next, we evaluated tumor differentiation as an indicator of tumor aggressiveness. Tumors were
scored as either well differentiated, moderately differentiated, poorly differentiated, undifferentiated or
irregularly differentiated. No significant difference between the control and K5-Cre;Pdpnflox/flox mice
was observed (Figure 2C). Similarly, the number of dysplastic cells, scored on a scale of 0 to 4, from least
to most, was not significantly different between the control and K5-Cre;Pdpnflox/flox mice (Figure 2D).
Overall, very little necrosis was observed in both the control and K5-Cre;Pdpnflox/flox mice (Figure 2E).
We also isolated primary epidermal keratinocytes from the control and K5-Cre;Pdpnflox/flox mice and
performed in vitro migration and proliferation assays. Isolated primary keratinocytes from the control
and K5-Cre;Pdpnflox/flox mice were cultured for four days until confluence. In the scratch migration
assay, K5-Cre;Pdpnflox/flox keratinocytes migrated significantly faster than the control keratinocytes
(Figure 2F,G). Even though this result was unexpected, the two-dimensional scratch assay likely does
not reflect the complex tumor microenvironment where transformed cells need to invade through a
complex three-dimensional extracellular matrix that has been remodeled by the tumor stroma. There
was no significant difference in the proliferation between the control and knockout keratinocytes
(Figure 2H).

3.3. Tumor Cell Expressed Podoplanin Promotes Peritumoral Lymphangiogenesis

Cancer cell overexpression of podoplanin has been reported to promote lymphangiogenesis in a
number of human carcinomas and mouse models of carcinogenesis [9,11,14,17]. We next investigated
whether the deletion of cancer cell expressed podoplanin also affected the lymphatic vasculature
in the two-stage chemical carcinogenesis model. First, we analyzed the normal vasculature by
immunofluorescence stainings of ear sections stained for the blood vascular marker MECA-32 and
the lymphatic vessel marker LYVE1. There were no major differences in the vascular morphology
(Figure 3A1). The tissue area covered by blood vessels, stained for MECA-32, and lymphatic vessels,
stained for LYVE1, showed no significant difference between the control and K5-Cre;Pdpnflox/flox mice
(Figure 3B). Next, we studied the lymphatic vasculature in the peritumoral area up to 500 µm from
the tumor edge. Immunofluorescence analysis of tumors stained for LYVE1 and the pan-vascular
marker CD31 (Figure 3A2) revealed a significant decrease of the LYVE1+ lymphatic area in the
K5-Cre;Pdpnflox/flox mice as compared to the control mice (Figure 3C). The decrease in the LYVE1+ area
was associated with a reduced number of lymphatic vessels (Figure 3D). There was no significant
change of lymphatic vessel size. We next investigated the potential contribution of tumor cell expressed
podoplanin to the immune cell accumulation in tumors. Tumors were scored as either having
strong, medium, low or no immune infiltration, using H&E-stained tissue sections. No significant
difference between tumors in the control and K5-Cre;Pdpnflox/flox mice was observed (Figure 3E).
Quantification of wet lymph node weights did not show any significant difference between the control
and K5-Cre;Pdpnflox/flox mice (Figure 3F).
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Figure 2. Absence of cancer cell expressed podoplanin reduces cell invasion. (A) Representative
micrographs of non-invasive tumor, collective cell invasion and single cell invasion through the
basement membrane. Scale bar: 200 µm. Semi-quantitative evaluation of (B) tumor invasiveness,
(C) tumor differentiation, (D) dysplastic cells and (E) tumor necrosis in tumors of control and
K5-Cre;Pdpnflox/flox mice 6 weeks after SCC diagnosis (n = 22–35 tumors per group, Fisher’s exact
test). (F) Representative pictures of scratch migration of control and K5-Cre;Pdpnflox/flox keratinocytes.
Quantification of cell migration (G) and cell proliferation (H) of primary keratinocytes isolated from
control and K5-Cre;Pdpnflox/flox mice (n = 8 wells per group for migration, 10–25 wells per group for
proliferation, one of three similar experiments shown). Data are presented as mean ± SD. * p < 0.05.
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Figure 3. Tumor cell expressed podoplanin promotes peritumoral lymphangiogenesis.
(A) Immunofluorescence images of (1) normal ears and (2) SCCs from control and K5-Cre;Pdpnflox/flox

mice stained for LYVE1 (green) and MECA-32 (red). Nuclei are stained by Hoechst (blue). Dashed line
separates the tumor cells (above) and the tumor stroma (below). Scale bar: 100 µm. (B) Quantification of
lymphatic (LYVE1+) and blood vessel (MECA-32+) area in normal ears of control and K5-Cre;Pdpnflox/flox

mice (n = 7 ears per group, Mann–Whitney test). Quantification of the LYVE1+ area as % of total area
(C) and number of LYVE1+ lymphatic vessels per mm2 (D) in tumors of control and K5-Cre;Pdpnflox/flox

mice, measured in the peritumoral area stretching from the tumor edge to 500 µm away from it (n = 4–6
tumors per group, Mann–Whitney test). (E) Semi-quantitative assessment of inflammatory infiltration
in H&E-stained sections of tumors of control and K5-Cre;Pdpnflox/flox mice 6 weeks after SCC diagnosis
(n = 22–35 tumors per group, Fisher’s exact test). (F) Wet lymph node weights of tumor-bearing
control and K5-Cre;Pdpnflox/flox mice 6 weeks after SCC diagnosis (n = 22–35 lymph nodes per group,
Mann–Whitney test). Data represent mean ± SD. * p < 0.05.

4. Discussion and Conclusions

Podoplanin expression is upregulated in a number of different human carcinomas, including
SCCs of the skin, esophagus and head and neck, and has been reported as a biomarker for poor
prognosis [3,6,9]. Additionally, expression of podoplanin by tumor cells is a marker of invasion
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in a number of human carcinomas [9,32,33]. While not normally expressed by the interfollicular
epidermis, podoplanin has been reported to be upregulated early in the skin carcinogenesis process [17].
Moreover, tumor cell expressed podoplanin has been reported to act as an oncogene, promoting the
tumorigenic and metastatic phenotype in epidermal keratinocytes [34], and silencing of podoplanin
in podoplanin-expressing human oral SCC lines reduced the tumor formation capacity of xenografts
in nude mice [35]. Together, these reports suggested an important role of keratinocyte-expressed
podoplanin in promoting carcinogenesis. However, our findings in an epidermis-specific podoplanin
knockout mouse model, using an established orthotopic multistep skin carcinogenesis model, revealed
no differences in tumor initiation, multiplicity or malignant transformation. Thus, while increased
expression of podoplanin might further promote carcinogenesis in some models, it is dispensable
for multistep chemically-induced skin carcinogenesis. As a limitation of the present study, one has
to keep in mind that the chemical carcinogenesis protocol used (DMBA for the induction of genetic
alterations, TPA for tumor promotion), even though it has been previously widely used and is generally
considered as one of the best characterized experimental mouse cancer models, does not fully reflect
the pathogenesis of most cases of cutaneous SCC in humans. While chemical skin carcinogenesis
was prominent centuries ago, ultraviolet B light exposure is considered to be the major pathogenetic
factor for cutaneous SCC development today. Thus, it would be of interest to investigate the role
of epidermis-expressed podoplanin in additional experimental SCC models in future investigations.
Beyond the cancer aspect, our study confirms, in agreement with a recent report [5], that podoplanin
expression is dispensable for the normal development and differentiation of the murine interfollicular
epidermis, since we did not detect any major changes of the normal epidermal architecture in the
K5-Cre;Pdpnflox/flox mice.

Podoplanin is upregulated at the invasive front of a number of human cancers and mouse models
of carcinogenesis, and has been reported to render cancer cells more motile, thereby facilitating the
local invasion of host tissue [3,9,13,16]. Tumor cell expressed podoplanin at the invasive front of
SCCs often co-localizes with the cell–cell adhesion molecule E-cadherin, promoting collective cell
invasion [20,36]. However, in some areas of oral SCCs, podoplanin expression co-localized with reduced
or virtually absent E-cadherin expression, promoting EMT and single cell invasion [12]. Similarly,
podoplanin overexpression induced EMT in Madin-Darby canine kidney type-II epithelial cells and in
immortalized HaCaT keratinocytes through the interaction with ERM proteins and upregulation of
RhoA activity [19]. This is in agreement with our findings that single cell invasion was exclusively
observed in Pdpnflox/flox control mice, whereas collective cell invasion was detected in both the control
and K5-Cre;Pdpnflox/flox mice. This is also in line with our findings that primary keratinocytes of
K5-Cre;Pdpnflox/flox mice migrated faster compared to the controls, possibly due to reduced matrix
adhesion [5]. The detailed mechanisms by which podoplanin regulates cancer cell migration are likely
cell- and cancer type-specific, and their identification will require specific genetic deletions to better
understand the contribution of different cell types in the microenvironment.

The metastasis of many human cancers, including SCCs of the head and neck, occurs predominantly
through the lymphatic system, and the extent of lymph node involvement often determines the
patient’s prognosis [37]. The overexpression of podoplanin has been found to promote peritumoral
lymphangiogenesis in a number of human cancers and experimental animal models [9,11,34,38].
In agreement with these observations, we found reduced peritumoral lymphangiogenesis in the
K5-Cre;Pdpnflox/flox mice, even though there were no major changes in immune cell infiltration
or draining lymph node weight. While the detailed factors responsible for the induction of
lymphangiogenesis in the skin carcinogenesis model need to be investigated, a previous study
using podoplanin-overexpressing tumor xenografts identified endothelin-1 to be upregulated in
these tumors and also found that endothelin-1 promoted lymphatic endothelial cell proliferation
in vitro [9]. Endothelin-1 was also suggested to contribute to cancer cell motility and invasiveness
through the induction of tumor proteinases [39–41], highlighting a potential mechanism for how
podoplanin-expressing cancers might acquire more aggressive phenotypes.
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In conclusion, our results reveal for the first time that keratinocyte-expressed podoplanin is
dispensable for the early skin carcinogenesis process. Since podoplanin is also upregulated by a
number of non-epithelial stromal cells during early carcinogenesis, notably by dermal fibroblasts,
these cells might compensate for the specific loss of podoplanin in keratinocytes. Since global
podoplanin knockout mice are not viable, future studies with fibroblast-specific deletion of podoplanin
might determine the specific contribution of fibroblast-expressed podoplanin in early carcinogenesis.
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