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ABSTRACT Here, we present the chloroplast genome sequence of black spruce (Pi-
cea mariana), a conifer widely distributed throughout North American boreal forests.
This complete and annotated chloroplast sequence is 123,961 bp long and will con-
tribute to future studies on the genetic basis of evolutionary change in spruce and
adaptation in conifers.

Global climate change is predicted to impact the growth of Picea mariana (black
spruce), a dominant species of significant ecological and economic importance in

Canada’s boreal forests (1, 2). Black spruce has demonstrated local adaptations to
climate (3). Determining the genetic and molecular bases of these adaptations can provide
valuable insights into mitigating climate change effects on Canada’s forests (2, 3).

An unannotated black spruce chloroplast draft genome assembly with several gaps was
submitted to GenBank (accession number LT727842.1) in 2018. Here, we present a com-
plete and annotated black spruce chloroplast genome sequence from a different genotype.

A black spruce needle tissue sample (genotype 40-10-1) was collected in Thunder
Bay, Ontario (50°57=39.96�N, 90°27=20.16�E; elevation 741 m). Following nucleus puri-
fication, genomic DNA was extracted by Bio S&T using a cetyltrimethylammonium
bromide (CTAB)/chloroform method, yielding 60 �g of high-quality purified DNA (4, 5).
A sequencing library was prepared using the Chromium linked-read platform from 10X
Genomics (5) and sequenced with paired-end 150-base pair reads on an Illumina HiSeq
X instrument at Canada’s Michael Smith Genome Sciences Centre.

One lane of sequencing data, consisting of 428,820,113 read pairs, was used to
assemble the chloroplast genome. After trimming adapters using Trimadap vr11 (6),
subsets were sampled (n � 0.75, 1.5, 3, 6, 12, 25, 50, and 200 million read pairs) to
reduce the noise from nuclear and mitochondrial DNA.

Each subsample was assembled with ABySS v2.1.0 (7) using various k-mer sizes
(k � 64 to 104, step 8) and k-mer count thresholds (kc � 3 and 4). Chloroplast se-
quences in the assemblies were extracted from BWA-MEM v0.7.17 (8) alignments of
scaffolds to the reference white spruce chloroplast genome (genotype WS77111;
GenBank accession number MK174379) (9) and evaluated with QUAST v5.02 (10). The
assembly with the highest NGA50 length of 42,639 bp (where NGA50 indicates the
length of the shortest aligned scaffold, with all aligned scaffolds at least NG50 making
up at least 50% of the target genome) and 0 misassemblies (25 million read pair subset;
k � 104; kc � 4) was further scaffolded using ntJoin v1.0.1 (11), supplying the white
spruce chloroplast genome as the reference and setting reference_weights�“2”.
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FIG 1 The complete chloroplast genome of Picea mariana genotype 40-10-1. The Picea mariana chloroplast genome was annotated using GeSeq and plotted
using OGDRAW (16). The inner gray circle illustrates the GC content of the genome, and the outer circle shows the annotated genes as rectangular boxes with
labels, colored by functional categories. The arrows indicate the direction of transcription for each DNA strand.
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Remaining gaps in the resulting scaffold were filled using Sealer v2.2.3 (12) with
multiple values of k (k � 70 to 120, step 10), and the assembly was polished using Pilon
v1.23 (13) with --diploid --fix all options. Approximately 700 bp on the two ends of our
assembly were successfully recovered by supplying the 3= and 5= ends of our draft to
Sealer v2.2.3 (12) using the abovementioned parameters, yielding a complete chloro-
plast genome. Finally, BLAST v2.10.0 (14) was used to adjust the start position for
consistency with previously published chloroplast genomes. Note that default param-
eters were used unless otherwise specified.

The complete Picea mariana chloroplast genome is 123,961 bp long with a GC
content of 38.70%. Using GeSeq v1.79 (15), with several Picea sp. chloroplast genomes
as references, we successfully annotated 114 genes, including 74 protein-coding, 36
tRNA-coding, and 4 rRNA-coding genes (Fig. 1). Due to a frameshift mutation, psbZ was
annotated as a pseudogene. Also, the annotations of petB, petD, and rpl16 were
corrected manually.

Offering this chloroplast genome to the community will enrich public genomic
repositories of spruce species, facilitate research on climate adaptation, and contribute
to the development of forest management policies.

Data availability. The complete chloroplast genome sequence of Picea mariana,
genotype 40-10-1, is available from GenBank under accession number MT261462,
and the raw sequencing reads are available from the SRA under SRX7890468 and
SRR11284755. The annotations used as references include those from Picea abies
(NC_021456), Picea asperata (NC_032367), Picea engelmannii (NC_041067), Picea glauca
genotype WS77111 (MK174379), Picea morrisonicola (NC_016069), Picea sitchensis
(KU215903), Picea chihuahuana (NC_039584), Picea crassifolia (NC_032366), and Picea
jezoensis (NC_029374).
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